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Abstract. The article contributes a derivation of variational Bayes for a large
class of topic models by generalising from the well-known model of latent Dirich-
let allocation. For an abstraction of these models as systems of interconnected
mixtures, variational update equations are obtained, leading to inference algo-
rithms for models that so far have used Gibbs sampling exclusively.

1 Introduction

Topic models (TMs) are a set of unsupervised learning models used in many areas of
artificial intelligence: In text mining, they allow retrieval and automatic thesaurus gen-
eration; computer vision uses TMs for image classification and content based retrieval;
in bioinformatics they are the basis for protein relationship models etc.

In all of these cases, TMs learn latent variables from co-occurrences of features in
data. Following the seminal model of latent Dirichlet allocation (LDA [6])), this is done
efficiently according to a model that exploits the conjugacy of Dirichlet and multino-
mial probability distributions. Although the original work by Blei et al. [6] has shown
the applicability of variational Bayes (VB) for TMs with impressive results, inference
especially in more complex models has not adopted this technique but remains the do-
main of Gibbs sampling (e.g., [121918]).

In this article, we explore variational Bayes for TMs in general rather than specific
for some given model. We start with an overview of TMs and specify general properties
(Sec. ). Using these properties, we develop a generic approach to VB that can be
applied to a large class of models (Sec. [3). We verify the variational algorithms on real
data and several models (Sec.[d). This paper is therefore the VB counterpart to [7].

2 Topic models

We characterise topic models as a form of discrete mixture models. Mixture models
approximate complex distributions by a convex sum of component distributions, p(x) =
ZkK: | P(xlz=k)p(z=k), where p(z=k) is the weight of a component with index k and
distribution p(x|z=k).

Latent Dirichlet allocation as the simplest TM can be considered a mixture model
with two interrelated mixtures: It represents documents m as mixtures of latent vari-

ables z with components 5,,, = p(zlm) and latent topics z as mixtures of words w with
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Fig. 1. Dependencies of mixture levels (ellipses) via discrete variables (arrows) in ex-
amples from literature: (a) latent Dirichlet allocation [6], (b) author—topic model (ATM
[12]], using observed parameters d,, to label documents, see end of Sec. , (c) 4-level
pachinko allocation (PAM [9], models semantic structure with a hierarchy of topics
3,n, 1_‘_)),,1,)(, 5\,), (d) hierarchical pachinko allocation (hPAM [8]], topic hierarchy; complex
mixture structure).

components ﬁk = p(wlz=k) and component weights - leading to a distribution over
words w of p(w|m) = Zszl Dk ,Bk?w The corresponding generative process is illustra-
tive: For each text document m, a multinomial distribution 5,,1 is drawn from a Dirichlet
prior Dir(ﬁmla) with hyperparameter «. For each word token w,,, of that document, a
topic z,, ,=k is drawn from the document multinomial 5," and finally the word obser-
vation w drawn from a topic-specific multinomial over terms Ek. Pursuing a Bayesian
strategy with parameters handled as random variables, the topic-specific multinomial is
itself drawn from another Dirichlet, Dir(ﬁkln), similar to the document multinomial.

Generic TMs. As generalisations of LDA, topic models can be seen as a powerful
yet flexible framework to model complex relationships in data that are based on only
two modelling assumptions: (1) TMs are structured into Dirichlet-multinomial mixture
“levels” to learn discrete latent variables (in LDA: z) and multinomial parameters (in
LDA: B and ). And (2) these levels are coupled via the values of discrete variables,
similar to the coupling in LDA between ¢ and (8 via z.

More specifically, topic models form graphs of mixture levels with sets of multi-
nomial components as nodes connected by discrete random values as directed edges.
Conditioned on discrete inputs, each mixture level chooses one of its components to
generate discrete output propagated to the next level(s), until one or more final levels
produce observable discrete data. For some examples from literature, corresponding
“mixture networks” are shown in Fig.[T] including the variant of observed multinomial
parameters substituting the Dirichlet prior, which will be discussed further below.

For the following derivations, we introduce sets of discrete variables X, multinomial
parameters @ and Dirichlet hyperparameters A as model-wide quantities, and the corre-
sponding level-specific quanitities X¢, @/, A® where superscript £ indicates the mixture
level. The constraint of connecting different mixture levels (ellipses in Fig. |1) via dis-
crete variables (arrows in Fig. [1)) can be expressed by an operator Tx’ that yields all
parent variables of a mixture level £ € L generating variable x’. Here x’ can refer to

3 In example models, we use the symbols from the original literature.



specific tokens Txf or configurations 7X’. Based on this and the definitions of the multi-
nomial and Dirichlet distributions, the joint likelihood of any TM is:
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In this equation, some further notation is introduced: We use brackets [-1' to indicate
that the contained quantities are specific to level £. Moreover, the mappings from parent
variables to component indices k; are expressed by (level-specific) k; = g(Tx;,1), and
nk . is the number of times that a configuration {1x;, i} for level ¢ lead to component kL.
Further, models are allowed to group components by providing group-specific hyper-
parameters &; with mapping j = f(k). Finally, A(@) is the normalisation function of the
Dirichlet distribution, a K-dimensional beta function: A(@) £ [, T(a,)/T(Q; ).

3 Variational Bayes for topic models

As in many latent-variable models, determining the posterior distribution p(H, O|V) =
p(V,H,0) />y fp(V, H, ®)dO® with hidden and visible variables {H,V} = X, is in-
tractable in TMs because of excessive dependencies between the sets of latent variables
H and parameters O in the marginal likelihood p(V) = Yy f p(V, H, ®)dO in the de-
nominator. Variational Bayes [2] is an approximative inference technique that relaxes
the structure of p(H, ©|V) by a simpler variational distribution g(H, @|¥, =) conditioned
on sets of free variational parameters ¥ and = to be estimated in lieu of H and ©. Min-
imizing the Kullback-Leibler divergence of the distribution ¢ to the true posterior can
be shown to be equivalent to maximising a lower bound on the log marginal likelihood:

log p(V) = log p(V) — KL{q(H, 0) || p(H, 6|V)}
= (log p(V. H, ©)) 1.6, + Hig(H, ©)} = F{q(H, ©)} 3)
with entropy H{-}. 7 {q(H, ©)} is the (negative) variational free energy — the quantity
to be optimised using an EM-like algorithm that alternates between (E) maximising ¥

w.r.t. the variational parameters to pull the lower bound towards the marginal likelihood
and (M) maximising # w.r.t. the true parameters to raise the marginal likelihood.

Mean-field approximation. Following the variational mean field approach [2], in the
LDA model the variational distribution consists of fully factorised Dirichlet and multi-
nomial distributions [6]ﬂ

4B, l¢, 1.7) = ]_[ ]_[Mult@mnwmn) [_[Dlrwkuk> ]_[Dlr(ﬁmwm) @
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4 1In [6] this refers to the smoothed version; it is described in more detail in [3].



In [6], this approach proved very successful, which raises the question how it can be
transferred to more generic TMs. Our approach is to view Eq. [ as a special case of
a more generic variational structure that captures dependencies TX between multiple
hidden mixture levels and includes LDA for the case of one hidden level (H = {7}):
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where £ € H refers to all levels that produce hidden variables. In the following, we
assume that the indicator i is identical for all levels ¢, e.g., words in documents it =
i = (m, n). Further, tokens i in the corpus can be grouped into terms v and (observable)
document-specific term frequencies #,,, introduced. We use shorthand u = (m,v) to
refer to specific unique tokens or document—term pairs.

Topic field. The dependency between mixture levels, Tx!, can be expressed by the like-
lihood of a particular configuration of hidden variables X,=f = {xizl‘[}gey under the
variational distribution: ¢, » = q(#,=1[¥). The complete structure ¢, (the joint distribu-
tion over all £ € H with ¥ = {y,}y,) is a multi-way array of likelihoods for all latent
configurations of token # with as many index dimensions as there are dependent vari-
ables. For instance, Fig. E]reveals that LDA has one hidden variable with dimension K
while PAM has two with dimensions s; X s,. Because of its interpretation as a mean
field of topic states in the model, we refer to i, as a “topic field” (in underline notation).

We further define ¢/, , as the likelihood of configuration (k‘, ') for document—term
pair u. This “marginal” of ¢, depends on the mappings between parent variables T.x,
and components k on each level. To obtain lﬁf > the topic field i, is summed over all
descendant paths that x,=¢ causes and the ancestor paths that can cause k = g(Tx,, u)
on level ¢ according to the generative process:

uk, = Z v, TR S ?A/ = path causing k° ,tg = path caused by 1 . (6)

{FE5)
Descendant paths fé of #¥ are obtained via recursion of k = g(Txfj ,u) over {’s descendant
levels d. Assuming bijective g(-) as in the TMs in Fig. [1} the ancestor paths tjf that

correspond to components in parents leading to k’ are obtained via (1x%, u) = g7!(k) on
{’s ancestor levels a recursively. Each pair {7, £t ? } corresponds to one element in ¥, per

{k’, 1"} at index vector 7'= (£}, k!, ', 1%).
Free energy. Using Eqs. 2] B] [5|and[6] the free energy of the generic model becomes:
[€]
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3> Note the distinction between the function W(-) and quantity ¥



Variational E-steps. In the E-step of each model, the variational distributions for the
joint multinomial ¢, for each token (its topic field) and the Dirichlet parameters g_-‘)]f on
each level need to be estimated. The updates can be derived from the generic Eq. [7|by
setting derivatives with respect to the variational parameters to zero, which yields{’

47 O €Xp (Z[GL [ﬂz(gk)]m) , (8)
'f/f,t = [(Zunu‘//u,k,t) + aj,f]liI (9)

¢
uk,t

co-occurrence of the value pair (k’, ). The result in Eqgs. [8|and E] perfectly generalises
that for LDA in [5]].

where the sum ) ,n,4¢ ,  for level € can be interpreted as the expected counts (ni 2 g of

M-steps. In the M-step of each model, the Dirichlet hyperparameters d’f, (or scalar o)
are calculated from the variational expectations of the log model parameters (log 9y ;) g =
,u,(gk), which can be done at mixture level (Eq. @ has no reference to o7§ across levels).

Each estimator for @; (omitting level €) should “see” only the expected parame-
ters ,u,(gk) of the K; components associated with its group j = f(k). We assume that
components be associated a priori (e.g., PAM in Fig. |l has 5,” ~ Dir(&)) and K; is
known. Then the Dirichlet ML parameter estimation procedure given in [6410] can be
used in modified form. It is based on Newton’s method with the Dirichlet log likelihood
function f as well as its gradient and Hessian elements g; and &,
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Scalar « (without grouping) is found accordingly via the symmetric Dirichlet:

f=—KI[Tlog(@) - logT(Ta)] + (@ = )sa » 5o = Xiey L te(E0)

g=KT¥(Ta)-Y¥()+s4], h=KT[TY(Ta)-Y(a)]

a—a-ght. (11)
Variants. As an alternative to Bayesian estimation of all mixture level parameters, for
some mixture levels ML point estimates may be used that are computationally less ex-
pensive (e.g., unsmoothed LDA [6]). By applying ML only to levels without document-
specific components, the generative process for unseen documents is retained. The E-

step with ML levels has a simplified Eq.[8] and ML parameters ¢¢ are estimated in the
M-step (instead of hyperparameters):

U exp(Seene @] ") 05,0 05, = ), [0, & Bunay, - (12)

® In Eq. we assume that 7“=v on final mixture level(s) (“leaves™), which ties observed terms v
to the latent structure. For “root” levels where component indices are observed, y,(¢;) in Eq.
can be replaced by W(&,).



Moreover, as an extension to the framework specified in Sec. |2} it is straightforward
to introduce observed parameters that for instance can represent labels, as in the author—
topic model, cf. Fig|l] In the free energy in Eq. |7} the term with ,u,(g?k) is replaced by
(Zunutbuk,s) log 9xs, and consequently, Eq. [§]takes the form of Eq. [T2] (left), as well.

Other variants like specific distributions for priors (e.g., logistic-normal to model
topic correlation [4] and non-parametric approaches [14]) and observations (e.g., Gaus-
sian components to model continuous data [[1]]), will not be covered here.

Algorithm structure. The complete variational EM algorithm alternates between the
variational E-step and M-step until the variational free energy ¥ converges at an opti-
mum. At convergence, the estimated document and topic multinomials can be obtained
via the variational expectation log 19,(,[ = ,ut(fk). Initialisation plays an important role
to avoid local optima, and a common approach is to initialise topic distributions with
observed data, possibly using several such initialisations concurrently. The actual vari-
ational EM loop can be outlined in its generic form as follows:

1. Repeat E-step loop until convergence w.r.t. variational parameters:
1. For each observed unique token u:

1. For each configuration #* calculate var. multinomial v, 7 (Eq. orleft).

2. For each (k,t) on each level ¢: calculate var. Dirichlet parameters fi,r based on
topic field marginals wﬁ’k,, (Egs. E] and E]), which can be done differentially: f}; L <
f,it + n,,At//ﬁikJ with A(//ik,, the change of z//ik.t.

2. Finish variational E-step if free energy F (Eq.[7) converged.
2. Perform M-step:
1. For each j on each level ¢: calculate hyperparameter oz;, (Egs. or , inner iteration
loop over ¢.
2. For each (k, 7) in point-estimated nodes ¢: estimate ﬁi’[ (Eq. right).

3. Finish variational EM loop if free energy # (Eq.|7) converged.

In practice, similar to [3]], this algorithm can be modified by separating levels with
document-specific variational parameters 5" and such with corpus-wide parameters
E%*_ This allows a separate E-step loop for each document m that updates ¢, and Z"
=l -

with £¢* fixed. Parameters Z%* are updated afterwards from changes Az,bﬁ ., cumulated
in the document-specific loops, and their contribution added to F.

4 Experimental verification

In this section, we present initial validation results based on the algorithm in Sec. 3]

Setting. We chose models from Fig. [I} LDA, ATM and PAM, and investigated two
versions of each: an unsmoothed version that performs ML estimation of the final
mixture level (using Eq. [I2) and a smoothed version that places variational distribu-
tions over all parameters (using Eq. [§). Except for the component grouping in PAM
(5m,x have vector hyperparameter @,), we used scalar hyperparameters. As a base-line,
we used Gibbs sampling implementations of the corresponding models. Two criteria
are immediately useful: the ability to generalise to test data V' given the model pa-
rameters @, and the convergence time (assuming single-threaded operation). For the



Model: LDA ATM PAM
Dimensions {A,B}: K = {25,100} K = {25,100} s12 = {(5,10),(25,25)}
Method: GS VBy, VB GS VBy, VB GS VBy. VB
i Al 039 0.83 091 0.73 1.62 1.79 0.5 1.25 1.27
Convergence time [h]
B| 192 3.75 4.29 3.66 7.59 8.1 5.61 14.86  16.06
Al 401 1573 1642 | 6.89 2543 2578 | 544 2051 2079
Iteration time [sec]
B| 16.11 6433 671.0 | 2995 1139.2 1166.9 | 53.15 2058.2 2065.1
X Al 350 19 20 380 23 25 330 22 22
Iterations
B | 430 21 23 440 24 25 380 26 28
Perplexit A| 1787.7 1918.5 1906.0 | 1860.4 19352 1922.8 |2053.8 2103.0 2115.1
Xi
erpiexity B | 16139 1677.6 1660.2 | 1630.6 1704.0 1701.9 | 1909.2 1980.5 1972.6

Fig. 2. Results of VB and Gibbs experiments.

first criterion, because of its frequent usage with topic models we use the perplex-
ity, the inverse geometric mean of the likelihood of test data tokens given the model:
P(V’) = exp(—Y, . log p(v,|@")/W’) where @ are the parameters fitted to the test data
V' with W’ tokens. The log likelihood of test tokens log p(v;|@") is obtained by (1) run-
ning the inference algorithms on the test data, which yields =’ and consequently &', and
(2) marginalising all hidden variables % in the likelihood p(v,[,, @) = [Tse [84,]"'[]
The experiments were performed on the NIPS corpus [11]] with M = 1740 documents
(174 held-out), V = 13649 terms, W = 2301375 tokens, and A = 2037 authors.

Results. The results of the experiments are shown in Fig. |2| It turns out that generally
the VB algorithms were able to achieve perplexity reductions in the range of their Gibbs
counterparts, which verifies the approach taken. Further, the full VB approaches tend to
yield slightly improved perplexity reductions compared to the ML versions. However,
these first VB results were consistently weaker compared to the baselines. This may
be due to adverse initialisation of variational distributions, causing VB algorithms to
become trapped at local optima. It may alternatively be a systematic issue due to the
correlation between ¥ and = assumed independent in Eq. [3] a fact that has motivated
the collapsed variant of variational Bayes in [13]]. Considering the second evaluation
criterion, the results show that the current VB implementations generally converge less
than half as fast as the corresponding Gibbs samplers. This is why currently work is un-
dertaken in the direction of code optimisation, including parallelisation for multikernel
CPUs, which, opposed to (collapsed) Gibbs samplers, is straightforward for VB.

5 Conclusions

We have derived variational Bayes algorithms for a large class of topic models by gen-
eralising from the well-known model of latent Dirichlet allocation. By an abstraction of
these models as systems of interconnected mixture levels, we could obtain variational
update equations in a generic way, which are the basis for an algorithm, that can be eas-
ily applied to specific topic models. Finally, we have applied the algorithm to a couple
of example models, verifying the general applicability of the approach. So far, espe-
cially more complex topic models have predominantly used inference based on Gibbs
sampling. Therefore, this paper is a step towards exploring the possibility of variational

7 In contrast to [12]], we also used this method to determine ATM perplexity (from the @;).



approaches. However, what can be drawn as a conclusion from the experimental study
in this paper, more work remains to be done in order to make VB algorithms as effective
and efficient as their Gibbs counterparts.

Related work. Beside the relation to the original LDA model [6l5], especially the pro-
posed representation of topic models as networks of mixture levels makes work on
discrete DAG models relevant: In [3]], a variational approach for structure learning in
DAGs is provided with an alternative derivation based on exponential families leading
to a structure similar to the topic field. They do not discuss mapping of components or
hyperparameters and restrict their implementations to structure learning in graphs bipar-
tite between hidden and observed nodes. Also, the authors of [9] present their pachinko
allocation models as DAGs, but formulate inference based on Gibbs sampling. In con-
trast to this, the novelty of the work presented here is that it unifies the theory of topic
models in general including labels, the option of point estimates and component group-
ing for variational Bayes, giving empirical results for real-world topic models.

Future work will optimise the current implementations with respect to efficiency in
order to improve the experimental results presented here, and an important aspect is to
develop parallel algorithms for the models at hand. Another research direction is the
extension of the framework of generic topic models, especially taking into consider-
ation the variants of mixture levels outlined in Sec. [3| Finally, we will investigate a
generalisation of collapsed variational Bayes [13].
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