
Weighted patch-based reconstruction:
linking (multi-view) stereo to scale space

Ronny Klowsky, Arjan Kuijper, and Michael Goesele

Technische Universität Darmstadt

Abstract. Surface reconstruction using patch-based multi-view stereo
commonly assumes that the underlying surface is locally planar. This is
typically not true so that least-squares fitting of a planar patch leads
to systematic errors which are of particular importance for multi-scale
surface reconstruction. In a recent paper [12], we determined the mod-
ulation transfer function of a classical patch-based stereo system. Our
key insight was that the reconstructed surface is a box-filtered version of
the original surface. Since the box filter is not a true low-pass filter this
causes high-frequency artifacts. In this paper, we propose an extended
reconstruction model by weighting the least-squares fit of the 3D patch.
We show that if the weighting function meets specified criteria the re-
constructed surface is the convolution of the original surface with that
weighting function. A choice of particular interest is the Gaussian which
is commonly used in image and signal processing but left unexploited by
many multi-view stereo algorithms. Finally, we demonstrate the effects
of our theoretic findings using experiments on synthetic and real-world
data sets.
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1 Introduction

The basis of virtually all multi-view stereo algorithms are correspondences found
between images. Hereby, the de facto standard is to find a planar patch in 3D
whose projected region in (some of) the images is photo-consistent, i.e., looks
similar. There are many ways to measure photo-consistency including normalized
cross-correlation (NCC) or the sum of squared differences (SSD, see Hu and
Mordohai [10] for an overview and evaluation of different measures). Whatever
measurement used, the underlying assumption is that the original surface is
locally planar or even has constant depth in the patch area. This leads to a
systematic error in reconstruction which becomes especially important when
combining multi-scale data [1, 2]. Recently, Klowsky et al. [12] analyzed this
systematic error and proposed a reconstruction model where the 3D patch is
fitted to the original surface in a least-squares sense. In the resulting linear
system they identified the modulation transfer function to be a sinc. In other
words, the reconstructed surface is equal to a convolution of the original surface
with a box filter. Since this is no true low-pass filter it causes high-frequency
artifacts such as amplitude inversion for some frequencies.
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In this paper, we develop an extended reconstruction model by weighting the
fitting of the 3D patch. We derive constraints on the weighting function to ensure
that the reconstructed surface is a convolution of the original surface with that
weighting function. As a particular result, we will see that uniform weighting
used in our previous work [12] causes the box filter effect. A much better choice
for the weighting function fulfilling the derived constraints and allowing for true
low-pass filtered reconstructions is the Gaussian, which is widely used in the
imaging domain. When using different patch sizes (e.g., due to different image
resolution or camera-object distances) the reconstructions reflect different levels
of the scale space representation of the true surface. We show for one popular
multi-view stereo algorithm [5] how to implement the weighting and discuss
results on synthetic as well as real-world data sets. Our findings may influence a
broad range of algorithms in multi-view stereo but also in the field of multi-scale
surface reconstruction [2–4, 15] or geometry super-resolution [6, 20].

In summary the contributions of our paper are

– the generalization of a previously presented reconstruction model for (multi-
view) stereo by introducing weights,

– the theoretical derivation of the (predicted) reconstructed surface without
the detour in frequency space, and

– we show how a weighting, e.g., a Gaussian, can be implemented for a com-
mon multi-view stereo algorithm which expectably improves the frequency
behavior of the reconstruction.

1.1 Related work

While there is a large body of work on multi-view stereo (see, e.g., the survey
paper and the constantly updated benchmark by Seitz at al. [18, 14]), the study
of multi-scale depth reconstruction has long been neglected. In previous work
we [12] introduced a theoretical reconstruction model and determined the mod-
ulation transfer function of patch-based stereo systems. We also discussed the
(loosely) related work on multi-scale analysis of (multi-view) stereo to which
we refer the reader for a more extensive discussion. Our current work builds
upon this reconstruction model and demonstrates how more freedom in the re-
construction outcome is possible. As one particular result, we demonstrate that
multi-view stereo can yield a scale space representation of the underlying geom-
etry. In contrast to [12], we derive our results directly in geometry space without
operation (at least in an intermediate step) in frequency space.

Our work is also related to existing work on patch-based photo-consistency
measures. An overview and evaluation of confidence measures used in (multi-
view) stereo is given by Hu and Mordohai [10]. In all their cost computations,
however, a square patch of N × N pixels is used and all pixels are weighted
uniformly. If we assume all measures aim at fitting a patch in 3D space, they
all result in a box filter. Kanade and Okutomi [11] already tried to find optimal
size and shape of the patch but still only used rectangular shapes. Habbecke and
Kobbelt [8] propose a multi-view stereo system where matching is performed
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Fig. 1. Fitting a planar patch (line segment) to the geometry for each point x.

on circular disks in object space. The size of the disks is selected to achieve a
minimum intensity variance on each disk. Totally different shapes are achieved
by Micusik and Koseka [13] whose approach is suited for man-made environ-
ments with many planar sufaces. Here, the reference view is first segmented into
superpixels, that are assumed to be planar in object space, and matching is then
performed using those superpixels. Thus the shape of the matching window is
adapted to the local scene structure and texture. Yoon and Kweon [21] were
probably the first to compute weights for each pixel in the patch that steer the
influence of that pixel in the matching process. Their weights are dependent on
the color similarity and the spatial distance from the center pixel. Hosni et al. [9]
improve on that by computing weights using the geodesic distance transform. In
contrast to all these efforts, we investigate the influence of a specific weighting
on the reconstructed geometry and derive the resulting (multi-scale) behavior of
the resulting surface.

2 Theoretical considerations

2.1 Extension of the reconstruction model

In this paper, we build upon our previously introduced reconstruction model [12].
We describe the process of photometric consistency optimization between images
(e.g. using normalized cross-correlation (NCC), or sum of squared differences
(SSD)) as a geometric least-squares fitting of a planar patch to the unknown
geometry. Figure 1 visualizes this idea for a 2D geometry described as a height
field z = f(x). To obtain the reconstruction at some point x, a line segment
(parameterized by slope m and offset n) with extent 2δ is fitted to the geometry
in a least-squares sense minimizing the energy

E(m,n, x) =

∫ x+δ

x−δ
(mt+ n− f(t))2dt. (1)
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The reconstructed surface is then represented by the central patch points. For
this model we determined the modulation transfer function which turned out to
be a sinc. Though not explicitly stated in our prior paper [12] this is equivalent
to a convolution with a box filter. In the following we will show that the reason
for this result is the uniform weighting of pixels during optimization. We suggest
the following extension of the reconstruction model: Instead of considering each
point in [x− δ, x+ δ] uniformly we introduce a weighting function g allowing for
different areas of influence. Consequently, we alter the energy function to

E(m,n, x) =

∫ ∞
−∞

g(x− t)(mt+ n− f(t))2 dt (2)

where g(t) is a weighting function. Note that with g(t) = 1[−δ,δ] this is equal
to the former energy in Eq. 1. This weighting function could be implemented
as a weighting of the pixels during photo-consistency optimization. In Section 3
we will demonstrate this using a specific multi-view stereo algorithm. In the
following subsection, we derive theoretically how this weighting function affects
the reconstructed surface.

2.2 Reconstruction in 2D

For the sake of simplicity, we first look at a surface in 2D (a line) as illustrated in
Figure 1. For now, we put no further constraints on g(t) except for integrability.
Later on, we will discuss further desirable properties. Minimizing E in Equation 2
requires taking the partial derivatives with respect to m and n:

∂mE = 2

∫ ∞
−∞

g(x− t)t(mt+ n− f(t)) dt (3)

= 2m

∫ ∞
−∞

g(x− t)t2 dt+ 2n

∫ ∞
−∞

g(x− t)t dt− 2

∫ ∞
−∞

g(x− t)tf(t) dt

∂nE = 2

∫ ∞
−∞

g(x− t)(mt+ n− f(t)) dt (4)

= 2m

∫ ∞
−∞

g(x− t)t dt+ 2n

∫ ∞
−∞

g(x− t) dt− 2

∫ ∞
−∞

g(x− t)f(t) dt

We introduce a short notation for the zeroth, first and second moment of g

µ0 =

∫ ∞
−∞

g(t) dt µ1(x) =

∫ ∞
−∞

g(x−t)t dt µ2(x) =

∫ ∞
−∞

g(x−t)t2 dt (5)

and abbreviate the other convolution integrals using

(g ∗ ·f)(x) =

∫ ∞
−∞

g(x− t)tf(t) dt (6)

(g ∗ f)(x) =

∫ ∞
−∞

g(x− t)f(t) dt. (7)
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W.l.o.g. we can assume that µ0 = 1 which corresponds to normalizing the weight-
ing function g. Under the condition that µ2(x) 6= 0 we set the partial derivatives
to zero and transpose the equations:

m =
(g ∗ ·f)(x)− nµ1(x)

µ2(x)
(8)

n = (g ∗ f)(x)−mµ1(x) (9)

We can now solve for m and n which leads to

m =
(g ∗ ·f)(x)− ((g ∗ f)(x)−mµ1(x))µ1(x)

µ2(x)

⇔ m =

(
1− µ1(x)2

µ2(x)

)−1(
(g ∗ ·f)(x)

µ2(x)
− (g ∗ f)(x)µ1(x)

µ2(x)

)
=

(g ∗ ·f)(x)− (g ∗ f)(x)µ1(x)

µ2(x)− µ1(x)2
(10)

n = (g ∗ f)(x)− (g ∗ ·f)(x)− (g ∗ f)(x)µ1(x)

µ2(x)− µ1(x)2
µ1(x)

=
(g ∗ f)(x)µ2(x)− (g ∗ ·f)(x)µ1(x)

µ2(x)− µ1(x)2
(11)

Since the final surface is represented by the central patch points it can be written
as

mx+ n =
(g ∗ ·f)(x)(x− µ1(x)) + (g ∗ f)(x)(µ2(x)− xµ1(x))

µ2(x)− µ1(x)2
. (12)

Though valid for very general weighting functions g this result is not very sat-
isfactory. On closer inspection we see that when µ1(x) = x, which is true for all
normalized symmetric functions g, it can be easily simplified to

mx+ n = (g ∗ f)(x). (13)

In other words, every function g with µ0 = 1, µ1(x) = x, µ2(x) 6= 0, and
µ2(x) 6= x2, used to weight the least-squares fitting results in a reconstruction
that is the convolution of the true surface with g. Note, that a uniform weighting
[12] naturally leads to the convolution with a box filter in this framework.

2.3 Building a scale space representation

The derived constraints for the weighting function obviously allow for many
different choices. One of particular interest is the Gaussian since convolutions
with Gaussians are well studied and widely applied, e.g., in the image domain.
If we set g to be a normalized Gaussian with standard deviation σ

g(t) =
1√
2πσ

exp

(−t2
2σ2

)
. (14)
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we obtain the following moments

µ0 = 1 µ1(x) = x µ2(x) = σ2 + x2. (15)

That is, the normalized Gaussian fulfills our constraints and we can determine
the slope m and offset n of the fitted patch at each point x by

m =
(g ∗ ·f)(x)− (g ∗ f)(x)x

σ2
(16)

n =
(g ∗ f)(x)(σ2 + x2)− (g ∗ ·f)(x)x

σ2
. (17)

In order to create a scale space representation of the underlying surface we
need to use Gaussians with varying standard deviations σ. However, during
reconstruction we can influence σ only to a limited extent because it depends on
the scene depth, image resolution and focal length of the camera. In that sense,
if we reconstruct depth maps of the same geometry using a variety of images
results in a natural variation of the standard deviation σ in real-world space.
The only parameter one can actively steer is the standard deviation σi (linked
with the window size due to approximation and clamping of the Gaussian) in
image space used for patch-based optimization. When selecting σi one often
has a rough depth estimate and also the camera parameters are known from
registration. With that it is possible to indirectly steer the standard deviation
σ in world space at least to a limited extent, e.g., for parts of the scene with
different depths. In Section 3 we will conduct some experiments with varying
the standard deviation σi but we first transfer our results into 3D.

2.4 Reconstruction in 3D

For the reconstruction in 3D we assume the 2D geometry is described as a height
field z = f(x, y). To obtain the reconstruction at some point (x, y), we fit a patch
(surface segment) that is parameterized by 2 slopes m1 and m2 and an offset
n. Again, the weighting function g allows for different areas of influence. As a
result we now have the following energy

E(m1,m2, n, x) =

∫ ∞
−∞

∫ ∞
−∞

g(x− t, y− s)(m1t+m2s+n− f(t, s))2 dt ds. (18)

Minimizing E requires taking the partial derivatives with respect to m1, m2,
and n:

∂m1
E =

∫ ∞
−∞

∫ ∞
−∞

2tg(x− t, y − s)(m1t+m2s+ n− f(t, s)) dt ds
!
= 0 (19)

∂m2
E =

∫ ∞
−∞

∫ ∞
−∞

2sg(x− t, y − s)(m1t+m2s+ n− f(t, s)) dt ds
!
= 0 (20)

∂nE =

∫ ∞
−∞

∫ ∞
−∞

2g(x− t, y − s)(m1t+m2s+ n− f(t, s)) dt ds
!
= 0 (21)
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Similar to the reconstruction in 2D, we introduce the short notation µ00, µ10,
µ01, µ20, µ11, and µ02 for the moments of g with respect to x and y, respectively.

µ00 =

∫ ∞
−∞

∫ ∞
−∞

g(t, s) dt ds, µ10 =

∫ ∞
−∞

∫ ∞
−∞

g(x− t, y − s)t dt ds
(22)

µ01 =

∫ ∞
−∞

∫ ∞
−∞

g(x− t, y − s)s dt ds, µ20 =

∫ ∞
−∞

∫ ∞
−∞

g(x− t, y − s)t2 dt ds
(23)

µ11 =

∫ ∞
−∞

∫ ∞
−∞

g(x− t, y − s)st dt ds, µ02 =

∫ ∞
−∞

∫ ∞
−∞

g(x− t, y − s)s2 dt ds
(24)

For the sake of clarity we chose an even shorter abbreviation for the other con-
volution integrals:

gtf =

∫ ∞
−∞

∫ ∞
−∞

tg(x− t, y − s)f(t, s) dt ds (25)

gsf =

∫ ∞
−∞

∫ ∞
−∞

sg(x− t, y − s)f(t, s) dt ds (26)

gf =

∫ ∞
−∞

∫ ∞
−∞

g(x− t, y − s)f(t, s) dt ds. (27)

Again, we can normalize g such that µ00 = 1. With this notation we can rewrite
Eqs. (19)-(21) as

∂m1
E = 2(m1µ20 +m2µ11 + nµ10 − gtf)

!
= 0 (28)

∂m2E = 2(m1µ11 +m2µ02 + nµ01 − gsf)
!
= 0 (29)

∂nE = 2(m1µ10 +m2µ01 + n− gf)
!
= 0 (30)

Solving these equations for m1, m2, and n yields

αm1 = gf (µ02µ10 − µ01µ11) + gsf (µ11 − µ01µ10) + gtf
(
µ2
01 − µ02

)
(31)

αm2 = gf (µ01µ20 − µ10µ11) + gsf
(
µ2
10 − µ20

)
+ gtf (µ11 − µ01µ10) (32)

αn = gf
(
µ2
11 − µ02µ20

)
+ gsf (µ01µ20 − µ10µ11) + gtf (µ02µ10 − µ01µ11) (33)

where α = µ20µ
2
01 − 2µ10µ11µ01 + µ02µ

2
10 + µ2

11 − µ02µ20. Plugging in these
expressions in the patch P = m1x+m2y + n, we obtain

P =
1

α

(
gf
(
µ2
11 − µ02µ20 − µ01µ11x+ µ02µ10x− µ10µ11y + µ01µ20y

)
+ (34)

gsf
(
−µ11µ10 + µ01µ20 − µ01µ10x+ µ11x+ µ2

10y − µ20y
)

+ (35)

gtf
(
−µ11µ1 + µ02µ10 + µ2

01x− µ02x− µ10µ01y + µ11y
))
. (36)
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Taking symmetric filters yields µ10 = x and µ01 = y. Then immediately one gets

P = gf (37)

Of course we can use a classical anisotropic Gaussian characterized by σ and τ

g(t, s) =
1

2πστ
exp

(−t2
2τ2

+
−s2
2σ2

)
(38)

because the moments are µ00 = 1, µ10 = x, µ01 = y, µ02 = x2 + τ2 , µ11 = xy,
µ02 = y2 + σ2.

3 Experiments

In order to verify our theoretic findings in practice we now conduct some ex-
periments. We hereby chose the depth map reconstruction method of Goesele
et al. [5] because it does a pure photo-consistency optimization (going back to
Gruen and Baltsavias [7]) to find depth and normal for a certain pixel and has
no regularization force. For a small region around a pixel i, j in a reference view
IR the method aims to find depth d and normal n of the associated 3D patch
such that it is photo-consistent with a set of neighboring views Ik. The algorithm
minimizes (see [5, Sec. 6.2] ignoring the color scale)∑

k,i,j

[IR(s+ i, t+ j)− Ik(P d,nk (s+ i, t+ j))]2 (39)

where Pk describes the projection of a pixel from the reference view in the
neighbor view Ik according to some depth d and normal n. We implement the
weighting on the least-squares patch fit by weighting the pixels, i.e., we compute
a weighted SSD:∑

k,i,j

g(i, j)[IR(s+ i, t+ j)− Ik(P d,nk (s+ i, t+ j))]2. (40)

The remaining question is whether this weighted photo-consistency optimiza-
tion still reflects the process of weighted least-squares fitting as described by
Eq. 2. We test this using a synthetic data set because of two reasons: First, we
can assure that our results are not affected by registration errors but solely re-
flect the photometric consistency optimization, and second, we know the ground
truth surface and are able to compute the predicted reconstruction according
to our model. Our ground truth surface is created as a random sum of one-
dimensional B-Splines extruded into the third dimension. We then render five
different views (one central view looking perpendicular onto the surface and four
views distributed uniformly around it with a parallax of 35◦) of this scene using
the PBRT system [16] while a random texture is mapped onto the surface to
guarantee matching success at all pixels (see Fig. 2). For the central view we
now reconstruct a depth map by using the other four views as neighbors and
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Fig. 2. Left: The central view of our synthetic data set. Right: The underlying mesh
(shaded) used to render the views.

Patch size mean deviation (L1-norm)
in pixels uniform weighting Gaussian weighting

11× 11 1.9 · 10−4 1.3 · 10−4

21× 21 4.1 · 10−4 2.8 · 10−4

41× 41 6.9 · 10−4 5.8 · 10−4

61× 61 6.3 · 10−4 7.0 · 10−4

Table 1. Mean deviation of the reconstruction from the theoretical predicted surface
(see Figs. 3&4).

minimizing the weighted SSD from Eq. 40. We start the optimization for each
pixel with the depth value obtained from PBRT and the normal representing a
fronto-parallel patch. To reduce noise we average the reconstructed values along
the constant dimension. Fig. 3 shows the reconstructions using a uniform weight-
ing function. The quadratic windows in image space are 11 (blue), 21 (green),
41 (red), and 61 (cyan) pixels wide which corresponds to a patch size (2δ) of
0.06,0.12,0.24, and 0.36 in world coordinates, respectively. We also plotted the
predicted reconstructions, i.e., convolutions of the original surface with box filters
of the corresponding width. Overall, the reconstruction is close to the prediction
although there is some local deviation. The best conformity is achieved for the
small patch size which can also be seen in Table 1 where we computed the mean
deviation. Note the occasional amplitude inversion visible in the prediction as
well as the reconstruction, in particular for the largest filter at around −1.4.

In Fig. 4 we used Gaussian weighting with increasing standard deviation
which leads to a scale space representation of the underlying surface. The window
sizes are the same used for the uniform weighting and we always chose the
standard deviation σ such that δ = 2.5σ. That is, in world coordinates we used
σ = 0.012, 0.024, 0.048, 0.072. We can see from the figure and also by studying
the numbers in Table 1 that the deviation from the prediction again increases
for larger σ.
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Fig. 3. Multi-view stereo reconstruction using a uniform weighting with increasing
patch size. The black line denotes the original surface. The colored solid lines are the
computed predictions while the corresponding dots are the reconstructed values.
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Fig. 4. Reconstructing a scale space representation using a Gaussian weighting with
increasing standard deviation (see text). The black line denotes the original surface.
The colored solid lines are the computed predictions while the according dots are the
reconstructed values.

Finally, we show reconstruction results on real world data. Figure 5 (top
left) shows an input image of the Notre Dame data set consisting of 715 images
downloaded from the Internet. We use Snavely et al. [19] to register them and
compute depth maps for the shown image using different weightings and window
sizes. The middle and bottom row show reconstructions obtained using uniform
and Gaussian weighting, respectively. Although hard to jugde, the Gaussian
weighting seems to produce slightly more noise and less complete reconstructions.
On the other hand it better preserves the low frequencies. One must consider
though, that the algorithm [5] was tuned to work well with the uniform weighting
and on a broad range of data sets. That is, playing with the parameters in the
optimization or view selection might result in more favorable results for the
Gaussian weighting.

4 Conclusion and future work

This paper extends a recently introduced model for patch-based depth recon-
struction by adding a weighting function. We derive criteria on the weighting
function such that we can predict the reconstructed surface as the convolution of
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Fig. 5. Top left: Input image of the Notre Dame data set. The red box is roughly the
area seen in the bottom rows. Top middle,right: Full rendered view of reconstructed
depth map using uniform (middle) and Gaussian weighting (right) and a window size
in images space of 7 × 7 pixels. Middle+Bottom: Enlarged area roughly corresponding
to red box (top left) of the reconstructed depth map. We applied uniform (middle) and
Gaussian weighting (bottom) using window sizes of 7 × 7, 11 × 11, and 21 × 21 pixels
(from left to right) for reconstruction where the standard deviation of the Gaussian in
image space is σi = 1.2, 2.0, 4.0.

the true surface with the applied weighting function. This includes using a Gaus-
sian instead of a uniform weighting during reconstruction which corresponds to a
Gaussian instead of a box filter in geometry space. In contrast to previous meth-
ods, we achieve a true low-pass filter avoiding the introduction of systematic
high-frequency artifacts. Future work definitely includes to further investigate
the correlation between weighted photo-consistency optimization and weighted
least-squares fitting of a planar patch to the geometry.

Our findings are applicable in a broad range of applications. In contrast to
[12], we give a local characterization of the reconstruction outcome at the same
time offering more flexibility caused by the weighting. Multi-scale surface recon-
struction methods like [2–4, 15] could take that knowledge into account when
combining data from multiple depth maps. But also geometry super-resolution
methods [6, 20] can benefit from our findings. Since we provide evidence for a gen-
erative model it is now possible to adapt well established methods from imaging,
e.g., Bayesian super-resolution [17], to the geometry reconstruction context.
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