Interactive Isosurfaces with QuadraticC* Splines on Truncated
Octahedral Partitions

Alexander Mariné, Thomas Kalb& Markus Rheif and Michael Goesete
1Fraunhofer IGD Darmstadt 2GRIS TU Darmstadt SUniversitat Mannheim

ABSTRACT

The reconstruction of a continuous function from discrettads a basic task in many applications such as the visualiza
tion of 3D volumetric data sets. We use a local approximati@thod for quadrati€? splines on uniform tetrahedral
partitions to achieve a globally smooth function. The spimbased on a truncated octahedral partition of the voluenet
domain, where each truncated octahedron is further spiitarfixed number of disjunct tetrahedra. The Bernstein-&ézi
coefficients of the piecewise polynomials are directly dateed by appropriate combinations of the data values ir a lo
cal neighborhood. As previously shown, the splines proaid@pproximation order two for smooth functions as well as
their derivatives. We present the first visualizations gshese splines and show that they are well-suited for GRigdha
interactive high-quality visualization of isosurfacesrfr discrete data.

Keywords: piecewise quadratic polynomials, volume data, GPU rayirmassosurfaces

1. INTRODUCTION

One of the main challenges for the visualization of isoseffrom discrete data sets is to find a continuous functiaatwh

is defined on the whole domain and which approximates orpotates the discrete values given at the grid points. Skvera
techniques to create appropriate visualizations have Heeeloped, with different advantages and disadvantages wi
respect to the quality of the reconstructed surfaces, liisign performance, or memory requirements. The mosufzop
surface reconstruction method from volume data is the MagcBubes algorithm. Although GPU implementations of
Marching Cubes exist,memory requirements for the triangle meshes are high whiakesit difficult to reconstruct
isosurfaces from large volume data sets. Furthermore gihidting meshes and accordingly the surface approxinstion
suffer from several aliasing artifacts, such as stairagasi

Another well-known method is the usage of tensor produ@sepl With tensor product splines of degree two or three,
the construction of smooth surfaces is possible but regtiire computation of polynomial pieces with total degreeosix
nine, respectively. For high-quality shading with intéheeframe rates the desired polynomial degree should, herbe
as low as possible, while still yielding an overall smoothface model.

(a) (b)
Figure 1: Renderings performed with our new quadr@fispline. (a) Isosurfaces reconstructed from a signed distan
function on a 258 grid (about 50 000 up to 300 000 visible tetrahedra). (b)usase of biological data (1§0/oxels, 12
mio. visible tetrahedra). (c) Isosurfaces of medical da28{ voxels, 800 000, and.2 mio. visible tetrahedra).

Alternatively, trivariate splines, i.e., splines defined tetrahedral partitions of the domain, have been proposed f
isosurface reconstruction and visualization. Roessl.étuded quadratic polynomials of total degree two in Bernstein
Bézier form (B-form) to derive a continuous function apgmating the volume data. The coefficients of the piecewise
polynomials are hereby directly available from the voluratacby appropriate averages of local data values. The lovedeg
of the polynomial pieces allows for an efficient ray-surfattersection for high-quality visualization by ray castirOne
of the drawbacks of this approach is that the splin@lismooth only in certain points. Cub@' splines on tetrahedral
partitions have been proposed by Sorokina and Zeilfél@ard a GPU visualization algorithm for isosurface ray cagstin
based on cubi€! and quadratic super splines has been giv@Roth splines are defined on the so-caligpe-6tetrahedral
partition where each data cube is split into 24 congruerdtedra. Another closely related approach is given by Kloet
et al./ where cubicC® splines are constructed on arbitrary tetrahedral pamsttny a Moving Least Squares approximation
of the volume data. Note that in this method, the coefficieatsot be computed directly from the volume data by simple
averaging. Thus, memory demands for storing the precordmgalnomials is high, rendering a real-time approach for
reconstruction and visualization difficult.

We use ray casting on the GPU based on a new trivariate sphiehvior the first time solves the problem of finding
a local approximation method by quadratic polynomials angldballyC! continuous This spline is based on a more
complex tetrahedral partition using a truncated octalgdudition of the volumetric domain, see Section 3, and jites
a better numerical approximation of the original data coragao the cubic splines on type-6 tetrahedral partitions.

We give a short overview of trivariate splines in B-form arsd@ciated tetrahedral partitions in the next section. Then
we introduce the new spline in Section 3, i.e., describe tidetlying tetrahedral partition and give formulas definting
coefficients of the polynomial pieces. In Section 4 we brigfgcribe the visualization algorithm which is adapted from
our earlier worR 8 to the new partition. Finally, we compare the visual quatibtained from our method with standard
trilinear interpolation as well as cub@! splines on type-6 tetrahedral partitions, and analyzestfopmance.

2. TRIVARIATE BERNSTEIN-BEZIER-SPLINES

We use smooth trivariate splines of degree two in piecewam&ein-Bézier form to obtain a continuous approximation
of the discrete data. The B-form bears several advantagggding stable evaluation of the spline and its derivativeor
smoothness between neighboring polynomials only locakrbbased on geometrical conditions have to be considered.

For a non-degenerated tetrahedfowith verticesvg, v1,V2, V3, each polynomial is given by

ST = Z bijii Bfix - 1)
i+j+k+1=2
wherebjjq € R are the ten Bernstein-Bézier coefficients, aﬁq are the Bernstein polynomials of degree two, defined by

Bl = ”J,Zﬁ%(ﬁdiq% (2)

Here, @, with p=0,1,2,3, are the barycentric coordinate functions with respecl toThese are linear polynomials
uniquely defined by the property
(Hl(v\}) = éu,V; V= 07 17 27 37

whered,, is Kronecker’s symbol. The relation between a poirin R3 and associated barycentric coordinates is thus
given by (x 1)T =Ar-(® @& @ (R),)T, whereAr € R**4is defined as

_ (Vo Vi V2 V3
AT<1 1 1 1>' ®)

Each polynomial is uniquely determined by the ten coeffisi®n. , i + j +k+1 = 2, which are associated with the
domain pointsl/2(i vo+ j v1+kva+1 v3) onT. Values and derivatives of the polynomials can be efficjeetialuated
with the algorithm of de Casteljau. Usitdpssoming’ a generalization of the de Casteljau algorithm where theragmts
may vary on each level, we can reduce the trivariate polyabtaia univariate quadratic polynomial along an arbitrary
ray intersecting the tetrahedrdn Now it is easy to find the root of this univariate polynomigldwolving simple quadratic
equations, which is a strong benefit for the later visuabratsee Section 4.2.

Figure 2: (a)Left Each TO is split into 144 tetrahedrRight The domain points on each tetrahedron are shown in red
and blue. The front-most tetrahedra are removed for clafitie illustration. (b)Left the arrangement of the TOs within
the volume Right the 88 data values determining the coefficients of one sifigl.

2.1 Smoothness Between Neighboring Polynomials

Another important advantage of the B-form is the simple dption of the smoothness conditions between neighboring
polynomials. Consider two neighboring, non-degenerat@dhedrd = [vo,v1,V2,v3] andT = [vg,V1,V2, V3], that share
the common triangld NT = [Vo,V1,V2]. Letbjjy andBijkh i+ j+k+1 =2, be the polynomial coefficients in B-form
of T andT. The polynomials are continuously connected owgrvy, Vol if bijko = Bijko holds true fori + j +k = 2.
Furthermore, the patches are aocontinuous ovelvo, Vi, V>] if additionally the condition

bijkt = Bit 1. ko@0(Va) + bi j+ 1k 0@1(V3) + b j ki 1.092(Va) + bi j k 103(V3) (4)

holds true foii + j + k= 1. C! smoothness between two neighboring polynomials can therbt described by three simple
conditions. If these conditions are fulfilled for all neighing polynomials in the volume, then the spline is glob&lly
smooth on the whole underlying domain. The challenge is terdgne the coefficients from the data values while fulfglin
all necessary conditions for a globally smooth spline antuianeously allowing a good approximation of the data.

3. SPLINES ON TRUNCATED OCTAHEDRAL PARTITIONS

A complete description of the partition and the computatibthe appropriate coefficients is given in Rhein and Kdlbe.
Here we summarize the main ideas and the necessary basttedrteainderstand our visualization pipeline.

3.1 The Tetrahedral Partition

In the following we characterize a truncated octahedron)(@i@ show how it is further subdivided into 144 tetrahedra.
Each TO consists of six square and eight hexagonal faceathabnnected at 24 vertices, see Fig. 2a. Assuming that the
center of a TO with height lies in the origin of a three-dimensional coordinate systdra vertices are all permutations

of the triple (0,+"/2,h). All tetrahedra of a TO share one point in the barycenter ef T® which we denote ag in
every tetrahedrofl = [vp,Vv1,Vy,Vvs]. Furthermore, there is another vertex of each tetraheging In the barycenter of

a face of the TO, sayj, one vertex at the midpoint of an edge of the TO, gayand one vertex, says, coincides with

a vertex of the TO itself. Therefore, each tetrahedron haeetfaces inside the TO and one face on the boundary of the
TO. This results in two differently shaped tetrahedra, dejpey on the shape of the face of the TO the boundary face is
lying on. In the following we denote all tetrahedra BY if the boundary face is within a squared face of a TO @hd
otherwise. The faces of a tetrahedron are denote@tgndFH accordingly, whether they are a face of a tetrahedrén

or not. Considering a TO partition of the volumetric domair @ uniform tetrahedral partition of the TOs as described
above, theC! smoothness of a spline in B-form can be described complbtetiiree conditions, see Section 2.1, for all
interior triangular faces. Since the construction of theateedral partition results in eight possible geometiycdilstinct
connections between neighboring polynomials @Gheontinuity is described by 24 formulas. We show a typicalditon

for a triangular faceé=}! = [vo,v1,v3] in Fig. 3: Due to the symmetry of the subdivision scheme, aediusring weights

are simple fractions or even zero, which results in a furieplification of the formula involving only four or three
coefficients. The full set of equations can be found in Rhaih kalbe®

1 = 3
b1010= 5b1100— b1010+ 5b1001

1 : 3
bo110= 5D0200— bo110+ 5b0101

1 X 5
Poo11= 500101~ boo11+ 5b0002

Figure 3: TheC! conditions for the faceB}!.

3.2 The Truncated Octahedral Partition and the Data Mesh

Before we give an overview on how to compute the coefficiehts BO, it is necessary to understand how the TOs are
connected in a space-filling partition and how they are et in a regular volumetric grid. In Fig. 2b, left, we give a
example of a small#data grid including the embedded TO. As shown, each gridtfiemat the barycenter of a hexagonal
face. We directly associate these eight grid points withaiyeropriate TO. Each data point is hereby associated with tw
TOs. Therefore, to cover the whole domain we need one fosnthamy TOs as there are data points in the volumetric grid.
The spline approximation schefrie described through a linear operator which maps the sesofete data values into the
space of quadratic! splines regarding the uniform tetrahedral partition diéset in the previous section. This operator is
given explicitly by concrete formulas for the computatiditree spline coefficients in B-form as simple linear combioias

of some local data values. On each TO, the spline is uniquegirahined by 96 coefficients: the 24 coefficients associated
with the vertices of the TO, together with the 60 coefficieadsociated with the domain points on the edges of the TO.
The remaining coefficients follow from tf@! conditions. For computing the 96 determining coefficiengésneed the 88
neighboring values as shown in Fig. 2b, right. Alternatiyele can compute the coefficients on each tetrahedron bjirect
from the volume data, where we need 28 neighboring values.

4. GPU KERNELS FOR INTERACTIVE ISOSURFACE VISUALIZATION

In this section, we describe our pipeline for interactivesisface visualization using quadra@¢ splines on truncated
octahedral partitions. We first describe our preprocesstieg adapted from Kalbe et &lfpllowed by an overview of the
GPU ray casting approach for visualization.

4.1 GPU Preprocessing

Since the spline coefficients on each TO are given by averafylexal portions of the data, we can process each TO
independently. This is the basis for a massively parallehmatation of the spline coefficients. As shown in the next
subsection, tetrahedra are processed in the graphicénget visualization. In order to improve rendering penfiance,
we thus determine in a preprocess the tetrahedra contriptdithe final surface. To do this, we can simply exploit the
convex hull propertyf the B-form: if all by, of a tetrahedro are either below or above the isoley®l,, we can

TO TOg || TOL || TO3 | TOs || TO4 | TOs || TOg || TO7
Ao 0 0 0 0 0 0 0
TOo || TOL || TO3 | TOs || TO4 | TOs || TOg || TO7
TOAct
0 1 0 1 1 0 1 0
TOp TOo || TO1 || TO; || TOs || TO4 | TOs5 | TOg || TO7
e 0 0 1 1 2 3 3 3
/// -4
_UJ J iJ _SJ act%ve voxels - 1
TOComp 1 3 4 6 = size of TOcomp - 1

Figure 4: lllustration of parallel prefix sums used in our aggeh (see Sect. 4.1).

™
(@) | (b)

Figure 5: (a) An enlarged surface patch within one tetratrearf the smooth quadratic spline. (bgft Overlapping
surfaces lead to errors when the fragmemtgalues are not adjusteRight The same surfaces with adjustedalues.

discardT from further processing. Since, in most cases, only a podifdhe tetrahedra contribute to the surface, we get
a significant speedup for visualization. We denote the sebafributing tetrahedra as tlaetive partition We further

use 144 distinct lists to encode the active partition, sthea we can usistancingfor fast rendering of each tetrahedron
type in the TO partition, see Section 4.2. To obtain the actiartition for each type of tetrahedron, we ysallel
prefix sum&-11from the CUDA data parallel primitives library (CUDPP), g&ig. 4 for an illustration. All tetrahedra are
classified by a CUDA kernel as eithactiveor not activeby using the convex hull property of the B-form. The results a
written into the array3 O, . Next, we compute the exclusive prefix sumsT@f o and find the result in the arrayOpye.

The arrayTOpre s finally compressed into an arrdyD comp, Which size equals the number of active tetrahedra and where
each entry corresponds to a unique index defining the posifithe tetrahedron in the volume. Note that the preprocess
has to be done for each change of isolgye).

4.2 Visualization by GPU Ray Casting

Visualization of the active tetrahedra is performed in three@GL graphics pipeline in a hybrid cell projection / raytoas
approach. We render the active tetrahedra and performuidge intersections during fragment processing. Sinke al
tetrahedra of one particular type have the same shape ffaredit positions within the grid, we use geometry instag¢o
render all tetrahedra of one type at once. Each of the 14drdiit shapes is represented as a triangle strip with siiceert
The instance ID is used to index into the previously compli#sITO comp The vertex shader reads the valud Gfcomp
from the appropriate texture at the position defined by threect instance ID and translates the index into the 3D world
space coordinates of the current tetrahedron.

For later calculation of the ray-surface intersectionshia fragment shader, as well as clipping of intersectionéo t
tetrahedron geometry, the vertex shader further prepageisdrycentric coordinates, ¢, i =0,1,2, 3, for each tetrahedron
vertexvy, 0=0,1,2,3. The@ = @(v,) are given byd; ;.. The@ correspond to the unit length extension of the viewing ray
and are calculated by using the inverse of the matrigefrom Eq. 3. The 144 different matricen!’s;1 are precomputed
once and stored on the GPU in constant memory. The baryceai then interpolated across the front-facing triangles
of T in the rasterizer.

The fragment shader first calculates thg of the current patch from the volume texture by using the appate
weightings of the local neighborhood, see Section 3. Natettieb; could also be computed in the vertex shader, but we
observed that for large volumes, the number of tetrahededices approaches the number of fragments and compugng th
bij in the fragment shader gives us a performance gain. Nextewenm blossoming to obtain a univariate representation
of the surface patch along the viewing ray: A de Casteljap etethe first level is performed witlp to obtain the four

coefficientsbi[jll](I (@),i+ j+k+1=1, as well as fopresulting inbi[jll](I (@),i+j+k+1=1.

We proceed with three more steps on the second level of thastekau algorithm. Note that each de Casteljau step on
the second level corresponds to a dot product of two veatdré.i We thus obtain the three coefficietiks = bi[jlﬂd (0)- o,
b11= bi[jllll (¢) - @, andbgy = bi[jlﬂd () - @, which are the coefficients of a functional quadratic Béziewe restricted along
the viewing ray. The intersection is found by plugging thgirdgo that curve and solving for the rodts, of the resulting
guadratic polynomial in one variable. In order to restrigt tntersections to the tetrahedron geometry, we calcthate

Figure 6: Left TO spline isosurface of the engine data set £266.28 voxels, 4 mio. visible tetrahedra)liddle: TO
spline isosurface of a subsampled version of the origintl dat (128 x 64 voxels, 1.4 mio. visible tetrahedraRight
Isosurfaces with approximated transparency.

barycentric coordinateg(ty) and@(t;) by linear interpolation ofp and@ usingty andt;, respectively, as parameters. We
take the smallegtwith @ (t) > 0,i =0,1,2, 3, if such a exists, and discard the fragment otherwise.

We get the directional derivative w.r.t. the ray at the iséstion point,bi[jll](I (@(t)), i+ j+k+1=1, by a linear
interpolation ofbi[jlil (p) and bi[jlﬂd (p) with t. The gradient at the intersection point is finally obtaingdhree additional
scalar products iiR4, using the first three rows @ * and the directional derivati\lﬂ%jlﬂ(I (@(1)).

An example of the resulting spline surface within its boungdiruncated octahedra, as well as one enlarged polynomial
patch and its bounding tetrahedron, is given in Fig. 5a. €hily, the fragment'z value corresponds to a front facing
triangle of T, and not the actual surface point. This is usually not a mobf only a single surface is visualized. For
proper clipping of several surfaces, we normalize the digtdrom the eye-plane to the intersection into zHmiffer and
achieve the result shown in Fig. 5b, right. We further apgp#ia approximation of order independent transparency mgusi
weighted sums for each pix&.An example is shown in Fig. 6, right.

5. RESULTS

In this section, we discuss some of the results of our rendaiheme for the new quadrafit spline on TO partitionsizl).
We further comparé; with trilinear interpolation and the closely related cuBfcsplines on type-6 partitionsSg).

5.1 Numerical Approximation

As shown irt-8 the newS} spline, as well as thé} spline, both approximate smooth functions with order twe,, i
the error goes down by a factor of four if the grid spacing itvéd, but the constants are slightly better for the new
S3 spline. We further visually compare the approximation eafdhe new spline with thé3 spline in Figure 7b, showing
the reconstruction of the highly oscillating Marschnebdunction!® sampled from a sparse $4rid. Here, the colors
indicate the error varying from blue (low error) to red (héglerror), showing that the new quadratic spline reconttruc
the function with lower error. The errors for the Marschheib function are also summarized in the graph in Fig. 7a.

5.2 Visualization Performance

We analyzed the quadratic spline with a series of testst, kwes note that for typical isosurfaces, about 1% to 5% of all
tetrahedra within the volumetric domdhare active, see also Fig. 1a-c and Fig. 6 for examples. EaatoVers four data
points ofQ, which, on average, results in 36 tetrahedra per data poicbntrast to this, in the type-6 partition each data
cube is covered by 24 tetrahedra. In fact, we have about dhmbee tetrahedra for the same isolevel as for&esplines

on type-6 partitions, see Table 1. Further, for on-the-fijpatation of coefficients in the visualization, we need 8@)(
and 23 texture accessey, respectively.

10

+ +
93 ot 95

1/h
@ (b)
Figure 7: (a) Comparison of the reconstruction errors ferifarschner-Lobb (ML) function with increasing sample sate
on alog-log scale. Blue curve: mean error of the c@ispline on type-6 partitionsS§). Dashed red curve: mean error
of the new quadrati€! spline S3). (b) Reconstructed ML function sampled on &@gid. Left S2 spline. Right S3
spline. Red denotes higher error, blue low error.

grid cubic type-6 spline&%) quadratic TO spline§})

size #tets reconst. FP$ #tets reconst. FPS

643 13398 16[ms] 129 19224 19[ms] 59

128 711000 107 [ms] 25 1061000 131[ms] 26

128 | 2316000 123 [ms] § 3388000 180 [ms] 9

256° | 4153000 95[ms] 4 5716000 192[ms] 5

256° | 5371000 88[ms] 3 8066000 210[ms] 3
Table 1: Reconstruction times (computation of the activétpan) and FPS for selected isosurfaces with increasurglmer
of active tetrahedra.eft cubicC! splines on type-6 partition®ight quadraticC! splines on TO partitions. All timings
were done with a NVIDIA GTX 480 GPU with 480 shader cores anéd®00x 1000 view port.

Table 1 also shows the reconstruction times for the comiputaf the active partition, see Section 4.1, as well as the
frames per second on a 100000 view port. Note that reconstruction times are in thgeanf a few milliseconds. For
both splines, the frames per second are directly conneatite thumber of tetrahedra in the active partition. Note thext
higher number of tetrahedra of tﬁ‘é splines is in most cases compensated for by the significkstycomplex shaders,
becausé% requires to evaluate and solve cubic equations for rayasarihtersections instead of quadratics.

5.3 Visualization Results

We demonstrate the new quadratic spline with visualizatiohreal-world data from engineering (Fig. 6), biological
(Fig. 1b), and medical applications (Fig. 1c). Isosurfaeesnstructed from synthetic data are shown in Fig. 1a, ever
used a signed distance function generated from a triangsh tég. 8a shows a reconstructionBdrth’s sexticfunction
sampled on a uniform grid. In Fig. 8b we give a comparisonadusfaces obtained by Marching Cubes, simple ray casting
with trilinear interpolation, cubi€? splines, and quadrat@! splines, respectively. The zoom up into one of the spikes of
Barth’s sextic from Fig. 8a demonstrates the improved guafismooth splines, in particular for the new quadratiérspl

6. CONCLUSIONS

We have shown that smooth splines on uniform tetrahedréitipas can be used for interactive and high-quality visual
izations of isosurfaces from measured data. In particslahave shown the first visualizations of a new spline, whicd i
local method to obtain a glob&f approximation of volume data by quadratic polynomials. \M@pared the performance

of our method with the closely related quasi-interpolatingicC?! splines on type-6 tetrahedral partitions. Our quadratic
C! spline leads to significantly lower shader complexity whitinost cases compensates for the higher tetrahedron count
of the TO partitions. Frame rates are therefore competitime in many cases even better than with the c@bispline.

We further visually compared the new spline to standard odsfior isosurface visualization, such as Marching Cubds an
trilinear interpolation, showing the improved quality o$mooth reconstruction.

S¥L

€Y
Figure 8: (a) Reconstruction of Barth’s sextic sampled fat28 grid. (b) Zoom ups into one of the spikes of Barth’s
sextic. From left to right Marching Cubes, trilinear ray casting} spline, the nev&} spline.

The splines we used are direct methods, where the polynaogdficients are directly available from the volume data
by simple averages of the data values in a local neighborhboe polynomials can thus be computed on-the-fly directly
on the GPU without the need to inflate the data for storinggmmeputed coefficients. We have shown the limits of a cell

projection approach for ray casting a large number of tewlednin B-form. First tests with a direct aggometry free

approach for volume ray casting of type-6 splines, where aeat project single tetrahedra, have shown that speedups of

more than one order of magnitude can be achieved using the lsardware.
Acknowledgments.This research was supported in part by the DFG project GZ Z3£744, AOBJ: 526229 and the DFG

Emmy Noether fellowship GO 1752/3-1. Data sets in Fig. lbgccaurtesy of C. Bajaj, University of Texas. Data set in

Fig. 6 is courtesy of General Electric.

REFERENCES

[1] Lorensen, W. E. and Cline, H. E., “Marching cubes: A higisalution 3D surface construction algorithngIG-
GRAPH Comput. Grapl21(4), 163-169 (1987).
[2] NVIDIA Corporation, “CUDA software development kit: Vsion 2.1.”ht t p: / / ww. nvi di a. conf obj ect /
cuda_get. ht m (2009).
[3] Rossl, C., Zeilfelder, F., Nurnberger, G., and Seidel;P] “Visualization of volume data with quadratic super
splines,” in [Proceedings VI 393—-400 (2003).
[4] Sorokina, T. and Zeilfelder, F., “Local quasi-interptibn by cubicC! splines on type-6 tetrahedral partitionkylJ
Numerical Analysi®7, 74-101 (2007).
[5] Kalbe, T. and Zeilfelder, F., “Hardware-accelerateidhhquality rendering based on trivariate splines apprating
volume data, Computer Graphics Forur@7(2), 331-340 (2008).
[6] Kalbe, T., Koch, T., and Goesele, M., “High-quality resrithg of varying isosurfaces with cubic trivaria@?-
continuous splinesProc. of 5th International Symposium on Visual ComputiB§6—607 (2009).
[7] Kloetzli, J., Olano, M., and Rheingans, P., “Interaetivolume isosurface rendering using bt volumes,”Pmog.
Symp. on Interactive 3D graphics and gah&s-52 (2008).
[8] Rhein, M. and Kalbe, T., “Quasi-interpolation by quaitt&-splines on truncated octahedral partitior@gmputer
Aided Geometric Desig6(8), 825-841 (2009).
[9] Seidel, H.-P., “An introduction to polar formsEEE Computer Graphics & Applicatioris3(1), 38—46 (1993).
[10] Blelloch, G. E., “Prefix sums and their applicationgth. rep., Carnegie Mellon University (1990).
[11] Harris, M., Sengupta, S., and J.D.Owens, “Parallefipmum (scan) with CUDA,” in GPU Gems IIl, Nguyen, H.,
ed., 851-876, Addison-Wesley (2008).
[12] Meshkin, H., “Sort-independent alpha blending,” tedp., Perpetual Entertainment (2007).
[13] Marschner, S. R. and Lobb, R. J., “An evaluation of restarction filters for volume rendering,” irPfoceedings
VIS], 100-107 (1994).

