
Interactive Lighting Models and Pre-Integration
for Volume Rendering on PC Graphics Accelerators

Michael Meißner
Viatronix Inc., Stony Brook, USA

Stefan Guthe
WSI/GRIS, Univeristy of T̈ubingen

Wolfgang Straßer
WSI/GRIS, Univeristy of T̈ubingen

Abstract
Shading and classification are among the most pow-

erful and important techniques used in volume render-
ing. Unfortunately, for hardware accelerated volume ren-
dering based on OpenGL, direct classification was previ-
ously only supported on SGI platforms and shading could
only be approximated inaccurately, resulting in artifacts
mostly visible in darkening.

In this paper, we present a novel approach for accu-
rate shading of complex lighting models using multi-
texturing, dependent textures (e.g. cube maps), and reg-
ister combiners. Additionally, we present how differ-
ent material properties can be integrated as a per voxel
property to allow for more realistic image synthesis.
Furthermore, we present a new technique circumvent-
ing the shading artifacts of previous approaches by pre-
integrating an interpolation weight. Finally, we discuss
how texture compression can be integrated to reduce
the memory bandwidth required for relatively large vol-
umes.

Key words: Volume Rendering, Texture Mapping Hard-
ware, Multi-Texturing, Dependent Textures, Phong Shad-
ing, Classification, Pre-Integration.

1 Introduction

Due to the large amount of data, computations,
and tremendous bandwidth requirements, software ap-
proaches are usually limited and far from interactive
frame updates. One well known exception might be the
ShearWarp algorithm [10], which can achieve interactiv-
ity taking advantage of optimizations such as run length
encoding (pre-processing). However, each time the clas-
sification changes a new run length encoding needs to
be calculated, and hence, for a fully occupied dataset
with semi-transparent classification, no interactivity can
be achieved on a desktop machine.

To overcome the inherent large amount of computation
and the extreme bandwidth, texture mapping hardware
has evolved to become the best known practical volume
rendering method for rectilinear grid datasets. Despite

the wide availability, texture mapping based volume ren-
dering has some severe limitations: classification is a key
technique in volume rendering interpreting the volume
data as color, opacity, and material properties. To enable
classification in texture mapping based volume rendering,
a lookup is needed right after the texture mapping stage.
Unfortunately, such a lookup was previously only avail-
able on a few platforms and is limited to the assignment
of color and opacity but no further material properties can
be integrated. Shading is yet another key technique to add
further visual cues to the rendered images and enables a
better interpretation of the images. In contrast to polygon
rendering where a normal is a vertex property, a gradient
is a voxel property. When using texture mapping for ren-
dering volume data, no gradient estimation is supported
in hardware. To circumvent this limitation, one can store
the pre-calculated gradient together with the volume data
as first proposed by Westermann et al. [19]. Despite the
fact that many improved techniques have been proposed
based on this approach, the subsequent shading opera-
tions of all of them [19, 15, 17] are based on not normal-
ized interpolated gradients, resulting in shading artifacts
and requiring that pre-normalized gradients are stored in
the texture memory.

In this paper, a new approach for integrating lighting
models into texture mapping based volume rendering on
PC graphics hardware is presented. Furthermore, a new
technique accomplishing the integration of classification
for RGBA and material properties without the need of re-
generating the entire texture nor requiring a second vol-
umetric texture is described. Moreover, we present how
the shading quality can be improved significantly when
using pre-integrated classification, circumventing the ar-
tifacts of previous approaches.

1.1 Related Work
3D texture mapping hardware is recognized as a very ef-
ficient acceleration technique for volume rendering, since
the first SGI RealityEngine [1] has been shipped. Cabral
et al. [2] render datasets of2563 voxels at interactive
frame-rates on a four Raster Manager SGI RealityEngine

Onyx with a single 150 MHz CPU. Similar results are
presented by Cullip and Neumann [3]. The major draw-
back of the general texture mapping approach is the ab-
sence of shading functionality for volume data. To cir-
cumvent this, Van Gelder et al. [7] propose a 3-4 pa-
rameter lookup which is used to classify and shade the
data. Unfortunately, no direct hardware support for such
a lookup is available. Therefore, each time the viewing
or classification changes, an entire new 3D texture needs
to be generated.

Westermann et al. [19] store density values and corre-
sponding pre-computed and pre-normalized gradients in
texture memory and extensively exploit OpenGL and ex-
tensions for unshaded volume rendering and shaded iso-
surface rendering. Meißner et al. [15] extend this ap-
proach combining classification and diffuse shading for
semi-transparent rendering of volume data. While both
approaches use a matrix multiplication to obtain the dif-
fuse shading intensity, Rezk-Salama et al. [17] use reg-
ister combiners as available on the NVIDIA GeForce2.
Despite of the impressive visual results, all these ap-
proaches [19, 15, 17] are based on not normalized inter-
polated gradients which result in shading artifacts, as ex-
plained later in this paper. Similarly to Westermann [19],
Dachille propose to use the available hardware for effi-
cient sample computation and possibly for blending [4].
Shading is performed on the host to ensure high quality
rendering, thus avoiding the problem of non normalized
gradients but interactivity is sacrificed.

Alternatively, the VolumePro board can be used to ac-
complish real-time frame-rates [16] but despite its supe-
rior performance, it offers less programmability than tex-
ture mapping and pre-integration is not feasible since de-
pendent texturing is limited to a 1D lookup.

The remainder of this paper is organized as follows:
Section 2 briefly summarizes the state-of-the-art in tex-
ture mapping based volume rendering, Our new artifact
free shading approach for texture mapping based volume
rendering is presented in Section 3. Section 4 presents a
novel method for combining shading and pre-integrated
classification, circumventing artifacts by pre-integrating
an interpolation weight for the gradients. The necessary
texture configuration is described in Section 5 and the re-
sults are summarized in Section 6. Finally, we conclude
our paper and outline future work.

2 Texture Mapping Revisited

The shipment of the first SGI RealityEngine made 3D
texture mapping hardware an available interactive fea-
ture. With respect to volume rendering, slicing planes
parallel to the viewing plane are put through the volume
in back to front order, see Figure 1(a). When using per-

(a) (b)

Figure 1: While in 3D texture mapping (a) arbitrary
planes can be positioned in the volume, 2D texture map-
ping (b) requires a texture stack for each major viewing
direction and the one most perpendicular to the actual
viewing is selected.

spective projection, this becomes more complicated since
one needs to account for the correct blending. Opacity
values represent the volumetric absorption along a unit
length and hence, one would need to use spherical shells
[11] or either recompute the opacity values (see formula
4) or use dependent textures to correct the opacity which
would suffer form the limited texture resolution (8 bit).

Previously, the limited availability of 3D texture map-
ping prevented this approach from being widely used.
Therefore, an alternative method — derived from the
ShearWarp algorithm — has become popular. Three
stacks of 2D textures are used, one for each major axis
(see Figure 1(b)). Depending on the viewing vector, the
stack most perpendicular to the viewing direction is used.
To account for accurate volumetric absorption, opacity
values need to be corrected depending on the viewing an-
gle. Due to performance issues of 3D textures, this ap-
proach is still worth to be used when applicable.

2.1 Classification
Classification after resampling the volumetric data
can be realized using post texturing lookup ta-
bles. Earlier, this could only be realized on
mid- and high-end SGI platforms applying SGI’s
GL TEXTURE COLOR TABLE SGI. Exploiting multi-
pass rendering, classification can also be accomplished
using pixel textures, as presented in [15]. Unfortunately,
pixel textures are not available on all platforms and due
to the nature of multi-pass, the performance is reduced
significantly. Another approach uses two volumetric tex-
tures and multi-texturing hardware, accomplishing classi-
fication in a single-pass [17]. Nevertheless, the approach
requires two volumetric textures significantly increasing
the memory requirements even if paletted textures are
used. Furthermore, this approach can not be combined

with tri-linear interpolation based on two bilinear interpo-
lations and register combiners. Other recent approaches
make use of dependent texturing to accomplish classifi-
cation [6, 9]. So far, only RGBA values are provided but
no material properties.

2.2 Shading
As mentioned in the introduction, there has been a num-
ber of publications presenting shading of interpolated
sample values within the context of texture mapping
based volume rendering [19, 15, 17, 6]. Despite the
fairly reasonable shading effects, all these approaches
pre-compute the voxel gradient which is normalized,
scaled, and biased in order to obtain gradient values of
range[0, 1]. The gradient components are then stored in
the RGB channels of an RGBA texture and the density
value goes into the A channel. Using traditional texture
mapping hardware, the gradient components and density
value are interpolated and the scalar product is computed
using using register combiners [17, 6, 9]. The severe
drawback of all of these approaches is that they compute
the scalar product using not normalized interpolated gra-
dients. Thus, resulting in severe shading artifacts, mostly
noticeable as darkening of the images. Furthermore, this
also occurs for fairly smooth non binary datasets because
the gradients at grid position need to be pre-normalized
which again can introduce big differences of the gradient
values of neighboring voxels, e.g.(1, 0, 0) and(0, 1, 0)
enclose a 90 degree angle and in the worst case, the in-
terpolated gradient will not be of length one but

√
0.5

causing the earlier mentioned darkening artifacts.

2.3 Gradient Magnitude Modulation
Using the gradient magnitude to suppress data which re-
sides within homogeneous areas of a dataset is a very
powerful feature for enhancing material boundaries [12].
Besides the magnitude of the first derivative, also the
magnitude of the second derivative can be used to accom-
plish better visualizations of features within the dataset
[8, 9].

Generally, when applying gradient magnitude modula-
tion, the quality of the boundary enhancement depends
mainly on the quality of the used gradient filter. While
the intermediate and central difference gradient filters are
prone to artifacts — since they result in non symmetric
gradients —, the Sobel operator is the gradient operator
of choice and used throughout this paper. Figure 7(d),
(e), (f), and (k) show images using gradient magnitude
modulation.

2.4 Pre-Integration
Pre-integrated classification is a technique used in vol-
ume rendering when classification is applied after inter-
polation [14, 6]. Following the Nyquist theorem, one

can generally ensure that the reconstruction of the vol-
umetric function along the rays is accurate. However, a
non continuous transfer function, e.g. binary classifica-
tion with infinite frequencies, introduces well-know slic-
ing artifacts, as shown in Figure 2(a) and (c)).

(a) (b)

(c) (d)

Figure 2: Pre-integrated volume rendering: Sample dis-
tance is 0.5 using plain ray casting without ((a) and (c))
and with pre-integration ((b) and (d)). The high frequen-
cies of the iso-surface-like transfer function in (c) can be
realized using pre-integrated sample intervals (d).

To circumvent this, pre-integration assumes a certain
behavior of the volumetric function along the cast ray,
e.g. linear. Based on the conventional 1D classifica-
tion table, each interval between two samples can be pre-
integrated and stored in a 2D table. During rendering, two
consecutive sample values are used as indices for the 2D
table, instead of classifying each individual sample as-
suming the color to be constant for the distance to the next
sample along the ray. The advantage of pre-integrated
volume rendering is that even precise iso-surfaces can be
rendered without any additional cost during ray casting,
see Figure 2(b) and (d). While Max et. al [14] pre-
integrated opacity only, Engel et al.[6] extended this to
RGBA but yet no material properties were considered.
Generally, pre-integration suffers from shading artifacts
when using more than one iso-surface or semi-transparent
rendering, as explained in more detail in Section 4.

One of the main draw-backs of pre-integrated volume
rendering is its incompatibility with gradient magnitude

modulation. Since the color is pre-integrated based on the
voxel value only, no gradient magnitude modulation is
possible, unless using a 4D function which would prevent
interactivity. Solving this is still topic of research.

3 Lighting Models

Phong illumination is the most commonly used illumina-
tion model in volume rendering applications. The local
illumination is split into three independent components
and can be written as:

Cλ = ka ∗
n∑

i=0

Lλ
i + ks ∗

n∑
i=0

(~N ~R)ns ∗ Lλ
i

+kd ∗ Classλ(v) ∗
n∑

i=0

∗(~N ~Li), (1)

whereCλ is the resulting color of wavelengthλ, ka, kd,
and ks are the ambient, diffuse, and specular material
properties,Li is the color of lightsourcei, v is the density
value, Classλ is the classified color,~N is the gradient,~R
is the reflected eye vector,~L is the vector to the light-
source, andns is the exponential factor to determine the
size of the specular highlight.

Evaluating the Phong illumination requires normalized
vectors in order to obtain the correct scalar products.
However, when using pre-computed gradients stored in
the volumetric texture, the length of the interpolated gra-
dients is≤ 1. The only approach to correctly solving this
issue in the graphics pipeline is the use of cube-maps.

3.1 Cube-Maps
Generally, cube-maps are used to map the information
contained in the scene onto the faces of a unit cube.
During rendering, this information can be retrieved from
the cube-map and projected onto the rendering primitive.
One intuitive application of this are environment maps
were the cube-map contains the projected RGB informa-
tion of the scene, thus allowing glossy objects to reflect
the environment without the need of sampling the real
environment during rendering.

The same approach can be used to perform shading.
Instead of projecting the colors of the objects of a scene
onto the cube-map, the light sources can be projected
onto the cube-faces and during rendering true shading for
any number of light sources can be accomplished. This
approach can also be extended to reflected components
but requires the computation of the reflected vector [18].
Fortunately, the computation of the reflected vector re-
cently became available in graphics accelerators since it
is needed for bump- and environment-mapping. Thus,
true Phong shading can be accomplished, e.g. on the
NVIDIA GeForce3 or the ATI Radeon 8500.

For the application of shading in volume rendering,
the interpolated gradient can be used to access a diffuse
cube-map and compute the reflected vector to access a
reflectance map containing the specular components [5].
Figure 3 (a) and (b) illustrate the diffuse and the spec-
ular cube-map for a single light-source. To support light

(a) (b) (c)

Figure 3: Cube-maps for one light source: (a) Diffuse
cube-map. (b) Specular cube-map using a phong expo-
nent of 50. (c) Specular cube-map of a squared light
source.

sources of different color, the specular cube-map needs to
be of format RGB, resulting in images as shown in Fig-
ure 7(c). With the diffuse and specular light intensity, one
can evaluate the Phong illumination using register com-
biners. The advantages of cube-maps are the available
hardware support and the fact that they only need to be
rebuilt when the light sources change the position rela-
tive to each other. For each light source it takes approx.
20 ms to build the corresponding cube-map which can
easily be done interactively. Generally, the generation of
the cube-maps is fill-rate limited but sizes larger than642

do have a significant performance issue, presumably be-
cause they exceed what can be residing within the texture
cache besides the 3D textures.

3.2 Different lightsources
Generally, any type of light source that can be represented
in a cube-map can be realized. Thus, besides conven-
tional point light sources also squared or arbitrary shapes
of light sources are feasible. Our current implementation
supports squared and rectangular shaped light sources as
well as point light sources, possibly residing within the
volume. The specular cube map for a squared light source
is given in Figure 3(c) and the resulting rendering of the
Neghip is shown in Figure 7(b).

4 Pre-Integration And Shading

Pre-integrated classification of ray intervals prevents ar-
tifacts due to the use of non continuous transfer func-
tions. While pre-integration works well for opaque iso-
surface or non-shaded volume rendering, it can not be
combined correctly with semi-transparent volume render-
ing or when visualizing more than one iso-surface. This

(a) (b) (c) (d)

Figure 4: Pre-integrated classification and sample based shading in a software implementation. Blue material is
opaque and highly specular while green material is semi-transparent and mainly diffuse: (a) Ray casting using 0.01
sample distance (b) Pre-integrated ray casting (sample distance 0.5) using the gradient and material properties of the
first sample for shading. (c) Same as (b) but using the gradient and material properties of the second sample. (d) Ray
casting using a pre-integrated weight to linearly interpolate the gradient used for shading.

is due to the fact that the color is pre-integrated for a given
interval but the shading is performed on the fly at dis-
crete ray sample positions. For any given voxel interval
[vl, vr], the two gradients at sample location are available
but in most cases neither of the two allows for correct
shading of this interval.

Engel et al.[6] approached this problem by correspond-
ingly weighting the two gradients based on a global iso-
surface value. Consequently, the offset of this iso-surface
valuevi within the interval is computed during rendering
and divided by the voxel interval length. The resulting
weight

w = (vi − vl)/(vr − vl) (2)

is used to perform a linear interpolation and the inter-
polated gradient is used to perform shading. While this
approach correctly reveals the illumination for a single
iso-surfacevi (see Figure 5(a)), it can fail when display-
ing more than one iso-surface (b) and generally fails for
semi-transparent classification (c); e.g, in case of two iso-
surfaces (vi, vj) being present, the method will fail for all
intervals where the iso-surfacevi is behind the second
iso-surfacevj which is orientation dependent. As a re-
sult, the gradient of the occluded iso-surfacevi is used
for shading the visually contributing iso-surfacevj . The
problem becomes worse for more than two iso-surfaces
or for semi-transparent classification.

As a natural extension to pre-integration, we propose
a new method solving this problem by pre-integrating
an interpolation weight that matches the location of iso-
surfaces within the interval. Thus, no global iso-value is
required and for each interval always the gradient of the
closest iso-value can be used for shading. The weightw
is pre-integrated, weighting it with the remaining trans-

(a)

(b)

(c)

vl

vl

vl

vi

vr

vr

vr

vivj

Figure 5: Shading of a pre-integrated color interval of a
ray showing the sample location and the sample gradi-
ents. Left is voxel value vl and right is vr. (a) Single iso-
surface being present. (b) Two iso-surfaces being present.
(c) Semi-transparent classification along the interval.

parency.

w[vl,vr] =
vr∑

i=vl

(vi − vl)
(vr − vl)

i−1∏
j=vl

(1− α(vj)) (3)

To account for the correct remaining transparency in de-
pendence of the interval length, the opacityα(vj) needs
to be corrected for each pre-integrated interval [13].

α(vj) = 1− n

√
1− α(vj) (4)

wheren = d
vr−vl

is the individual interval length andd
being the actual sample distance along the ray.

Pre-integrating the gradient interpolation weight en-
sures that for any number of iso-surface being present

in any interval, the corresponding gradient of the closest
iso-surface is used for shading. Furthermore, for semi-
transparent classification, it allows to weight the two sam-
ple gradients to match best the opacity distribution within
each interval.

Figure 4 summarizes the issues of pre-integrated color
values and shading being performed on a discrete sam-
ple base. The images show a zoomed view of the
Neghip dataset and were generated using< ka, kd, ks >
= < 0.1, 0.6, 0.3 > for the green material and<
0.1, 0.3, 0.6 > for the blue material. The reference im-
age was generated using a sample distance of0.01 and
conventional point based classification, see Figure 4(a).
For the other images, a sampling distance of0.5 and a
2D pre-integrated classification table was used. Figure
4(b) shows the result of using the gradient at sample lo-
cationvl and (c) was generated using the gradient atvr.
In both cases, the obtained shading effects are wrong, es-
pecially the reflected highlights. In contrast, using the
pre-integrated interpolation weight to obtain the gradient
representing the interval best (see 4(d)), hardly any dif-
ference to (a) can be distinguished.

It should be mentioned that when using different ma-
terial properties for each voxel, thekd factor needs to be
pre-integrated together with the diffuse color to account
for correct shading. In addition,ka andks need to be
pre-integrated for the interval such that the specular and
ambient term are correctly representing the entire inter-
val.

ka,[vl,vr] =
vr∑

i=vl

(vi − vl)
(vr − vl)

i−1∏
j=vl

ka(vj) (5)

ks,[vl,vr] =
vr∑

i=vl

(vi − vl)
(vr − vl)

i−1∏
j=vl

ks(vj) (6)

In summary, weighting the gradient based on the opac-
ity distribution across the pre-integrated interval allows
to accomplish high image quality while performing the
shading /computation only once per interval[vl, vr].

5 Texture Setup

Setting up the texture and shading environments for ei-
ther the NVIDIA GeForce3 or the ATI Radeon 8500 to
achieve interactive frame rates is not a trivial task. Due
to the limited hardware resources of the GeForce3, we
first describe the implementation on the Radeon 8500 and
subsequently describe the differences for the GeForce3.

For both, the gradient magnitude modulation and pre-
integrated volume rendering, two 2D classification tex-
tures are used. One contains the diffuse color of the sam-
ple and the other the material properties and the opac-
ity. Depending on the mode used, these classification tex-

tures are either addressed using the voxel and the norm of
the gradient (gradient magnitude modulation mode) or by
using two voxels (pre-integrated classification). Corre-
sponding to the mode, the textures are initialized accord-
ingly. In case additional lighting is enabled, two cube-
maps are used as described earlier (see Section 3).

For gradient magnitude modulation, the 3D texture
contains the voxel value, the norm of the gradient, and
possibly the norm of the second order derivative to sup-
port higher dimensional transfer functions as recently
presented in [9]. In order to support additional lighting, a
second 3D texture is needed containing the pre-computed
Sobel gradients since there is no texture format with more
than four channels available. Without gradient magni-
tude, one GLRGBA texture suffices.

For pre-integrated volume rendering, two instances of
one volumetric texture containing the voxel and the gra-
dient components are needed to provide the two sample
values for the 2D lookup. Note that the volume is stored
only once on the graphics card but two texture units use
the same 3D texture.

For either of the two modes, pre-integration or gradient
magnitude modulation in combination with illumination,
a total of six texture operations is needed. Thus, on the
ATI Radeon 8500 both approaches can be realized in a
single pass due to its six independent texture units. With
respect to programming the fragment shaders, the same
program can be used for both modes since the setup for
gradient magnitude modulation:

• 3D texture with voxel, gradient norm, etc.

• 3D texture with gradient

• 2D texture for material properties and opacity

• 2D texture for diffuse color

• Cube-map for diffuse light intensity

• Cube-map for specular light intensity

and the setup for pre-integrated volume rendering:

• 3D texture with voxel and gradient

• 3D texture with voxel and gradient

• 2D texture for (pre-integrated) material properties
and opacity

• 2D texture for (pre-integrated) diffuse color

• Cube-map for diffuse light intensity

• Cube-map for specular light intensity

are very similar, using the same addressing scheme. In
the first texture lookup the voxel and the gradient are ex-
tracted. The gradient is rotated into the coordinate system
of the light sources and the texture coordinates for ad-
dressing the classification textures are set up. It is worth
to be mentioned that since we do a per-pixel matrix mul-
tiplication to rotate the gradients into the coordinate sys-
tem of the light source, we are also able to implement
point light sources residing within the volume. In the sec-
ond texture lookup, the voxel colors and the lighting in-
tensities are obtained and combined in the final fragment
shader step.

To achieve a higher lighting quality for pre-integrated
rendering, as mentioned in Section 4, the gradient
components need to be interpolated based on the pre-
integrated interpolation weight. Due to the additional de-
pendency, a second rendering pass is currently unavoid-
able but this might change with upcoming new graphics
accelerators.

In contrast to the Radeon 8500, the implementation on
the GeForce3 is either limited to lighting only or we have
to use multiple rendering passes. The gradient magni-
tude modulation as done in a single pass on the Radeon
8500, has to be split into a total of four passes to allow for
our general lighting model. This can be reduced to three
passes when using a uniform color for either the diffuse
or the specular cube map. However, the pre-integration
approach without weighted gradients requires five passes
while the additional interpolation of the gradient using
the pre-integrated weight can not be implemented, due to
the 8 bit quantization in the pipeline. While this appears
to be very advantageous for the Radeon 8500, this might
be quite different once the next generation graphics chips
are released.

5.1 Texture Compression
One of the main drawbacks when using texture mapping
hardware for volume rendering including shading is the
need for storing an RGBA texture containing the pre-
computed gradients. This is necessary because there is
no support for extracting gradients directly from the den-
sity volume, as e.g. done in VolumePro [16]. Thus, a
significant amount of texture memory is required to store
the additional gradient information. For 8 bit voxel val-
ues and a2563 volume, the memory requirements are
increased from 16 MBytes to 64 MBytes. Thus for a
graphics card with 64 MBytes of memory (texture and
framebuffer memory), and a volume that is much larger
than the available texture memory, the volume needs to
be partitioned into bricks which are transfered from main
memory to the graphics card when needed. Even with
an AGP bus, this significantly reduces the overall perfor-
mance and real-time frame-rates are beyond feasibility.

Recently, the Architecture Review Board (ARB) of
OpenGL released an extension for texture compres-
sions named ARBtexturecompression and supported on
many PC graphics cards (Voodoo5, Radeon, GeForce).
The compression is based on the s3tc algorithm and ac-
complishes a constant compression rate of four by pack-
ing 4× 4 texels into a compact bit stream. Thus, datasets
which are much larger than the available texture mem-
ory of the graphics card can still be rendered at interac-
tive frame-rates. However, image quality is potentially
sacrificed due to the lossy compression algorithm and
the missing adaption scheme for gradient compression.
Figure 6 illustrates the difference in image quality for a
full (a,b) and a close-up view (c,d) of the engine dataset.
While the global information and structure is still present,

(a) (b)

(c) (d)

Figure 6: Texture compression applied to the engine
dataset: (a,c) Without compression. (b,d) With compres-
sion.

fine detail is lost. Thus, one might want to implement a
hybrid renderer, using compressed textures only during
motion. Additionally, one can subdivide the volume into
bricks and render from compressed textures only for the
bricks being further away from the observer. However,
such a hybrid rendering would require two different vol-
umes which compete for residency on the graphics card.

6 Results

Several different datasets available on the volvis web
page (http://www.volvis.org/) were used for rendering.
The resulting images are shown in Figure 7 and clearly
demonstrate the high quality of the presented techniques.

More interesting than the actual quality is the timing anal-
ysis. While all renderings can be accomplished on the
NVIDIA GeForce3 and on the ATI Radeon 8500, the per-
formance shows significant differences. This is due to the
different hardware resources available on these systems.
While the GeForce3 has four texture units, the Radeon
8500 provides six and has less restrictions when using
cube-maps. E.g. when using 3D textures, shading, and
classification, three passes are needed to accomplish the
rendering on the GeForce3 while the Radeon 8500 is ca-
pable of handling this in one pass. While this is likely
to constantly change with new upcoming graphics accel-
erators, the following results were measured on the ATI
Radeon 8500.

We investigated several issues and their impact onto
the overall rendering speed. First, the size of the view-
port and the dataset determine the amount of tri-linear
samples that need to be generated. Second, enabling or
disabling shading because there are more textures to be
used per polygon. Third, the size of the cube-maps which
is a trade-off between quality and cache efficiency and
last but not least, the impact of compression. For all mea-
surements, the slice distance was chosen to be one and
the size of the diffuse and specular cube-map were162

and642 respectively. Increasing the diffuse cube-map to
642 reduced the performance by 10% without further in-
creasing the image quality.

Table 1 illustrates the timing using a viewport of200×
200 pixels. Simply slicing the density volume and ap-
plying a dependent 2D texture for classification is in the
range of3.6 to 82.9 frames. When slicing a density

Data size no-light cube-map compression

643 82.8 36.1 40.1
1283 18.4 12.8 19.6

2562 × 128 8.2 4.6 8.4
2563 3.6 - 4.7

Table 1: Frames per second for a 200× 200 viewport.

and gradient texture and applying the cube-maps includ-
ing classification, the frame rate drops strongly. This
is mainly due to the utilization of two volumetric tex-
tures per sample for pre-integration (halfing the perfor-
mance) as well as applying the cube-map which com-
petes for texture cache. In case ofno-light, we are using
the same RGBA texture containing the gradients and the
performance can be improved by a factor of two using a
GL ALPHA texture. With the currently released drivers
we were not able of getting cube-maps to run with a2563

dataset but this is likely to change and could be circum-
vented using bricking.

Enabling ARBTEXTURE COMPRESSION in-
creases the rendering performance but not so much for
the small datasets than for the larger datasets. The reason
for this is that for larger datasets the memory bandwidth
of the graphics card is the limitation and due to the
compression, the cache efficiency is increased. However,
for smaller datasets, the cache efficiency is already
high and thus, texture compression can not significantly
accelerate the rendering because the actual limitation
here is the cube-map lookup.

Finally, table 2 shows the same timings for a viewport
of 400×400 pixels. In comparison to Table 1, all timings
are reduced by a factor of2 to 2.9 due to the four times
enlarged viewport. The factor reveals the increase in tex-
ture cache efficiency allowing a higher pixel fill-rate.

Data size no-light cube-map compression

643 37.3 12.7 12.4
1283 11.4 5.5 6.4

2562 × 128 5.0 2.5 3.9
2563 2.3 - 2.5

Table 2: Frames per second for a 400× 400 viewport.

On the Radeon 8500 3D textures are a factor of two
to three slower than 2D textures and their performance
varies depending on the viewing direction (linear mem-
ory access problems). However, true 3D textures are
mandatory for pre-integrated classification because the
pre-integration is based on a fixed interval length. Thus,
when using 2D textures the interval length depends on
the viewing direction and would need to be recomputed
for every frame which is not possible at interactive frame-
rates unless only iso-surface rendering is of interest.

7 Conclusions

In this paper, we presented a novel approach for accom-
plishing artifact free shading of volumetric data using
cube-maps. This approach allows to not only support di-
rectional light sources but also any complex lighting sit-
uation. Additionally, the presented approach allows to
specify material properties on a per sample base.

Furthermore, we presented how pre-integrated classifi-
cation can be combined with shading by additionally pre-
integrating an interpolation weight used to interpolate the
two respective gradients at sample location.

The presented results were generated on a ATI Radeon
8500 using OpenGL but most of them could also be
accomplished on a NVIDIA GeForce3 using multi-pass
rendering due to the limited hardware resources. Besides
its high throughput, the Radeon 8500 offers highest pos-
sible flexibility within the texturing and the rasterization

stage. As demonstrated, this flexibility can be efficiently
exploited to enable and combine the most important and
valuable techniques of volume rendering at interactive
frame rates.

A topic of future work is to investigate the impact of
the limited frame-buffer accuracy onto the image qual-
ity as well as investigating how pre-integrated classifi-
cation and gradient magnitude modulation can be com-
bined. Using a 4D table(vs, ve, gm0, gm1) would allow
to handle this correctly but the table could not be com-
puted interactively and other solutions are necessary.

References

[1] K. Akeley. RealityEngine Graphics. InComputer
Graphics, Proc. of ACM SIGGRAPH, pages 109–
116, August 1993.

[2] B. Cabral, N. Cam, and J. Foran. Accelerated Vol-
ume Rendering and Tomographic Reconstruction
Using Texture Mapping Hardware. InWorkshop
on Volume Visualization, pages 91–98, Washington,
DC, USA, October 1994.

[3] T. J. Cullip and U. Neumann. Accelerating Volume
Reconstruction with 3D Texture Mapping Hard-
ware. Technical Report TR93-027, Department of
Computer Science at the University of North Car-
olina, Chapel Hill, 1993.

[4] F. Dachille, K. Kreeger, B. Chen, I. Bitter, and
A. Kaufman. High-Quality Volume Rendering Us-
ing Texture Mapping Hardware. InProc. of Euro-
graphics/SIGGRAPH Workshop on Graphics Hard-
ware, pages 69–76, Lisboa, Portugal, August 1998.

[5] S. Domińe and J. Spitzer. OpenGL Texture
Shaders. Technical document, available from
http://www.nvidia.com/, 2001.

[6] K. Engel, M. Kraus, and T. Ertl. High-quality
pre-integrated volume rendering using hardware-
accelerated pixel shading. InProc. of Eurograph-
ics/SIGGRAPH Workshop on Graphics Hardware,
Los Angeles, CA, USA, August 2001.

[7] A. Van Gelder and K. Kim. Direct Volume Render-
ing With Shading via Three-Dimensional Textures.
In Symposium on Volume Visualization, pages 23–
30, San Francisco, CA, USA, October 1996.

[8] G. Kindlmann and J. W. Durkin. Semi-automatic
generation of transfer functions for direct volume
rendering. InSymposium on Volume Visualization,
pages 79–86, Research Triangle Park, NC, USA,
October 1998.

[9] J. Kniss, G. Kindlmann, and C. Hansen. Interactive
volume rendering using multi-dimensional transfer

functions and direct manipulation widgets. InProc.
of IEEE Visualization, pages 255–262, San Diego,
CA, USA, October 2001. IEEE Computer Society
Press.

[10] P. Lacroute and M. Levoy. Fast Volume Rendering
Using a Shear-Warp factorization of the Viewing
Transform. InComputer Graphics, Proc. of ACM
SIGGRAPH, pages 451–457, July 1994.

[11] E. LaMar, B. Hamann, and K. Joy. Multiresolution
Techhniques for Interactive Hardware Texturing-
based Volume Visualization. InProc. of IEEE Visu-
alization, pages 355–361, San Franisco, CA, USA,
October 1999. IEEE Computer Society Press.

[12] M. Levoy. Display of surfaces from volume data.
Ph.D. Dissertation, Department of Computer Sci-
ence, The University of North Carolina at Chapel
Hill , May 1989.

[13] B. Lichtenbelt, R. Crane, and S. Naqvi.Introduction
to volume rendering. Hewlett-Packard Professional
Books, Prentice-Hall, Los Angeles, USA, 1998.

[14] N. Max, P. Hanrahan, and R. Crawfis. Area and
volume coherence for efficient visualization of 3d
scalar functions. pages 27–33, San Diego, CA,
USA, nov 1990.

[15] M. Meißner, U. Hoffmann, and W. Straßer. En-
abling Classification and Shading for 3D Texture
Mapping based Volume Rendering using OpenGL
and Extensions. InProc. of IEEE Visualization,
pages 207–214, San Franisco, CA, USA, October
1999. IEEE Computer Society Press.

[16] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and
L. Seiler. The VolumePro Real-Time Ray-Casting
System. InComputer Graphics, Proc. of ACM SIG-
GRAPH, pages 251–260, Los Angeles, CA, USA,
1999.

[17] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner,
and T. Ertl. Interactive volume rendering on stan-
dard pc graphics hardware using multi-texturing
and multi-stage rasterization. InProc. of Euro-
graphics/SIGGRAPH Workshop on Graphics Hard-
ware, pages 109–118, Interlaken, Switzerland, Au-
gust 2000.

[18] D. Voorhies and J. Foran. State of the art in data
visualization. InComputer Graphics, Proc. of ACM
SIGGRAPH, pages 163–166, July 1994.

[19] R. Westermann and T. Ertl. Efficiently Using
Graphics Hardware in Volume Rendering Applica-
tions. InComputer Graphics, Proc. of ACM SIG-
GRAPH, pages 169–177, Orlando, FL, USA, Au-
gust 1998.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 7: Color plates: gm denotes gradient magnitude modulation and mp denotes different material properties. (a)
Neghip using a point light source and mp. (b) As (a) using a squared light source. (c) Engine using differently colored
light sources. (d) Visible human using gm. (e) Engine using gm and mp. (f) Head using gm. (g) Fuel using mp. (h)
Aneurysm. (i) Hydro using mp. (j) Lobster. (k) as (j) using gm.

	Introduction
	Related Work

	Texture Mapping Revisited
	Classification
	Shading
	Gradient Magnitude Modulation
	Pre-Integration

	Lighting Models
	Cube-Maps
	Different lightsources

	Pre-Integration And Shading
	Texture Setup
	Texture Compression

	Results
	Conclusions

