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Abstract. Numerical integration is a common sub-problem in many applica-
tions. It can be solved easily in CPU-based applications using adaptive quadrature
such as the adaptive Simpson’s rule. These algorithms rely, however, on error es-
timation yielding a significant computational overhead. In addition, they require
recursive function evaluations, which are not well suited for parallel computation
on graphics processing units (GPUs) due to warp divergence issues. In this paper,
we introduce heuristic forward quadrature as an alternative that is not only more
efficient than traditional methods, but also better suited for accelerated massively-
parallel calculation on GPUs. Additionally, we will give an error estimate for our
method and demonstrate performance results for 1D and 2D integral applications
which show that the algorithm leverages quadrature for the efficient implementa-
tion on GPUs.
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1 Introduction

General purpose programming on graphics processing units (GPGPU) has been popu-
larized with the advent of CUDA [1], OpenCL and related techniques and is currently
one of the state-of-the-art approaches both inside and outside the computer science do-
main. GPGPU is often used to numerically solve ordinary or partial differential equa-
tions (ODEs, PDEs), e.g. in flow simulations, image processing [3], or the economic
sciences (option pricing via the Black-Scholes equation) [4]. Especially when solving
PDE:s in financial mathematics, integration is required at some point. If there is no an-
alytical solution available, we need to rely on numerical integration (also known as
quadrature). Adaptive methods such as the adaptive Simpson’s method or the Gauss-
Kronrod algorithm are used with a given error tolerance to ensure exact values.

The principle of standard adaptive quadrature algorithms is shown in Algorithm 1.
The integration is first performed on the whole interval. Then, the error is estimated by
a given heuristic (in Simpson’s case, the result is compared with a second integration
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Algorithm 1 Principle of adaptive quadrature algorithms.
function ADAPTIVEQUADRATURE(f, a, b, €)
q & fab f(x)dx
0+ |qg— f: f(z)dzx| > Using some given error estimator.
if § > ¢ then
g < ADAPTIVEQUADRATURE(f,a,a + (b — a)/2,2) + ADAPTIVEQUADRA-
TURE(f,a + (b —a)/2,b,¢)

using standard Simpson’s rule to check the difference against a user-defined error tol-
erance). If the threshold is exceeded, the interval is subdivided in at least two parts and
the method is called recursively on the subintervals.

While the method is able to guarantee a given error threshold, it requires a signif-
icant computational overhead: Each time the interval is subdivided, the last result is
discarded. Additionally, the error estimates are complex and computationally intensive
as they need to compute a better approximation than the current algorithm’s level. Given
those two characteristics, the algorithm is not well suited for GPUs. First, interval sub-
division often yields branching which severely affects the performance of threads in the
same warp. Second, recursive kernels are not yet possible in consumer cards (but will
become available with Nvidia HyperQ). In CUDA, recursion is limited to device func-
tions while it is not available at all in OpenGL (and OpenGL ES). Although transforma-
tion in a non-recursive algorithms is possible, it is quite complex [5]. In this paper, we
propose an alternative method that results in a smaller number of function evaluations
(and thus in a significant improvement of performance) and is especially well suited for
GPUs.

Our contributions are as follows: We propose heuristic adaptive forward quadrature
as an alternative quadrature method. We motivate and investigate a special heuristic,
give an error estimate and its proof, and show that the number of function evaluations
is significantly smaller than with today’s standard routine. Furthermore, we show a
GPU implementation and analyze its performance using an application from the image
processing domain.

2 Related Work

Adaptive quadrature is a well-investigated topic. Research has, however, been discon-
tinued in recent years. A good overview can be found in Gander and Gautschi [6]. The
precision of the traditional, recursive algorithm depends largely on the error metric.
Typically, an integrand is integrated with two different methods, one more precise than
the other, and it is tested whether a given error threshold is exceeded [6]. Further in-
vestigation on those estimators has been conducted by Shapiro [7] and Berntsen et al.
[8,9]. Both methods rely on the traditional method and improve the performance by
clever interval subdivision and error estimators that combine global and local precision.

As stated above, these traditional approaches use recursion intensively and are not
well suited for GPUs. Quadrature implementations on GPUs rely mostly on non-adaptive
integration [10], which is embarrassingly parallel. Another approach for multidimen-
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Algorithm 2 Principle of heuristic adaptive forward quadrature.

function HEURISTICQUADRATURE(f, a, b, h., h™)
p<a
g« 0
while p < b do
h < ESTIMATEINTERVALLENGTH(f, p, h«, h™)
g q+ hf(p)+12‘(p+h)

p+<p+h

sional quadrature was proposed by Arumugam et al. [11]. Integration is done in two
phases — interval division and integration — and relies on recursion. The recursive subdi-
vision part is, however, implemented on the CPU using a hybrid CPU/GPU architecture.
Anson et al. [12] presented a similar method on a reconfigurable FPGA architecture.
Existing CPU libraries as QUADPACK [13] implement only the Simpson and Gauss-
Kronrod methods, which are badly suited for the GPU. Currently, there is no published
method for adaptive integration on GPUs available. In contrast to these libraries, we
leverage adaptive quadrature for efficient use on commodity GPUs by introducing a
new algorithm and a suitable implementation.

3 Non-recursive adaptive quadrature

As mentioned in the introduction, there are two ways of adaptive quadrature: One can
either estimate the quadrature error a posteriori and subdivide intervals thereafter or es-
timate the interval length a priori. Our method concentrates on the latter. An overview
over this algorithm is given in Algorithm 2. In essence, we apply the trapezoid rule
for every interval. In usual quadrature, the result is discarded if it exceeds the error
threshold and the interval is subdivided, effectively returning to its begin. This method
could be called forward-backward, while our method is of the forward kind: One after
another, the heuristic selects intervals and arbitrary algorithms can be applied to them,
never discarding the result. Of course the success depends largely on the interval selec-
tion heuristic. Before we propose a particular heuristic, let us shortly review advantages
and disadvantages of this approach.

The clear advantage is, as mentioned, that all intervals contribute to the final re-
sult and the number of function evaluations is minimized. As the evaluation of an error
estimator is unnecessary, we save computational power and do need to evaluate condi-
tionals. On the other hand, the error of our method is clearly dependent on the heuristic.
Additionally, there is no possibility to implement a hard error threshold: the heuristic
defines the interval lengths and such (indirectly) the error. Using careful design, the er-
ror can, however, be bounded and practical results are promising as shown in Section 4.

3.1 The 82 heuristic.

Every heuristic has the goal of providing small interval sizes in regions where the in-
tegrand is curved while using larger intervals on near-linear parts. Ideally (in terms of
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Fig. 1: Interval selection for 92-heuristic and integrand %m(w) visualized (a) and in 3D
for a Gaussian Kernel e~ 1¥=0-511/025” yiew from above (b) with A, = 0.01, h* = 0.05.

error), every interval would only contain a linear subset of the integrand’s graph. To
predict how a function develops in a given interval, we can use its first and second
derivatives. For the error estimation (see Section 4) we assume that the integrand is C?-
continuous on [a, b]. The second derivative yields information about the curvature of
the integrand and thus about the development of the rate of value change. If the second
derivative is small or even zero, the curve’s steepness will remain almost constant and
a greater interval length can be used. Alternatively, if the second derivative grows, the
curvature of the integrand increases and we need to consider smaller intervals.

A first approximation of this heuristic (given a minimal interval size h, and maximal
interval size h*) is

hi = h + (= f"(p:))him1 (h* = ). (1)

p; is the last integration point (with interval length h;). o is a given constant. Re-
member that we use a forward method: each interval length depends on the length
of the last interval to model the integrand’s change. Unfortunately, Equation 1 shows
bad behavior when the second derivative of the integrand is small, e.g. in the case of
the sine function. To improve the estimation here, we replace a — f"(p;) by 8 =
max (| (p:)|, | f (p;) — f'(pi—1)])- The second max term captures the behavior of
functions where the curvature is small but nonetheless, the rate of change (hence, the
first derivative) is huge such as piecewise linear functions. Note that although the later
error proof needs the continuity assumption, in practice the algorithm can be applied to
non-continuous functions, too.

A linear involvement of the curvature is, however, not very useful since for only
small changes, no interval length change is necessary. Following this intuition, we in-
troduce weighting by e~#. This yields the final heuristic

hi =h.+e mﬂx(\f”(Pi)|7|f/(Pi)—f/(Pi—1)|)(h* _ h*) (2)
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Algorithm 3 92 heuristic algorithm implemented using simple central difference ap-

proximations.

function FAQ(f, a, b, hs«, h™)
q<+ 0
h < h.
pa
lastVal < f(p)

lastHill < (f(p + 0.1h) — lastVal)/(0.1h)

while p < b do
p—p+h
thisVal < f(p)

thisHill < |thisVal — lastVal| /h
q < q + h - (thisVal + lastVal) /2
d + max(|(thisHill — lastHill) /thisHill|, |thisHill — lastHill]) > Approximate f’.

h hu +e 4" — ha)

if p+ h > bthen
h+b—p

lastVal < thisVal

lastHill < thisHill

> Capture extreme behaviour at graph start.

> Approximate f.

function relative |absolute [percentage of function evaluations
error | error compared to Matlab quad

sin(x) 0.01 -0.01 48%
sinh(x) 0.01 0.02 48%
2+t + 2+ + 1] 00 0.18 37%
exp(—x) 0.01 0.01 65%
sin(z)/x 0.0 0.0 64%
log(x) -0.15 -0.09 21%
V() 0.0 | -0.01 27%

Table 1: Error and performance results for our forward quadrature method in compari-

son to adaptive Simpson quadrature.

A visualization on how this heuristics works in an application is given in Figure 1.

Often, derivatives are not directly given and thus not available for calculation. In
this case, we need to approximate first and second derivative using simple central dif-

ferences 3.

With this heuristic, we tested several functions on the unit interval and compared
the error and the number of integrand evaluations required to MATLAB’s quad func-
tion, an improved adaptive Simpson’s method with ¢ = 10e — 6. As Table 1 shows,
this approach is much more efficient for most functions while loosing only very little

precision.
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4 Error estimation

After motivating and introducing our heuristic in the previous sections, we still need
to discuss how the method’s error can be estimated. Note that while other quadrature
methods offer the possibility to define a hard error threshold, we are unable to do so.
Instead, we need to estimate the methods’s error a priori. As for non-adaptive methods,
a theorem on how the error behaves can be derived. Using the trapezoidal rule error
estimation and the fact that our integrand f is C?-continuous we arrive at the following
error bound theorem:

Theorem 1. Let I be the result of adaptive quadrature with heuristic (2) applied to the
Sfunction f and bounds a,b with minimum and maximum interval sizes h., h* and let
further f be a twice continuously differentiable function on R. Then the error Al =
|7 — ff f(z)dx| is bounded by

Al < sup ———
n€la,b] 24

where h; is defined as given in the proof.

Proof. By the given algorithm, it is obvious that we can express the interval lengths as
a sequence (h;);cr+ With
(@S5G )~ (a0 k)

hi=h.+e ST ) (h* — hy) 3)

where a + Z;;% h; is the second-to-previous quadrature anchor point and a + Z;;E h;
the previous. The quotient
i—1 i—2
|f(a+ 232520 hy) — fla+ 22520 hy)l
i—2
frla+3220hy)
in the algorithm is essentially an approximation of the second derivative f”/, which we

can use for error estimation. As f” is continuous, we can use the mean value theorem,
such that there is an £ € [a, b] that

“

f'(b) = f'(a)

b—a

f() = )

or
b—a "(b) — f'(a
P R (0 ©
f'(a) f'(a)
whose last part is — when applied to each interval h; (so that h; = b — a) — exactly the
approximated quotient mentioned earlier. Hence we can provide an upper bound for the

interval length with a being the starting point of interval h;

- — £ Py (e
hi <h; = sup h,+e flahic) (B* — hy) | . @)
£€la—hi_1,a]
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Let now |H| =
for the rectangle rule (as integration in a given interval is done by rectangle rule in the
algorithm), being x; the calculation point in interval h;:

\HI 3

AI<Z f” ) < sup |H| (). ®)

n€la,b]

4.1 Extension on two-dimensional integrands

So far, the integrand was implicitly a function f : [a,b] — R. This is, however, not
always the case. Often, an integral needs to be evaluated on an area {2 C R2. As our
integrand f is differentiable, it is also continuous. Let now [a, b] be compact, then we
can use Fubini’s theorem to formulate the approximation for f : R> — R on a rectangle
N=IxJ:

| ) dody = Iy Uy F)de) dy ©)

~ L (S el f i) dy (10)

~ S ol (S0 Iyl i i) an

where 7, is the set of intervals chosen by the heuristic in direction d. Effectively, we

get a grid on (2 for quadrature. An example grid is shown in Figure 1 (b). By repeating
this method, we can extend the algorithm to n dimensions.

5 Implementation and performance on GPUs

As the proposed quadrature algorithm is well suited for GPUs, we implemented it using
CUDA Version 5.0 [1]. The performance is evaluated using two different applications,
one for the one dimensional and the other for the two dimensional case. An extension to
n dimensions is straightforward. We compare the performance against a multi-threaded
CPU version with our heuristic as well as a GPU and multi-threaded CPU implemen-
tation of the quadrature by the standard adaptive Simpson’s rule. To the author’s best
knowledge, there are no implementations for quadrature on CUDA that can be consid-
ered as industry standard and baseline. The well-known QUADPACK [?] is limited to
one-dimensional functions and despite its popularity, there is no massively-parallel im-
plementation available. Hence, programmers usually create their own implementations
of popular methods such as the Simpson rule or the Gauss-Kronrod method. Although
the last one is considered state-of-the-art, it is computationally more expensive than
using the Simson rule which is why we compare our performance to the Simpson rule.

All experiments were performed on a PC running Ubuntu 12.04 with the latest
Nvidia drivers (version 304.88). The system is equipped with an Intel Core 17-3930K
hexacore CPU 64 GB of RAM, a Nvidia Geforce GTX 620 (primary device) and a
Nvidia Geforce GTX 680 card with two gigabyte of RAM as a headless compute de-
vice.
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Fig. 2: Performance of the modified Perona and Malik diffusion by Thuerck and Kuijper
[14] using the adaptive Simpson’s rule.

5.1 One-dimensional case

As an application for the one-dimensional case, we use the Perona and Malik [3] diffu-
sion. This filter models the physical process of diffusion described by the PDE

I, = V- (c(|VI))VI) (12)

where [ is the image intensity function of a given grayscale image on a region {2.
The function c is called the diffusivity. In contrast to linear diffusion which is equiva-
lent to convolving the image with a Gaussian the diffusion strength varies in nonlinear
diffusion over the image domain. For the diffusivities proposed by Perona and Malik,
quadrature is not necessary. However, Thuerck and Kuijper [14] presented a diffusivity
which leads to a well-posed process but has no analytical integral. To implement this
model, we need numerical integration and can apply our algorithm.

The CUDA implementation of the proposed quadrature algorithm is straightfor-
ward. For each pixel, finite differences with its neighbors are calculated and used to
calculate the diffusivity in this point by quadrature. Essentially, Algorithm 3 can be im-
plemented in CUDA as a device function directly as there is no further inherent paral-
lelism. Figure 2 shows that both GPU implementations outperform the CPU equivalents
by more than one order of magnitude. We can observe a performance increase of about
20 percent over the GPU based Simpson algorithm as well.

5.2 Two-dimensional case

Application cases of 2D integration are quite prominent in fluid simulations and fi-
nancial mathematics. Especially in the field of option pricing using the Black-Scholes
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[4] equation, quadrature of a Gaussian kernel is required when the influence of other
options is included in the calculation.

To evaluate the key aspects we developed a simplified prototype for performance
evaluation. As input data, we take an image of a given size. The CUDA kernel then
reads the intensity of each pixel in the whole image and performs a quadrature of an
Gaussian bell in the region [0, 0] to [¢, ¢] where i is the intensity to ensure that the threads
operate on different data. The difference to a Black-Scholes implementation is thus only
a constant for runtime purposes.

The algorithm is split up into three phases. First, one CUDA thread calculates the
samples for the first dimension as needed by Fubini’s theorem. Afterwards, each thread
can use the 1D implementation concurrently to execute integration in the second dimen-
sion, which results in a grid as shown in Figure 1 (b). Upon finish, each thread writes its
result to shared memory and, after parallel reduction, the final result is written to global
memory.

By executing the integration in each of the dimensions in sequence, we reduce the
complexity to O(dimensions) rather than O(x-samples). Hence, we observe a much
higher speed up than in the 1D case. While in this case, the speed up is only a result
of the reduced number of integration steps, the 2D case generates enough workload to
satisfy the GPU and a better performance is achieved by doing a large number of inte-
gration steps in parallel in addition to each 1D integration being less complex. However,
there is room for improvement: A carefully designed 2D heuristic could improve thread
utilization and enable us to execute integration in two/dimensions at least partly concur-
rent. Nevertheless, the performance evaluation shows that the given heuristic algorithm
effectively enables us to use the GPU for quadrature, which usual methods cannot do.

In the two dimensional case the adaptive Simpson’s rule’s performance is similar to
both CPU implementations, as seen in Figure 3. Our presented algorithm outperforms
all three comparison implementations with one order of magnitude.

Naturally, the speed-up in the 2D case is dramatically higher than in the 1D case.
This is due to the quadratic number of integrations in the 2D case compared to the linear
number of integrations in the 1D case.

6 Conclusion and future work

In this paper, we showed that heuristic adaptive integration can speed up CPU as well
as GPU implementations while keeping the accuracy constant when choosing suitable
bounds h., h*. In the GPU case, the performance evaluation resulted in a strong rec-
ommendation to use the heuristic on the GPU as sensible speed ups cannot be achieved
with traditional Simpson quadrature. The prototypical implementations confirm this
fact. Furthermore, the presented algorithm can be extended to n dimensions using Fu-
bini’s theorem.

Most of our future plans are already mentioned above. Currently, when integrating
in n dimensions, we first create the sampling coordinates and interval sizes for n — 1
dimensions and use the nth dimension for the actual integral calculation. The sampling
process in each dimension can be parrallelized. However, as the result of every dimen-
sions depend on the previous dimensions, the algorithm scales linear with the number
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Fig. 3: Performance of the two dimensional case.

of dimensions for fixed grid sizes. Therefore, we wish to improve this behaviour in
the future. Second, we would like to fully implement a Black-Scholes option pricing
kernel to determine the speed-up in a non-artificial application. Although a reference
implementation from NVIDIA exists [15], it is restricted to 1D quadrature. Lastly, we
consider developing suited heuristics for the multidimensional case so there is no need
to revert to the one-dimensional heuristic via Fubini’s theorem.

7 Acknowledgements

The work of Sven Widmer is supported by the *Excellence Initiative’ of the German
Federal and State Governments and the Graduate School of Computational Engineering
at Tech- nische Universitidt Darmstadt.

References

1. NVIDIA: CUDA Compute Unified Device Architecture. www.nvidia.com/object/
cuda_home_new.html

2. dos Santos, F.P., Lage, P.L., Senocak, I.: Parallel programming on cpu-gpu for solving pop-
ulation balance equation

3. Perona, P, Malik, J.: Scale-space and edge detection using anisotropic diffusion. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 12(7) (1990) 629-639

4. Black, F., Scholes, M.: Taxes and the pricing of options. The Journal of Finance 31(2) (1976)
319-332

5. McKeeman, W.M., Tesler, L.: Algorithm 182: nonrecursive adaptive integration. Commun.
ACM 6(6) (June 1963) 315-

6. Gander, W., Gautschi, W.: Adaptive quadrature revisited. BIT Numerical Mathematics 40(1)
(2000) 84-101



10.

11.

12.

13.

14.

15.

Efficient heuristic quadrature on GPUs 11

. Shapiro, H.D.: Increasing robustness in global adaptive quadrature through interval selection

heuristics. ACM Transactions on Mathematical Software (TOMS) 10(2) (1984) 117-139

. Berntsen, J., Espelid, T.O., Sgrevik, T.: On the subdivision strategy in adaptive quadrature

algorithms. Journal of Computational and Applied Mathematics 35(1) (1991) 119-132

. Berntsen, J.: Practical error estimation in adaptive multidimensional quadrature routines.

Journal of Computational and Applied Mathematics 25(3) (1989) 327-340

Windisch, A., Alkofer, R., Haase, G., Liebmann, M.: Examining the analytic structure of
greens functions: Massive parallel complex integration using gpus. Computer Physics Com-
munications (2012)

Arumugam, K., Godunov, A., Ranjan, D., Terzic, B., Zubair, M.: An efficient deterministic
parallel algorithm for adaptive multidimensional numerical integration on gpus (2013)
Anson, H., Chow, G.C., Jin, Q., Thomas, D.B., Luk, W.: Optimising performance of quadra-
ture methods with reduced precision. In: Reconfigurable Computing: Architectures, Tools
and Applications. Springer (2012) 251-263

Piessens, R., Doncker-Kapenga, D., Uberhuber, C., Kahaner, D., et al.: Quadpack, a subrou-
tine package for automatic integration. status: published (1983) 301p

Thuerck, D., Kuijper, A.: Cosine-driven non-linear denoising. In: Image Analysis and
Recognition. Springer (2013) 245-254

Podlozhnyuk, V.: Black-scholes option pricing. Part of CUDA SDK documentation (2007)



