Appendix A

Looking at variation with $\mathscr{L}_{reg}(X)$ we can weaken the condition " $\mathscr{L} \pm \mathscr{L}_{reg}(X) \subseteq \mathscr{L}$ " substituting $\mathscr{L}_{reg}(X)$ by a much smaller family at all places where these condition appear. Moreover, we get a much stronger result than le.3.2 for this family. For a given X consider the families $\mathscr{L}_{0}(X) = (fin(X^{*})^{\mathbf{c}})^{\mathbf{ltr}}$ and $\mathscr{L}_{ttr}(X) = \mathscr{L}_{0}(X)^{\mathbf{b}}$. Then we can use $\mathscr{L}_{ttr}(X)$ instead of $\mathscr{L}_{reg}(X)$. In this appendix we take a more concise look at $\mathscr{L}_{ttr}(X)$ and derive a complete characterization of $cohesive(\mathscr{L}_{ttr}(X))$. The key to all our considerations are the complement formulas for left translation ($L \subseteq X^{*}$, $w \in L$):

- (C1) $(wL)^c = wL^c \cup (wX^*)^c$,
- (C2) $wL^c = (wL)^c \cap wX^*$.
- (C3) $(wX^*)^c = (X^{|w|}X^*)^c \cup (X^{|w|} \setminus w)X^*$ and
- (C4) If $L \in fin(X^*)$ and $k > max(|z| | z \in L)$, then $L^c = ((X^kX^*)^c \setminus L) \cup X^kX^*$.

Remark: If $X = \{a\}$, then for all $k \ge 0$: $X^k \setminus a^k = \emptyset$, hence $(a^k a^*)^c \in fin(a^*)$ and $(a^k L)^c \in fin(a^*)^c$ for all $L \in fin(a^*)^c$. This shows $\mathscr{L}_0(a) = fin(a^*)^c = fin(a^*)^b$, i.e. $\mathscr{L}_{ltr}(a) = fin(a^*)^b$. Now we prove

Lemma A.1:

- $(1) \qquad \mathscr{L}_{\mathbf{0}}(X)^{\mathbf{c}} \subseteq \mathscr{L}_{\mathbf{0}}(X)^{\mathbf{u}}.$
- (2) $(\mathscr{L}_{\mathbf{0}}(X)^{\mathbf{u}})^{\mathbf{s}} = \mathscr{L}_{\mathbf{ltr}}(X).$

Proof: (1) Consider $w \in X^*$ and $L \in fin(X^*)^c$. Then $wL^c \in \mathscr{L}_o(X)$. Since $(X^{|w|}X^*)^c \in fin(X^*)$ and $(X^{|w|} \setminus w)X^* \in \mathscr{L}_o(X)^u$, $(wX^*)^c \in \mathscr{L}_o(X)^u$, $(wL)^c \in \mathscr{L}_o(X)^u$ by (C1) and (C3). (2) follows by (1).

Lemma A.2:

- (1) $\forall A, B \in fin(X^*), u \in X^*: uA^c \cap B^c \in \mathcal{L}_0(X).$
- (2) $\forall A, B \in \mathcal{L}_{\mathbf{0}}(X): A \cap B \in \mathcal{L}_{\mathbf{0}}(X).$

Proof : (1) We apply (C4), where additionally $k \ge |u|$. Then $B^{c} \cap uX^{*} = (((X^{k}X^{*})^{c} \setminus L) \cap uX^{*}) \cup (X^{k}X^{*} \cap uX^{*}).$

Now,
$$((X^kX^*)^{\mathbf{C}} \setminus L) \cap uX^* = uC$$
 with $C \in fin(X^*)$ and $(X^kX^* \cap uX^*) = uX^{k-|u|}X^*$. But then $uA^{\mathbf{C}} \cap B^{\mathbf{C}} = uA^{\mathbf{C}} \cap (B^{\mathbf{C}} \cap uX^*) = uA^{\mathbf{C}} \cap (uC \cup uX^{k-|u|}X^*) = u(A^{\mathbf{C}} \cap (C \cup X^{k-|u|}X^*))$. Since $fin(X^*)^{\mathbf{C}} = (fin(X^*)^{\mathbf{C}})^{\mathbf{b}}$, $A^{\mathbf{C}} \cap (C \cup X^{k-|u|}X^*) \in fin(X^*)^{\mathbf{c}}$ and therefore $uA^{\mathbf{C}} \cap B^{\mathbf{C}} \in \mathscr{L}_0(X)$. (2) Let $A = uA_1$ and $B = vB_1$ with A_1 , $B_1 \in fin(X^*)^{\mathbf{c}}$ and $u, v \in X^*$. If neither $u \leq v(\text{pref})$ nor $v \leq u(\text{pref})$, then $A \cap B = \emptyset$. Moreover, if A_1 or $B_1 \in fin(X^*)$, then $A \cap B \in fin(X^*)$. Hence we can assume without loss of generality, that $A_1 = A_2^{\mathbf{C}}$, $B_1 = B_2^{\mathbf{C}}$, A_2 , $B_2 \in fin(X^*)$ and $u = vu'$

for some $u' \in X^*$. Then by (1) $uA_2^c \cap vB_2^c = v(u'A_2^c \cap B_2^c) \in \mathcal{L}_{\mathbf{0}}(X)$.

Theorem A.3: $\mathcal{L}_{\mathbf{0}}(X)^{\mathbf{u}} = \mathcal{L}_{\mathbf{ltr}}(X)$ and $\mathcal{L}_{\mathbf{tr}}(X) = \mathcal{L}_{\mathbf{ltr}}(X)^{\mathbf{ltr}}$.

Proof: By le.A.1 $(\mathcal{L}_{\mathbf{0}}(X)^{\mathbf{u}})^{\mathbf{s}} = \mathcal{L}_{\mathbf{ttr}}(X)$. By le.A.2 $(\mathcal{L}_{\mathbf{0}}(X)^{\mathbf{u}})^{\mathbf{s}} = (\mathcal{L}_{\mathbf{0}}(X)^{\mathbf{s}})^{\mathbf{u}} = \mathcal{L}_{\mathbf{0}}(X)^{\mathbf{u}}$. Furthermore,

$$\boldsymbol{\mathscr{L}_{ltr}}(\boldsymbol{X}) = \boldsymbol{\mathscr{L}_{0}}(\boldsymbol{X})^{\boldsymbol{u}} = ((\boldsymbol{\mathit{fin}}(\boldsymbol{X}^{*})^{\boldsymbol{c}})^{ltr})^{\boldsymbol{u}} = (((\boldsymbol{\mathit{fin}}(\boldsymbol{X}^{*})^{\boldsymbol{c}})^{ltr})^{\boldsymbol{u}})^{ltr} = (\boldsymbol{\mathscr{L}_{0}}(\boldsymbol{X})^{\boldsymbol{u}})^{ltr} = \boldsymbol{\mathscr{L}_{ltr}}(\boldsymbol{X})^{ltr}.$$

Next we study ltr-cancellation.

Lemma A.4: If \mathscr{L} is ltr-cancellative, then $\mathscr{L}^{\mathbf{ltr}}$ and $\mathscr{L}^{\mathbf{u}}$ are ltr-cancellative. If additionally $\mathscr{L} \pm \mathscr{L}_{\mathbf{tr}}(X) \subseteq \mathscr{L}$, then $\mathscr{L}^{\mathbf{co}}$, $\mathscr{L}^{\mathbf{s}}$ and $\mathscr{L}^{\mathbf{b}}$ are ltr-cancellative.

Proof: (1) Suppose $wL \in \mathcal{L}^{ltr}$, then wL = uL' for $w, u \in X^*$ and $L' \in \mathcal{L}$. Then either $w \le u(pref)$ or $u \le w(pref)$. If u = wv, then wL = w(vL) and therefore L = vL'. Since $L' \in \mathcal{L}$, $L \in \mathcal{L}^{ltr}$. If w = uv, then $vL = L' \in \mathcal{L}$. \mathcal{L}^{ltr} is ltr-cancellative, hence $l \in \mathcal{L}^{ltr}$.

- (2) Let $wL = L_1 \cup ... \cup L_n$ with $L_i \in \mathscr{L}$ for $1 \le i \le n$. Then each $L_i \subseteq wX^*$, i.e. $L_i = wL_i'$. Since \mathscr{L} is tr-cancellative, $L_i' \in \mathscr{L}$. But then $L = L_i' \cup ... \cup L_n' \in \mathscr{L}^u$.
- (3) If $wL \in \mathcal{L}^{co}$, then $(wL)^c \in \mathcal{L}$. But $(wL)^c \cap wX^* = wL^c \in \mathcal{L}$. Since \mathcal{L} is ltr- cancellative, $L^c \in \mathcal{L}$, hence $L \in \mathcal{L}^{co}$.
- (4) By fact 1.2.(2) $\mathscr{L}^{co} \pm \mathscr{L}_{ltr}(X) \subseteq \mathscr{L}^{co}$ and $\mathscr{L}^{\mathbf{u}} \pm \mathscr{L}_{ltr}(X) \subseteq \mathscr{L}^{\mathbf{u}}$. \mathscr{L}^{co} and $\mathscr{L}^{\mathbf{u}}$ are ltr-cancellative. Moreover, $\mathscr{L}^{\mathbf{s}} = ((\mathscr{L}^{co})^{\mathbf{u}})^{co}$ and $\mathscr{L}^{\mathbf{b}} = ((\mathscr{L}^{\mathbf{c}})^{\mathbf{u}})^{\mathbf{s}}$, hence $\mathscr{L}^{\mathbf{s}}$ and $\mathscr{L}^{\mathbf{b}}$ are ltr-cancellative.

Theorem A.5: If #(X) > 1, then $\mathscr{L}_{ltr}(X)$ is ltr-cancellative.

Proof: Since $((fin(X^*)^{\mathbf{c}})^{\mathbf{ltr}})^{\mathbf{u}} = \mathscr{L}_{\mathbf{ltr}}(X)$, we can apply le.A.4, if $fin(X^*)^{\mathbf{c}}$ is ltr-cancellative. Let $wL \in fin(X^*)^{\mathbf{c}}$. If $wL \in fin(X^*)$, then $L \in fin(X^*)$. Suppose $wL \in fin(X^*)^{\mathbf{c}}$, then by (C1) $(wL)^{\mathbf{c}} = wL^{\mathbf{c}} \cup (wX^*)^{\mathbf{c}} \in fin(X^*)$. But $(wX^*)^{\mathbf{c}} \notin fin(X^*)$ and we arrive at a contradiction to $(wL)^{\mathbf{c}} \in fin(X^*)$, unless w = 1. If w = 1, we get directly $L = wL \in fin(X^*)^{\mathbf{c}}$.

As indicated, we can determine $cohesive(\mathcal{L}_{tr}(X))$ using sequential mappings.

Theorem A.6: Let #(X) > 1. $A \in cohesive(\mathscr{L}_{ltr}(X))$ if and only $A \notin fin(X^*)$ and a sequential $f_A : \mathbb{N}_0 \to X^*$ exists, with $A \setminus f_A(n)X^* \in fin(X^*)$ for all $n \ge 0$.

Proof: The key to the proof is the following

Assertion 1: If $A \in cohesive(\mathcal{L}_{tr}(X))$, then

$$\forall u, v \in X^*, |u| = |v| : A \cap uX^*, A \cap vX^* \notin fin(X^*) \Rightarrow u = v.$$

Proof: Suppose $A \cap uX^* \notin fin(X^*)$ and $u \neq v$. Then $uX^* \cap vX^* = \emptyset$. Hence, $vX^* \cap A \subseteq (uX^*)^c \cap A$ and therefore $(uX^*)^c \cap A \notin fin(X^*)$. Hence $A \notin cohesive(\mathscr{L}_{ttr}(X))$ - a contradiction. Suppose $A \in cohesive(\mathscr{L}_{ttr}(X))$. Since $A \notin fin(X^*)$, we can find to any $n \geq 0$ w $\in X^*$ with

 $|\mathbf{w}| = \mathbf{n}$ and $\mathbf{A} \cap \mathbf{w} \mathbf{X}^* \not\in \mathbf{fin}(\mathbf{X}^*)$. Define $\mathbf{f}_{\mathbf{A}}(\mathbf{n}) = \mathbf{w}$. By the assertion $\mathbf{f}_{\mathbf{A}}$ is uniquely determined. If $\mathbf{u} \leq \mathbf{w}(\mathbf{pref})$, then $\mathbf{A} \cap \mathbf{w} \mathbf{X}^* \subseteq \mathbf{A} \cap \mathbf{u} \mathbf{X}^*$, hence $\mathbf{A} \cap \mathbf{u} \mathbf{X}^* \not\in \mathbf{fin}(\mathbf{X}^*)$ and by assertion $\mathbf{f}_{\mathbf{A}}(|\mathbf{u}|) = \mathbf{u}$. Moreover, since $\mathbf{A} \in \mathbf{cohesive}(\mathcal{L}_{\mathbf{tr}}(\mathbf{X}))$, $\mathbf{A} \cap (\mathbf{f}_{\mathbf{A}}(\mathbf{n})\mathbf{X}^*)^{\mathbf{C}} \in \mathbf{fin}(\mathbf{X}^*)$ for all $\mathbf{n} \geq 0$.

Conversely, let $A \notin fin(X^*)$ and f_A sequential with $A \setminus f_A(n)X^* \in fin(X^*)$ $(n \ge 0)$. Consider wL for $w \in X^*$ and $L \in fin(X^*)^{\mathbf{c}}$.

Assertion 2: $wL \cap A \notin fin(X^*) \iff (wL)^C \cap A \in fin(X^*)$.

Proof: Suppose $wL \cap A \notin fin(X^*)$. If $L \in fin(X^*)$, then $wL \cap A \in fin(X^*)$ - a contradiction.

Assume $L = L^{c}$ for $L' \in fin(X^*)$. If $f_A(|w|) \neq w$, then $wL^{c} \subseteq wX^*$ and $wX^* \cap f(|w|)X^* = \emptyset$.

But then $wL'^{c} \subseteq (f(|w|)X^{*})^{c}$ and $wL \cap A = wL'^{c} \cap A \in fin(X^{*})$, again a contradiction.

Therefore, f(|w|) = w. We know $(wL'^c)^c \cap A = (wL' \cap A) \cup ((X^{|w|}X^*)^c \cap A) \cup (X^{|w|} \setminus w)X^* \cap A)$.

Since $L' \in fin(X^*)$, $wL' \cap A \in fin(X^*)$, since $(X^{|w|}X^*)^c \in fin(X^*)$, $(X^{|w|}X^*)^c \cap A \in fin(X^*)$, too.

Moreover, $(X^{|w|} \setminus w)X^* \subseteq (wX^*)^c$ and then $(X^{|w|} \setminus w)X^* \cap A \subseteq (wX^*)^c \cap A = (f(|w|)X^*)^c \cap A$ $\in fin(X^*)$. This shows $(wL)^c \cap A \in fin(X^*)$.

Let $L = w_1 L_1 \cup ... \cup w_k L_k \in \mathcal{L}_{tr}(X)$ with $w_i \in X^*$ and $L_i \in fin(X^*)^c$ for all $1 \le i \le k$.

If $L \cap A \notin fin(X^*)$, then $1 \le i \le k$ exists with $w_i L_i \cap A \notin fin(X^*)$. By the assertion $(w_i L_i)^c \cap A \in fin(X^*)$. But then $L^c \cap A = (w_i L_i)^c \cap ... \cap (w_i L_i)^c \cap A \in fin(X^*)$.

Note, that by th.A.2 L, $L^c \in \mathcal{L}_{tr}(X)$. This proves $A \in cohesive(\mathcal{L}_{tr}(X))$.

The functions f_{Δ} are uniquely for $A \in cohesive(\mathcal{L}_{tr}(X))$. But we can show more.

Corollary: Let #(X) > 1.

- (1) If $A \in cohesive(\mathcal{L}_{tr}(X))$ and $B \subseteq A$ with $B \notin fin(X^*)$, then $f_A = f_B$.
- (2) If A, B \in cohesive($\mathcal{L}_{tr}(X)$), then A \cup B \in cohesive($\mathcal{L}_{tr}(X)$) if and only if $f_A = f_B$.

Proof: (1) Suppose $n \ge 0$ exists with $f_A(n) \ne f_B(n)$. We know $B \cap f_B(n)X^*$, $A \cap f_A(n)X^* \notin fin(X^*)$ and $B \cap f_B(n)X^* \subseteq A \cap f_B(n)X^*$. This is a contradiction to ass.1.

(2) If $A \cup B \in cohesive(\mathscr{L}_{\mathbf{ltr}}(X))$, then by (1) $f_A = f_{A \cup B} = f_B$, since $A, B \subseteq A \cup B$. Conversely, $(A \cup B) \cap (f_A(n)X^*)^{\mathbf{c}} = (A \cap (f_A(n)X^*)^{\mathbf{c}} \cup (B \cap (f_B(n)X^*)^{\mathbf{c}}) \in fin(X^*) \ (n \ge 0)$.

Since $f_A = f_B$, $A \cup B \in cohesive(\mathcal{L}_{tr}(X))$ by th.A.6.

Example A.7 : Let X with $\#(X) \ge 1$. Define $\textit{pref}(L) = \{u | \exists w \in L : u \le w(\textit{pref})\}$ for $L \subseteq X^*$.

Let u, w, $v \in X^*$ with $w \neq 1$ and $A = uw^*v$. Define $f_A(n) = z$ with |z| = n and $z \in pref(L)$.

Then for $n \ge 0$ A \ $f_A(n)X^* \in fin(X^*)$ and therefore $uw^*v \in cohesive(\mathcal{L}_{tr}(X))$.

Remark: Everything can be done for rightmarking. Considering *right translation* "Lw" and the closure operation $\mathcal{L}^{\mathbf{rtr}} = \{ Lw | w \in X^* \text{ and } L \in \mathcal{L} \}$, we obtain $\mathcal{L}_{\mathbf{rtr}}(X) = ((\mathbf{fin}(X^*)^{\mathbf{c}})^{\mathbf{rtr}})^{\mathbf{u}}$, which is a "rtr-cancellative" boolean algebra.

One can show, that for $X = \{a, b\}$ we get $aX^* \notin \mathscr{L}_{\mathbf{rtr}}(X)$, $X^*b \notin \mathscr{L}_{\mathbf{ltr}}(X)$, $a^* \notin \mathscr{L}_{\mathbf{ltr}}(X) \cap \mathscr{L}_{\mathbf{rtr}}(X)$.

Appendix B

To assert solvability of a promise problem one can use the reduction principle ([8]) in connection with decompositions of sets for a set family.

Definition B.1 : Let A, B \in $\mathcal{S} \setminus fin(\mathcal{S})$. (A, B) is \mathcal{S} -reducible if and only if A' \subseteq A and B' \subseteq B exist with A', B' \in $\mathcal{S} \setminus fin(\mathcal{S})$, A' \cup B' = A \cup B and A' \cap B' = \emptyset .

Lemma B.2: Let A, B $\in \mathcal{S} \setminus fin(\mathcal{S})$ with A \cap B = \emptyset . If (A^c, B^c) is \mathcal{S}^{co} -reducible, then $(A, B) \in promise(\mathcal{S})$.

Proof: Since $A \cap B = \emptyset$, we know $A^c \cup B^c = S$. Then $A'^c \subseteq A^c$ and $B'^c \subseteq B^c$ exist with A', B' $\in \mathcal{S} \setminus fin(\mathcal{S})$, $A'^c \cup B'^c = A^c \cup B^c = S$ and $A'^c \cap B'^c = \emptyset$. By construction $A \subseteq A'$, $B \subseteq B'$ and $B' = A'^c$, i.e. $(A, B) \in promise(\mathcal{S})$.

Example B.3: Consider A, B $\in \mathscr{L}_{\mathbf{r.e.}}(X)^{\mathbf{co}}$ with $A \cap B = \emptyset$, A, $A^{\mathbf{c}}$, B, $B^{\mathbf{c}} \notin fin(X^*)$. we know $A^{\mathbf{c}}$, $B^{\mathbf{c}} \in \mathscr{L}_{\mathbf{r.e.}}(X)$. By a theorem of Friedberg ([8]) $(A^{\mathbf{c}}, B^{\mathbf{c}})$ is $\mathscr{L}_{\mathbf{r.e.}}(X)$ -reducible. Applying le.B.2 yields $(A, B) \in promise(\mathscr{L}_{\mathbf{r.e.}}(X)^{\mathbf{co}})$. In contrast to this result A, $B \in \mathscr{L}_{\mathbf{r.e.}}(X)$ with $A \cap B = \emptyset$ exist, such that $(A, B) \notin promise(\mathscr{L}_{\mathbf{r.e.}}(X))$ [8].

Example B.4: Let $X = \{a, b\}$. Consider

 $A = \{a^nb^na^m \mid n, m \ge 0\}$ and $B = \{a^mb^na^n \mid n, m \ge 0\}$.

Then $A, B \in \mathscr{L}_{\mathbf{cf}}(X)$. Suppose $A', B' \in \mathscr{L}_{\mathbf{cf}}(X) \setminus \mathit{fin}(X^*)$ can be found, such that $A \cup B = A' \cup B'$, $A' \subseteq A, B' \subseteq B$ and $A' \cap B' = \emptyset$. Let $C = A \cap B$. Then $A' \cap C \notin \mathit{fin}(X^*)$ or $B' \cap C \notin \mathit{fin}(X^*)$. Suppose the first case. Then we can apply Ogden's lemma to $a^nb^na^n \in A'$ for n large enough with the marking $\underline{a}^nb^na^n$. But then we find $k \neq n$ with $a^kb^na^n \in A' \subseteq A$, which is not possible. We can handle the case "B' $\cap C \notin \mathit{fin}(X^*)$ " analogously. Hence (A, B) is not $\mathscr{L}_{cf}(X)$ -reducible.

Reducibility of (A, B) can be connected to decomposability of sets C.

Definition B.5: Let $A \in \mathcal{G} \setminus fin(\mathcal{G})$. Then A is \mathcal{G} -decomposable if and only if A', A'' \subseteq A exist with A', B' $\in \mathcal{G} \setminus fin(\mathcal{G})$, A' \cup B' = A and A' \cap B' = \emptyset .

Lemma B.6: Let $\mathscr{S}, \mathscr{S}' \subseteq \mathbf{2}^{S}$ with $\mathscr{S} \odot \mathscr{S}'^{co} \subseteq \mathscr{S}$ and $\mathscr{S} \odot \mathit{fin}(S)^{co} \subseteq \mathscr{S}$.

If A, B $\in \mathcal{S} \setminus fin(\mathcal{S})$ such that A \cap B is \mathcal{S}' -decomposable, then (A, B) is \mathcal{S} -reducible.

Proof: Consider $A \cap B$. Then two cases arise

Case 1: "A \cap B \in fin(S)" In this case define A' = A and B' = B \ (A \cap B). Since $\mathscr{S} \odot$ fin(S)^{co} $\subseteq \mathscr{S}$, A', B' $\in \mathscr{S} \setminus$ fin(\mathscr{S}). Moreover, A' \cap B' = \varnothing and A \cup B = A' \cup B'.

Case 2: "A∩B ∉ fin(S)" Since A∩B is \mathscr{S} '-decomposable, we find $A_0, B_0 \in \mathscr{S}$ '\fin(S) with $A_0 \cap B_0 = \emptyset$ and $A_0 \cap B_0 = A \cap B$. Define A' = A∩B₀ and B' = B∩A₀ Since $\mathscr{S} \cap \mathscr{S}$ Since $\mathscr{S} \cap \mathscr{S}$ and $A_0 \cap B_0 = A \cap B$. Moreover, A'∩B' = \emptyset and A∪B = A'∪B'.

Decomposability is present in many language families and complexity classes.

Fact B.7: If $\mathscr{L} \subseteq \mathscr{L}_{lreg}(X)$ with $\mathscr{L} \odot \mathscr{L}_{reg}(X) \subseteq \mathscr{L}$ and $L \in \mathscr{L} \setminus \mathit{fin}(X^*)$, then L is \mathscr{L} -decomposable.

Proof: Since $|L| \in \mathscr{L}_{\mathbf{lreg}}(X) \setminus \mathit{fin}(X^*)$ we find by the pumping lemma $\alpha > 0$ and $\beta \ge 0$ such that $a^{\beta}(a^{\alpha})^* \subseteq |L|$. Consider $R = \lambda_{X}^{-1}(a^{\beta}(a^{2\alpha})^* \in \mathscr{L}_{\mathbf{reg}}(X)$. Moreover, $A = L \cap R$, $B = L \cap R^{\mathbf{c}} \in \mathscr{L} \setminus \mathit{fin}(X^*)$ (by assumption). But $A \cup B = L$ and $A \cap B = \emptyset$.

Fact B.8: Let $\mathscr{S} \bigcirc \mathscr{V} \subseteq \mathscr{S}$ and $\mathscr{V} = \mathscr{V}^{\mathbf{c}}$.

If $A \notin cohesive(\mathcal{S}) \cup fin(X^*)$, then A is \mathcal{S} -decomposable.

Proof: Since $A \notin cohesive(\mathcal{S}) \cup fin(X^*)$ a $Q \in \mathcal{V}$ exists with $A \cap Q$, $A \cap Q^C \notin fin(X^*)$.