Cohesiveness in Promise Problems

Appendix A
Looking at variation with & x(X) we can weaken the condition et O ) = B
substituting _Qf =X by a much smaller family at all places where these condition appear. Moreover,
we get a much stronger result than le.3.2 for this family. For a given X consider the families
ZX) = (fin(X*) )" and Z, (X) = ZX)P. Then we can use Z, (X) instead of Z_ (X).
In this appendix we take a more concise look at _gm_(X) and derive a complete characterization
of cohesive(<£, (X)). The key to all our considerations are the complement formulas for left
translation (L € X*, w € L) :

(Cl)  (wWL)®=wL®u WwX*)°,

(C2)  wL®=(wL)" nwX*.

(C3)  (WX*)°=XMX*° u (X™\ w)X* and

(C4)  IfL € fin(X*) and k > max(|z| | z € L}, then L€ = (XXX*)“ \ L) U X¥X*.
Remark : If X ={a}, then for all k > 0: X*\ a* = @, hence (a*a*)® € fin(a*) and (a*L)° € fin(a*)®
for all L € fin(a*)€. This shows . (a) = fin(a*)® = fin(a*)P, i.c. Z (a) = fin(a*)P.
Now we prove
Lemma A.1:
) ZXcZ"
@  (ZOW=Z,.
Proof : (1) Consider w € X* and L € fin(X*)€. Then wL° € _%(X). Since (X™X*)° € fin(X*)
and (X¥\ w)X* € Z(X)", (wX*)° € Z(X)", (WwL)° € Z(X)™ by (C1) and (C3).
(2) follows by (1).
Lemma A.2 :
(1) V A, B € fin(X*), u € X*: uA* n B € Z(X).
2 VABeZX):AnBe ZX).
Proof : (1) We apply (C4), where additionally k = [u|. Then

B® nuX* = ((3X*X*)°\ L) nuX*) u (XX* nuX*).
Now, ((X*X*)°\ L) n uX* = uC with C € fin(X*) and (X*X* n uX*) = uX*-"X*. But then

uA® N B¢ =uA® n (B® nuX*) =uA® n (uC U uXs MX*) =u(A° N (C U X* MX*)).
Since fin(X*)€ = (fin(X*)€)P, A® 0 (C U XE-MX*) € fin(X*)€ and therefore uA® N B® € Z(X).
(2) Let A=uA and B=vB with A , B € fin(X*)€ and u,v € X*. If neither u < v(pref) nor
v < u(pref), then AN B = 0. Moreover, if A or B, € fin(X*), then A N B € fin(X*). Hence

we can assume without loss of generality, that A = Azc, B.=B 20, A, B, € fin(X*) and u = vu'
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for some u' € X*. Then by (1) uA,“nvB*=v(u'A,° nB%) € Z(X).
Theorem A.3: Z)(X)u = _thr(X) and Zl_(X) = _Z tl‘(X)ltr.
Proof : By le A.1 (£, (X)")* =& _(X).Byle A2 (Z,X)")* =(ZX)"=ZLX)"
Furthermore,
Z (X) = O™ = ((fin(X) )™ = (fin(X*)) N = (Zx)H" = £, 0"
Next we study ltr-cancellation.
Lemma A.4 : If Zis lir-cancellative, then & r and ™ are lir-cancellative. If additionally
R Ztr(X) c & then ¥, ¥Sand &¥ b are ltr-cancellative.
Proof : (1) Suppose wL € & M then wL =uL' for w, u € X* and L' € . Then either w < u(pref)
or u < w(pref). If u = wv, then wL = w(vL) and therefore L = vL". Since L' € &, L € Zr,
Ifw=uv, then vL = L' € &. ¥is ltr-cancellative, hence L € & .
(2)LetwL=L u..uL withL € #for1 <i<n. TheneachL € wX*,ie. L, =wL' Since
Y is ltr-cancellative, L'e < ButthenL = L'u..uL'€ 78,
(3) If wL € £, then (WL)® € & But (WL)" n wX* = wL® € &, Since Zis ltr- cancellative,
L € & hence . € .
@) Byfaet 1.2.Q) & + & ()T . F"and F* + & (X) . F". F and L™ are
ltr-cancellative. Moreover, &S = ((Z )M and ZP = (L )W), hence FS and P
are ltr-cancellative.
Theorem A.S : If #(X) > 1, then -Ztl-(X) is ltr-cancellative.
Proof : Since (( ﬁn(X*)c)hr)u = _Z“_(X), we can apply le.A 4 | if fin(X*)€ is ltr-cancellative.
Let wL € fin(X*)€. If wL € fin(X*), then L € fin(X*). Suppose WL € fin(X*)€, then by (C1)
(WL)® = wL® U (wX*)© € fin(X*). But (wX*)® & fin(X*) and we arrive at a contradiction to
(WL)® € fin(X*), unless w = 1. If w = 1, we get directly L. = wl. € fin(X*)€.
As indicated, we can determine cohesive(_gfn_(X)) using sequential mappings.
Theorem A.6 : Let #(X) > 1. A € cohesive(Z,, (X)) if and only A € fin(X*) and a sequential
£ :IN, — X* exists, with A\ f, (n)X* € fin(X*) for alln > 0.
Proof : The key to the proof is the following
Assertion 1 : If A € cohesive(Z, (X)), then

VuveX* |u=v:AnuX* AnvX* & fin(X*) =>u=v.
Proof : Suppose A nuX* € fin(X*) and u #v. Then uX* n vX* = 0. Hence, vX* N A C
(uX*)C N A and therefore (uX”‘)C N A € fin(X*). Hence A € cohesive(£, (X)) - a contradiction.
Suppose A € cohesive(%, (X)). Since A & fin(X*), we can find to any n = 0 w € X* with
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|w| =nand A N wX* € fin(X*). Define f,(n) = w. By the assertion f, is uniquely determined.
If u < w(pref), then A N wX* € A nuX*, hence A N uX* € fin(X*) and by assertion {, (Ju)) = u.
Moreover, since A € cohesive(Z, (X)), An (f A(11))(”‘)c € fin(X*) foralln = 0.

Conversely, let A € fin(X*) and f, sequential with A\ f, (n)X* € fin(X*) (n = 0). Consider wL
for w € X* and L € fin(X*)<.

Assertion 2 : wL N A € fin(X*) < (WL)° n A € fin(X*).

Proof : Suppose wl. N A € fin(X*). If L € fin(X*), then wL. N A € fin(X*) - a contradiction.
Assume I = L'C for L' € fin(X*). If £,(Jw|) # w, then wL'® € wX* and wX* N f(|w))X* = @.
But then wL'® € (f(|w])X*)® and wL N A = wL'° n A € fin(X*), again a contradiction.
Therefore, f({w]) = w. We know (WL')° n A= (wL'n A) U (X™X*)® n A) u XV w)X* N A).
Since L' € fin(X*), wL' N A € fin(X*), since (X ™VX*)¢ € fin(X*), X™X*)° N A e fin(X*), too.
Moreover, (X ™\ w)X* € (wX*)® and then (X™\ w)X* n A € (WX*)® n A = ({{w)X*)*n A
€ fin(X*). This shows (WL) N A € fin(X*).

LetL=wL u ..uwlL €% (X)withw, €X*andL, € fin(X*)€ forall1 <i<k.

IfL. N A & fin(X*), then 1 <1< kexists withwl. nA & fin(X*). By the assertion (wiLi)c nA
€ fin(X*). Butthen L° N A =(w L) n ..n(w, L)% N A € fin(X*).

Note, that by th.A.2 L, L® € & (X). This proves A € cohesive( <, (X)).

The functions f, are uniquely for A € cohesive(Z, (X)). But we can show more.

Corollary : Let #(X) > 1.

(1) If A € cohesive(Z, (X)) and B € A with B & fin(X*), then f, = f_.

(2) If A, B € cohesive(Z,, (X)), then A U B € cohesive(Z,, (X)) if and only if f, =£_.

Proof : (1) Suppose n = 0 exists with f, (n) # £ (n). We know BN { n)X* Anf n)X* & fin(X*)
and B N £ (n)X* € A n £ (n)X*. This is a contradiction to ass.1.

(2) If A U B € cohesive(£, (X)), thenby () f, =1, _
(AUB) N (f,(m)X*C =(A n ()X U @Bn (f,0)X*H) € fin(X*) (n = 0).

Since f, =, A UB € cohesive(Z, (X)) by th.A.6.

Example A.7 : Let X with #(X) > 1. Define pref(L) = {u| 3 w € L: u < w(pref)} for L. € X*.

=1, since A, B € A uB. Conversely,

Letu, w, v € X* with w # 1 and A = uw*v. Define f,(n) = z with [z| = n and z € pref(L).
Then forn = 0 A\ f, (n)X* € fin(X*) and therefore uw*v € cohesive(Z, (X)).

Remark : Everything can be done for rightmarking. Considering right transiation “Lw” and the
closure operation & ki {Lw|w € X*and L € &}, we obtain & _ (X) = ((ﬁn(X*)c)rtr)u,
which is a “rtr-cancellative” boolean algebra.

One can show, that for X = {a, b} we getaX* & £ (X),X*b & &£ (X).a* & £ (X)n.Z, X).
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Appendix B
To assert solvability of a promise problem one can use the reduction principle ([8]) in connec-
tion with decompositions of sets for a set family.
Definition B.1 : Let A, B € &\ fin(.%). (A, B) is Sreducible if and only if A' € A and B' € B
exist with A", B' € &\ fin(), AAuUB'=AuBand A'NB'= O.
LemmaB.2:Let A, B € &\ fin(¥) with ANB = @.1f (A€, BY) is .%“° -reducible, then
(A, B) € promise(S).
Proof : Since ANB = @, we know A°UB®=S. Then A'° € A® and B € B exist with A', B'
€ L\fin(¥), A°UB =A“UB“=S and AN B"“ = @. By construction A € A, BS B'
and B' = A'°,i.e. (A, B) € promise(S).
Example B.3 : Consider A,B € & _(X)® with AnB=0, A, A%, B, B® & fin(X*). we know
A° Be _‘Z (X). By a theorem of Friedberg ([8]) (A, B®)is .Qf (X)-reducible. Applying
le.B.2 yields (A, B) € promise(£, _ (X)®). In contrast to this result A, B € & _ (X) with
A N B = @ exist, such that (A, B) & promise(.gj_ X)) [8].
Example B4 : Let X = {a, b}. Consider

A= {a"b"a™ |n, m = 0} and B = {a™b"a" | n, m = 0}.
Then A, B € & _(X). Suppose A, B'€ & _(X)\ fin(X*) can be found, such that AUB=A'UB/,
A'CA, B SCBand A'nB'=0. Let C=A nB. Then A'n C & fin(X*)) or B'n C & fin(X*).
Suppose the first case. Then we can apply Ogden’s lemma to a"b"a” € A' for n large enough with
the marking a"b"a" . But then we find k # n with a*b"a® € A' € A, which is not possible. We can
handle the case “B'n C & fin(X*)” analogously. Hence (A, B) is not _@f ; (X)-reducible.
Reducibility of (A, B) can be connected to decomposability of sets C.
Definition B.5 : Let A € &\ fin(.%). Then A is .S-decomposable if and only if A', A" C A
exist with A", B' € &\ fin(%), A'uB'=Aand A'nB'= @.
Lemma B.6 : Let &, &'C 25 with O e Land O fin(S) c &
If A, B € &\ fin(.%) such that A N B is & '-decomposable, then (A, B) is S-reducible.
Proof : Consider A N B. Then two cases arise
Case 1 : “A N B € fin(S)” In this case define A'= A and B'= B\ (A N B). Since ¥ ® fin(S)*®
c & A,B € ¥\ fin(¥). Moreover, AANB'= @and AuUB=A'UB"
Case2:“ANB & fin(S)” Since A N B is & '-decomposable, we find A , B, € &'\ fin(S) with
A,NB,=@Qand A,NB =ANB.Define A'=ANB and B'=BNA °. Since ¥ O S
C. ¥, A,B € .F\fin(¥). Moreover, ANB'= @and AUB=A'UB.
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Decomposability is present in many language families and complexity classes.

Fact B.7: If £ C Zreg(X) with & © _gf,eg(X) C Land L € L\ fin(X*), then L is
& -decomposable.

Proof : Since |L| € _g; e\ Jin(X*) we find by the pumping lemma o > 0 and B = 0 such that
aP(a*)* € |L|. Consider R = A_(aP(a’")* € _Qf egX)- Moreover, A=LNR,B=LnN Re &¥#
\ fin(X*) (by assumption). Bt AuB=Land AnB= Q.

Fact B8:Let O 7 € Fand Z7=7"C.

If A € cohesive(¥) U fin(X*), then A is .5 decomposable.

Proof : Since A & cohesive((%) U fin(X*) a Q € 7 exists with A N Q, A N Q° & fin(X*).
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