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In this paper we characterize all permutation automata which can be linearly realized
over the field GF(p) in terms of the group generated by the automaton. From this group
theoretic characterization of linear permutation automata we derive, among other
results, a complete characterization of all homomorphisms of a linear automaton
which yield linearly realizable image automata as well as several results about the
structure of linear automata.

I. INTRODUCTION

The specific purpose of this paper is to give a group theoretic characterization
of linearly realizable permutation automata and to derive several applications from
this new characterization of linear automata.

The general purpose of this paper is to illustrate by these results how group
theoretic methods can be used to obtain results about automata and not only about
the groups of automata. This is achieved by explicitly characterizing how an automaton
generates its group and by incorporating this characterization in the group theoretic
arguments which then can yield specific results about the automaton.

We start our considerations with the known observation that all transitive representa-
tions of a group G as a permutation group are characterized (up to isomorphism)
by the subgroups of G which contain no normal subgroups of G besides {1}. For
any such subgroup H of G the permutations induced by G on the set of left cosets
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of H form a group isomorphic to G. Thus, if a connected finite automaton M generates
the group G(M) = G, then we can view the states of M as the left cosets of some
subgroup H of G which contains no normal subgroups of G besides {1}. Therefore
the state transitions of any permutation automaton M are completely described
(up to isomorphism) by a group G, a subgroup H and a subset I of G: the automaton M
generates the group G as a permutation group on the left cosets of H (induced by G)
and 7 is the set of the input permutations of }. In view of this, we shall write

]‘l = MG,H,I

and express many of our results in terms of G, H and I.
We also observe that the homomorphisms of

]Wc,(l},l

are uniquely characterized by the subgroups of G. The fact that these subgroups
which define the homomorphisms of the automaton do not have to be normal sub-
groups of G, as in the case of group homomorphisms, will play a very important
role in the characterization of those homomorphisms of a linear automaton which
preserve linearity.

To obtain our desired characterization of linear permutation automata

MG,H,I

in terms of G, H and I, we make use of a recent result obtained by Ecker [6]. Ecker
showed that if /M is a linear, nonsingular automaton over the field GF(p) and G is
the group generated by M, G(M) = G, then

(a) G contains a normal, abelian subgroup NN in which all elements, except 1,
have order p,

(b) there exists an element ¢ in G such that N and ¢ generate G.

Furthermore, it was shown by Ecker that for every finite group G which satisfies
the above conditions there exists an automaton }/ which generates G, G = M(G),
and which can be linearly realized over GF(p). Thus the above conditions characterize
the groups of linear automata.

Unfortunately, there are many automata which generate groups satisfying the two
conditions but which cannot be linearly realized over GF(p). Our results will show
that there are two ways in which an automaton M can fail to be lineatly realizable
even if G(M) satisfies the necessary and sufficient properties to be a group of a linear
automaton. We may have choosen the wrong set of inputs I for M or the group H
of Mg,y ;is improperly chosen. The result states:
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Mg g.; is linearly realizable over GF(p) if and only if

(a) G has a normal, abelian subgroup N in which each element, except 1,
has order p,

(b) there exists an element ¢ in G such that N and ¢ generate G,
(© NnH={l}
(d) IC Na for some ain G.

Using this result we can easily characterize the linearity preserving homomorphisms
of any linear automaton:

Let M = Mg gy, be linearly realizable over GF(p) using the normal subgroup N.
Then the homomorphic image Mg g ; of M, defined by the subgroup H of G,
is linearly realizable if and only if H N N is a normal subgroup of G.

It is interesting to note that it was shown before that linearly realizable automata
may have homomorphic images which cannot be linearly realized [3]. On the other
hand, the complete solution of this problem, as stated above, was achieved only
by means of group theoretic arguments. It is also clear that the use of the group H
defining the homomorphism of M = Mg gy,; and the normal subgroup N used in
the linear realization M gives a very natural formulation of this result.

In the last part of this paper we derive several structural results about linear
automata and characterize those permutation automata which have input independent
components.

II. PRELIMINARIES

In this section we give the necessary definitions and state some results from group
theory which are used in this paper.

All through this paper we consider only finite, connected permutation automata.
More precisely, a finite automaton M is a quintuple

M = (S,1,0,8, ),

where S, I and 0 are nonempty, finite sets of states, inputs and outputs, respectively,
and & and A are the next state and output functions:

8: S xI—S,
A S xI—0.

In this paper we will not explicitly consider the output of M and concern ourselves
only with the state transitions of M.
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A finite automaton M is a permutation automaton if for all x in I, § is a permutation
of S, i.e., for all x,

{8(s, %) [se S} = S.

An automaton M is said to be connected if for every two states s and ¢ in S there
exists an input sequence w, w in I*, such that

8(s, w) = t.

Here, without any danger of misinterpretation, the natural extension of the function
8 to S x I* is again denoted by 8.

For any permutation automaton [}/ the set of inputs, viewed as permutations
on S, generate a group (of permutations on .S) which is denoted by G(M) and we
refered to it as the group of M.

It is important to realize that a group G can be generated as a permutation group
in many different ways and that, even under very general definitions of realization [4],
two automata which generate the same group G do not have to realize each other.
Thus in general the automata which generate the same group are not related by
isomorphisms or homomorphisms even if we permit a change of the input words.

In much of previous work with groups (or semigroups) of an automaton the group
was treated as the most important aspect and the results were about the properties
of the groups and not directly about the automata.

Our purpose in this paper is to use group theoretic concepts to obtain results
about automata. To do that we need a standard result from group theory about
the representation of groups as transitive permutation groups. For more details and
proofs see Chapter 5 of [7].

We say that a group P of permutations on a set S is a representation of the group G
if there is a mapping of G onto P, g +— 7(g), ¢ in G and 7(g) in P, such that

7(g1) 7(g2) = 7(€182)-

Clearly, P is a homomorphic image of G. If P is an isomorphic image of G, then
the representation of G by P is a faithful representation.

If every element of S can be mapped on to any other element by a permutation
in P then we refer to the group P as a transitive permutation group and the representa-
tion of G is then a transitive representation. Since we consider only connected permuta-
tion automata M we see that we will be dealing only with transitive representations
of the group G = G(M) by the automaton /.

For any subgroup H of a group G the group G induces a group of permutations
on the set of left cosets of H: for each g in G

Hx)’ xeG.

zE) = (ng
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The following result shows how all transitive representations of a group G as a
permutation group are characterized by subgroups of G.

THEOREM. Let H be a subgroup of G and let g — w(g) be the transitive representation
of G as a permutation group of left cosets of H. Then the elements of G mapped onto
the identity of the permutation group form the largest normal subgroup N of G contained
in H, denoted by N(H), and the permutation group is isomorphic to GIN(H). Therefore,
the representation is faithful if and only if H contains no normal subgroups besides {1}.
Furthermore, any faithful transitive representation of G as a permutation group is given
(up to an isomorphism) by such a subgroup H without normal subgroups larger than
the identity.

For a proof of this result see [7].

We immediately observe that if G is an abelian group then all faithful, transitive
representations of G' as permutation groups are isomorphic since all subgroups are
obviously normal in G. Thus if the order of the inputs does not change the state
transitions of a permutation automaton /M then the states of M can be interpreted
as elements of G = G(M), the inputs can also be identified with elements of a subset
of G and the transition function is then given by the group operations. If the group
G = M(G) is not abelian then we face a more complicated situation and have to
make explicit use of the subgroup H of the previous theorem. Since a permutation
automaton M is completely characterized (up to isomorphism) by G = G(IM), the
subgroup H and the subset I of G we will write M = Mg g4 ;.

Our next result shows that for permutation automaton /M the subgroups of
G = G(M) completely characterize the homomorphisms of /.

THEOREM. An equivalence relation E on S is a congruence relation (homomorphism)
on Mg ()1 tff the equivalence classes of E are the left cosets of a subgroup H of G.

Proof. See [4].
Thus all homomorphism of the automaton Mg g ; are given by the subgroups H
of G which contain K. The corresponding homomorphic image

M = Mg g.r

is characterized by G ~ G|N(H) and the corresponding images H' and I’ of H and I,
respectively.

Note that we always identify all inputs of M which induce the same permutation
on S.

The fact that the homomorphisms of a finite permutation automaton M are defined
by arbitrary subgroups of G(M), clearly indicate that many important aspects of
automata theory cannot be reflected in the group G(M) and that we must consider
how a homomorphism of M = M g ; changes G as well as H.
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III. LiNEAR MACHINES

In the following considerations we are interested only in the state behavior of
an automaton and we consider only the linear realization of the state transition
function. It should be pointed out that other authors have included the output
function in the definition of linearity of an automaton. For comprehensive discussion
of linear automata, see [1, 2].

An automaton M = (S, I, 8) is linearly realizable over the field GF(p) iff there
exists two injections %, and &, mapping I and S into the set of k- and s-tuples of
elements of GF(p), respectively; and two compatible matrices 4 and B with elements
in GF(p) such that

Iy [8(s, x)] = Ahy(s) + Bhy(x).

Thus M is linearly realizable iff we have a one-to-one state and input encodings
which yield a linear next-state function 8 in the operations of GF(p).

To see what properties the group G = G(M) of a linear automaton }/ must have
we assume that the linear realization of M over GF(p) is given by

Inl3(s, )] = Ahn(s) + Bhfx).

Consider now the nonempty set N of permutations ; on the set of states S of M
such that for some w in I'*

h[8(s, w)] = hy(s) + C(w),

for all 5, and where C(w) depends only on w. Clearly, N is a commutative subgroup
of G(M) and every element of N, except 1, has order p. Let y~ denote the inverse
of the permutation defined by the input y in I. Then

In[8(s, y™)] = A~hy(s) — A7 Bhy(y)
and for any @ in I* which yields a permutation in N, we see that

[8(s, ywy™)] = I(s) + C(ywy™).

Thus for any y in I and = in N, ywy~! is again in N and therefore N is a normal
subgroup of G(M). Furthermore, we see that the permutation induced by an input y
in I and the permutations in NN generate the group G(M).

These observations were first made by Ecker [6] who furthermore showed that
if a finite group G has the previously derived properties of G(), then there always
exists a linearly realizable automaton ' which generates G.
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Turorem E. If a permutation automaton M is linearly realizable over GF(p) then
G = G(M) satisfies the following properties:

(a) G has a normal, abelian subgroup N in which every element, except 1, has
order p,

(b) there exists an element ¢ in G such that N and c generate G.

Furthermore, for any finite group G which satisfies the two properties there exists a
linearly realizable permutation automaton M with group G.

Proof. The proof of the first part of the theorem was outlined before the statement
of this theorem. For the second part of the proof see [6].

Though the above result characterizes the groups of linear automata it turns out
that it does not characterize linear automata. There exist automata which generate
groups satisfying the two conditions of Theorem E but which cannot be linearly

O -0 a0 —
o0 -—+~o — 0

Fi1G. 1. Finite automaton M.

OO O—0-+~00|0
OO =-=0n —00O|0
OO0 0O —OQAnO|O
oLV OoOoOp—QAjlca
OO0 —UO-+~00O ®|®
Q—0W0 MO T~
— 0 AMd® TO0O |

QO --~0aoO oo —
QO -~ OO 00 —|—

F1c. 2. The group G(M).
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realized. To illustrate this situation and to motivate the following result we consider
an example. The finite automaton M whose transition function is given in Fig. 1,
generates the group G(M) which is given in Fig. 2. Note that 4 = @ and B = b.
The lattice of subgroups of G(M) is shown in Fig. 3, where the large circles denote
the normal subgroups of G(M). It is seen that the group G(M) satisfies the two
conditions of Theorem E for GF(2). Just note that the elements 1, ¢, ¢, f form a
normal subgroup N, of G which is commutative and for which & in [N, implies that
x?2 = 1. Furthermore, N; and g generate G(M). It should be observed that the
subgroup N, consisting of 1, b, ¢, ¢ with the element f also satisfy the conditions
of Theorem E.

The binary coding which yields the linear realization of M over GF(2) can be
obtained by inspection or by known algorithms. For detailed discussion of tests for
linear realizability, see [2].

Next we consider the three homomorphic images of M shown in Fig. 4. The
automaton M, is defined by the subgroup consisting of 1, b of G and the states of
M, are the cosets

L=1:0) 2 ={¢, o, 3={d, e}, 4 ={a,f}.

Fic. 3. Lattice of subgroups of G(M).

AB AB AB
1141 I 1123 1j23
2. 32 2|44 201 4
o I S 3|4 |
4123 4132 4132

M, Mo M3

Fic. 4. Finite automata M, , M, , and M, .
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Similarly, M, is defined by the subgroup {1, f} and M is defined by the subgroup
{1, c}. Since, the subgroups consisting of 1, b and 1, f contain only the normal subgroup
consisting of 1, we know that

G(M,) = G(M,) = G(M)
and that

My = Mg 4.0, 10,5 and My = Mg, 4.1 a0} -

The automaton M; does not generate G but generates only the group G/{1, ¢} since
the elements 1 and ¢ form a normal subgroup of G.

Furthermore, by inspection it can be seen that M; and M, are again linearly
realizable. And on the other hand, 17, is not linearly realizable since

5(1,4) 81, B) and 82, 4) = &2, B),

which, one can easily see [2, 3] is not possible for a linearly realizable automaton.
Thus in M, we have an example of a permutation automaton which generates a group
satisfying the conditions of Theorem E but which is not linearly realizable.

Our next result gives necessary and sufficient conditions for a permutation
automaton to be linearly realizable and explains why the automata M, and M, are
linearly realizable and why MM, is not.

THEOREM L. A permutation automaton My y is linearly realizable over GF(p) iff:
(1)  There exists a commutative, normal subgroup N of G such that n in N implies
that n? = 1,
(2) there exists an element ¢ in G such that N and c generate G,
(3) IC Na for some a in G,
4 Hn N ={1}.

Proof. We show first that the four conditions are necessary. Assume that Mg
is linearly realizable over GF(p). Then by Theorem E we know that there exists
a normal, commutative subgroup N which is used in this realization and that z in N
implies that #? = 1. Furthermore, for some ¢ in G the element ¢ and N generate G.

Thus conditions 1 and 2 are satisfied.
Let the linear realization be given by

[8(s, ¥)] = Ahy(s) + Bhy(x),
and let 7 be the inverse permutation of the permutation x in I, that is,

By[8(s, x71)] = A-Thy(s) — A~ Bhy(x).
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Then for all y in I

hy[8(s, yx1)] = A7[Ahy(s) + Bhy(y)] — A Bhy(x)
= hy(s) + A7 Bhy(y) — A7'Bhy(x)
and therefore
yxte N and  yeNx.

But then I C Nx and we see that the third condition is satisfied for x = a. To derive
the last condition let » be in N N H and let w, in I* be a word which induces the
permutation 7 on S = {H, Ha,...} of M. Since r is in H, we know that

o8(H,w,) = Hr = H,
and since 7 is N we know that

W[8(H, w,)] = hy(H) + C(w,).
But then
Clw,) =0

and we conclude that for all s, 6(s, w,) = s.
Since M generates G on the cosets of H we conclude that w, is the identity permuta-
tion and thus » = 1. Therefore,

N H = {1},
as was to be shown.

Next we show why any finite automaton Mg g ; satisfying the four conditions
of the theorem is linearly realizable over GF(p).

A close inspection of Ecker’s proof [6] reveals that the proof holds for any faithful,
transitive representation of G as a permutation group on a set .S, provided the orbits
of the permutations in N, except 1, have length p. Once this condition is established
the same construction can be carried out to obtain a linear realization of the automaton,
provided I C Na. (Ecker’s original construction was carried out for Mg ¢y g .) To
show that the orbits of the permutations in N have length p, consider

nin N, n A1 and ain G.
We assert that the left cosets
Ha, Han, Han?,..., Han?1
are all different and thus the orbits have length p. Otherwise for some k, 1 <k <p — 1,
Ha = Han",

which implies that
Ha = Hma,
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for some m in N, m == 1, since N is a normal subgroup of G. But then

H = Hm

and we are forced to conclude that m in H NN and therefore m = 1 because
HN N ={1}. Thus the p cosets above are all distinct and we can carry out the original
Ecker construction of the linear assignment for Mg 5 ;. This completes the proof.

The above result asserts that as long as H, the subgroup of G whose left cosets
are the states of M, does not overlap IV, the normal abelian subgroup used for coding
the states of MM, then M can be linearly realized. Our results in the next section will
show that as long as H N N is a normal subgroup of G we get again a linearly
realizable machine which is a homomorphic image of M ) ;. Thus the only way
to destroy linearity of a linearly realizable M, gy ;is by choosing an H which intersects
N in a subgroup which is not normal in G.

CoroLLARY L. A permutation automaton Mg g ; is linearly realizable over GF(p)
iff:
(1) There exists a commutative, normal subgroup N of G such that n in N
implies that n? = 1,
(2) IC Na for some a in G,
3) Hn N =({1}.

Proof. Note that in Theorem L conditions (1) and (3) imply condition (2).

The finite automata of Fig. 4 illustrate the above result. We know that M, =
Mg,y ,; with H; = {1, b} and I = {g, b}. Since we can choose N = {1, ¢, ¢, f} we
see that / C Nb and that

H,NnN ={l}.

Since G satisfies the first two conditions of our theorem for GF(2) we see that M,
is linearly realizable over GF(2). On the other hand, M, = Mg n,,1, with Hy = {1, f},
and since I C Na but N N H, = H, = {1}, we see why 1, is not linearly realizable
over GF(2).

It is interesting to note that if we are allowed to replace the inputs of M, by other
input words which generate the same permutations on the set of states of A/, , then
we can select these input words so that M, is linearly realizable. To achieve this
note that the permutations a, e of G generate G; furthermore, considered as permuta-
tions,

A =a, AB = ¢, and B = ea.

If we now consider
M4 = MG,HE,{a,e) )
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then we see that
N, ={1,b, ¢, g}

is a normal subgroup of G satisfying the first two conditions of Theorem L for GF(2),
and

ICN,e and N,NnH,={1}

Thus we know that M, is linearly realizable over GF(2). Clearly this was only possible
because we had two different normal subgroups N; and N, in G(M) which could
be utilized for a linear realization. Nevertheless, the above theorem shows how inputs
of an automaton M can be recoded into input words to achieve linear realizability
if the conditions 1, 2 and 4 of Theorem L are satisfied for M.

The next example shows that even for a fixed set of inputs of an automaton A
the normal subgroup N used in a linear realization of M does not have to be unique.
Consider the abelian group G of order 12 which is obtained by taking a direct product
of two cyclic groups of order two and one cyclic group of order three. We represent
G as the additive group over the set of elements

{(x, 5, 2) | %,y€{0, 1}, z€{0, 1, 2}}.
Let

M = Mg g1
with H = {(0,0,0)} and I = {(0, 1, 1), (1,1, 1)}. Then we see that the (normal)
subgroups
N, ={(0,0,0), (1,0, 0)}
and
N, = {(0,0,0), (1,0, 0), (0, 1, 0), (1, 1, O)}

of G satisfy the first two conditions of Theorem L. Since

H Ny = He Ny, = {(0,0,0)}
and

ICN,+(0,1,1) and ICN,+(0,1,1),

we see that M ; ; satisfies the last two conditions with N; and N,. Thus we see
that Mg ; ; is linearly realizable by means of two different normal subgroups N,
and N, of G.

Observe that if an automaton My, 4 ; is linearly realizable over GF(p), using the
normal subgroup N, then the input set I can have atmost | V | elements. Thus the
size of NV determines the maximal number of inputs which can be linearly realized



180 HARTMANIS AND WALTER

using N. For any given automaton M 5 ; which can be linearly realized over GF(p)
we will refer to the maximal number of inputs (containing the set I) which can be
simultaneously linearly realized over GF(p) as the width of the linear realization of
Mg .1 over GF(p).

Our next result shows that any automaton with linear width of 2 over GF(p) must
be a commutative automaton (i.e., G(}) is abelian group). We note that if the linear
width is 2 then the realization must be over GF(2).

COROLLARY. If M is linearly realizable over GF(2) with linear width 2, then M
is a commutative automaton and G(M) is isomorphic to the direct product of two cyclic

groups.

Proof. Since the linear width of M ; ; is 2 we know that the linear realization
of Mgy, uses a normal subgroup N consisting of two elements, | N | = 2. But
then by Theorem E or L there exists a cyclic subgroup {¢) generated by ¢ in G,
such that N and {¢) generate G. Therefore {c¢) can have atmost two distinct left
cosets in G and we conclude that {¢) is a normal subgroup of G. Thus either

NC<c> or Nnvée> ={1}.

In the first case, G = M(G) = <{c¢) which is clearly a commutative group; in the
second case, since N and {c¢) are normal subgroups of G and N and {(c¢) generate G
we know that

G =~ GIN x G{c>.

Thus G is a commutative group, as was to be shown.
It can be shown that there exist automata which are linearly realizable over GF(3)
with linear width 3 but which are not abelian.

IV. HomoMORPHISMS OF LINEARLY REALIZABLE AUTOMATA

The previous theorem can be used to characterize all homomorphisms of a linear
automata which yield linearly realizable image automata.

THEOREM M. Let Mg (13,5 be linearly realizable over GF(p) using the normal
subgroup N. Then every homomorphic image of My 3 n, s determined by a subgroup H
of G and the image automaton

MG.H.Na
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is linearly realizable over GF(p) if and only if
NnH

is a normal subgroup of G.

(Note that the subgroup H may contain nontrivial normal subgroups of G and therefore
the homomorphic image of Mg (1) o defined by H may not generate the group G but
a homomorphic image of G. To avoid unnecessary complications in notation we will
occasionally write

J‘JG.H.Na

with the understanding that G(Mg gy ne) 5 the group induced by G on the left cosets
of H. If we denote the largest normal subgroup of G in H by N(H), then clearly
G(Me,u,xq) = GIN(H)))

Proof. First we show that the condition is sufficient.
Let H define the homomorphism of M ;. v, and let NN H = N, , where N,
is a normal subgroup of G. Then the image automaton is given by

!
M = Mg g na s

where

G’ ~ G|N(H),

and H' and N'a’ are the corresponding images of H and Na, respectively. Since
N, C N(H), we have that

N'n B ={1},

and therefore, we can easily see, that the four conditions of Theorem L hold for M".
Thus M’ is again linearly realizable over GF(p).

Next we show that the condition is necessary. We will show that if L = NN H
is not a normal subgroup of G, then Mg y y, is not linearly realizable. If L is not
a normal subgroup of G then

NN NH)CL,

and therefore there exist two elements 7 and ¢ in L which induce different permutations
on the left cosets of H. Let w, and w; in I* = (Na)* induce the permutations
and ¢, respectively. Then for Mg x4 na

S(H', w,) = H'r' = H' = H't = 8§(H', w,),
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since 7 and ¢ are in H. But then we know that M 5 y, is not linearly realizable,
since, in a linear realization,

S(H',w,) = 8(H', wy')
implies that
S(H'x', w,') = 8(H'%', wy")

for all &' in G’; a contradiction. Thus, H N N must be a normal subgroup of G,
as was to be shown.

From the above result we see that the only way a homomorphism defined by H
can destroy the linear realizability of the automaton Mg ¢y n, , is if H overlaps N
in a subgroup which as not normal in G. Since this cannot happen in an abelian
group we get our next result.

CoroLLARY. If M = Mg (y; is linearly realizable over GF(p) and if the inputs
of M commute, then any homomorphic image of M is again linearly realizable over GF( p).

Proof. Obvious consequence of Theorem M or L.

From the above theorem we can also derive some previously known results about
homomorphism of linear machines which were obtained by different methods [3].

We say that an automaton M is wuniformly connected iff from every state s of S
we can reach any pair of states, p, ¢ in .S, with the same number of inputs.

The next result shows that for linearly realizable automata uniform connectedness
is equivalent to the existance of an input which maps some state on to itself.

LemmA. Let M = Mg gy no , where N is a normal subgroup of G. Then M is uniformly
connected iff there exists an input x in Na and an s in S such that 8(s, x) = s.

Proof. Since M is strongly connected the existance of an x and s such that
8(s, ) = s implies that M is uniformly connected.

On the other hand, if A is uniformly connected, then for some integer & and m,
and m, in N

8(Ha, mya*) = 8(H, m,a")
or
Hama* = Hmya*
or

Hna = H, for some n in N.
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But then #za is in H and we see that
8(H,na) = H

with x = na in I = Na. This completes the proof.

From this lemma we see that in the following results the condition of uniform
connectedness can be replaced by the existance of an input x in Na which maps
some state onto itself.

COROLLARY. If M = Mg (. nq s a linearly realizable automaton over GF(p), then
any uniformly connected homomorphic image M' of M is again linearly realizable over

GF(p).

Proof. Without loss of generality we can assume that the homomorphic image
M’ of M is given by

ﬂIG.K,Na ’

where K is a subgroup of G such that N(K) = {1}. Otherwise we can first take the
homomorphism of M defined by the normal subgroup N(K) of G and obtain A",
which by Theorem M is linearly realizable, and on which the homomorphism yielding
M’ has the desired property, namely,

N(KIN(K)) = {1}

We will show that the condition that M’ = My ¢ v, is uniformly connected implies
that

NoK =1L

is a normal subgroup of G and therefore L = {1}. But then by Theorem M we know
that

M’ = M; x . na

is linearly realizable over GF(p).
Recall that M’ is uniformly connected and that we can view the left cosets of K
as states of M'. Therefore, for some s there exist w; and w, in I* = (Na)* such that

8K, w) =K and 3(Ka, w,) = K.
But then

Kw, = Kaw,,
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and we conclude that for some 7; and 7, in N
Ka*n, = Ka®*n, .
Thus for some 7; in N,
Kn, = Ka
and therefore
a=kn
for some % in K and z in N. Thus any element ¢ of G can be written for some integer s

as
t— k', me N.

Since
L= NK;
we have
kL = Lk,
and therefore

tL = kSmL = kSLm = Lkm = Lt,

which shows that L is a normal subgroup of G. Thus by assumption L = {1} and
therefore by Theorem M we know that M’ is linearly realizable over GF(p), as was
to be shown.

The previous proof showed that if Mg y y,, where N is a normal subgroup of G,
is uniformly connected, then G N H is a normal subgroup of G. This observation
yields a new proof of a known result [3].

CoRroLLARY. The homomorphic images of a uniformly connected, linearly realizable
automaton over GF(p) are again linearly realizable over GF(p).

Proof. If Mg y no is linearly realizable and uniformly connected then, because
of the previous observation, any homomorphism must be defined by a subgroup X,
HC K, such that NN K is a normal subgroup of G. But by Theorem M such
homomorphism define linearly realizable machines.

From these results we can also easily read off the following known result [3].

CoroLLARY. Any uniformly connected automaton which can be linearly realized
over GF(p) has p* states for some integer s.
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V. STRUCTURE OF LINEAR PERMUTATION AUTOMATA

In this section we derive from our previous results several theorems about the
structure of linear automata. Since input-free parts (or clocks) of automata play
an important role in these results, we derive first an auxiliary result about clocks
in automata.

An automaton M; = (Sy, I, 8,) is input-free iff | I, | = 1.

An automaton M = (S, I, 8) has a nontrivial clock iff either |I| =1 or M is
isomorphic to a subautomaton of a serial connection of an input-free automaton M,
to an automaton M, , each of which has fewer states than M, that is,

|81 <|S] and [8]<]|S]
When we consider permutation automata, then, in the above definition, we only

have to require that M is isomorphic to the serial connection of M; and M, .
For a detailed discussion of clocks in automata, see [4].

Levma.  Let M = Mg gy, and let Mg ., be input-free. Then I C Ka for some a
m G and K is a normal subgroup of G.

Proof. Assume that M g ; is input-free. Then for all @ and a; in I we must have
that

Ka = Ka,,
but then for some %; in K
a = ki,
and we see that I C Ka.
To show that K is a normal subgroup of G, it suffices to show that for any % in K
there exists a £ in K such that
k'a = ak,
since then for all g in G it follows that
gK = Kg,

because I C Ka generates G. Let & be in K and let w = & for w in I*. Then

Kwa = Kaw,
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since M g ; is input-free and wa, aw are both in I for some s. But then, for some
ky in K|

kowa = aw,
which implies that, for some £’ in K,
Ka = ak.
Thus K is a normal subgroup of G, as was to be shown.

Tueorem.  The automaton M = Mg ., with | I | > 1, has a nontrivial clock iff
G = G(M) has a nontrivial normal subgroup K such that I C Ka for some a in G.

Proof. If there exists a nontrivial, normal subgroup K of G such that I C Ka,
then we know that K defines an input-free homomorphic image M’ = Mg’ (4 (a1
of M, where G’ ~ G|K and a’ is the image of a. But then it follows from the general
decomposition theory of automata [4] that J/ is isomorphic to the serial connection
of My = M’ and M, , with | S; |, | Sy | < | S|. Since M, is input-free we have the
desired decomposition. Conversely, if M = Mg ;.; has a nontrivial clock then it
can be decomposed into input-free automaton J; connected to M, . By the general
decomposition theory of automata this implies that }/; is a homomorphic image
of M. Since all homomorphic images of A are defined by subgroups of G we know
that there exists a subgroup K of G such that A g ; is input-free. But then we
know from the preceding lemma that I C Ka and that K is a normal subgroup of G.
This completes the proof.

From these results and the characterization of linear automata we obtain a structural
result.

TueoreM. Let M = Mg y no be linearly realizable over GF(p). Then M is
isomorphic to the serial connection of an | G|N |-state input-free automaton M, to an
| N |-state automaton M, . Furthermore,

G(M,) =~ G|N,
and M, can be so chosen that
G(M,) ~ N.

Proof. 'This result follows from the preceding results and the general decomposition
theory of finite automata; see [4]. Clearly, the last automaton M, can be further
decomposed into a parallel connection of automata whose groups are the cyclic

group of order p.
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THEOREM. Let M = Mg (. ng be linearly realizable over GF(p). Then M is
isomorphic to the serial connection of an | G|N |-state input-free automaton M, and
an | N |-state uniformly connected automaton M, . If p* does not divide the order of
the element a (i.e., p* + |{a)|) then M is isomorphic to a parallel connection of M, and M, .

Proof. The first part of the theorem follows from the general decomposition
theory of finite automata.
If p does not divide the order of the element a then

NN <ay = {1},

since the cyclic group (&) must intersect N in a cyclic group whose order is not p.
But then, since N and {a) generate G, N and {a), define two homomorphisms on }/
which yield a parallel decomposition of M into the component machines

My = Mgy, w,0°

and
Mz = ‘T‘[G,QL),I .

A similar proof shows that if p? does not divide |(a)| then we can pick a subgroup
{b) of {a), whose order is not divisible by p and such that N and b generate G, and
repeat the argument for ¢(b). This completes the proof.

It should be noted that in the last result the homomorphism defined by the subgroup
{ay, which may not be a normal subgroup of G, can yield an image automaton which
again generates the group G. Nevertheless, this is a decomposition of M into smaller
component machines and a separation of the input independent part of M from
the uniformly connected part.

It should also be noted that, even if

Nn ey ={1}
and we know that M can be decomposed in the serial connection of M, to M, with
G(M,) ~ G/N  and G(M,) ~ N,
then, in the parallel connection guaranteed by the last theorem, M, cannot necessarily
be chosen such that

G(M,) =~ N.

If this were possible then M would necessarily be a commutative automaton which
does not always have to be the case.
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VI. CoNcLUSION

In this paper we utilized Ecker’s results to give a complete characterization of
all permutation automata which can be linearly realized over GF(p) in terms of the
group generated by the automaton. We showed how these results can be used to
characterize all linearity preserving homomorphisms of linear permutation automata
and read off from these results several older results about homomorphisms of linear
automata. We are convinced that these methods have further applications in the
study of linear automata as well as for other types of automata.

It would now be very interesting to see whether a similar characterization cannot
be given in terms of the semigroup of an automaton of ull linearly realizable automata
over GF(p). This appears to be a very difficult problem but its solution is very likely
to give deeper insights into automata theory.

The above results can be extended to linear realizations over finite rings using
the methods of [5].
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