

Technical Report

 Nr. TUD-CS-2014-0865

July 14th, 2014

Authors
Lotfi ben Othmane, Fraunhofer SIT, Germany

Pelin Angin, Purdue University, USA

Bharat Bhargava, Purdue University, USA

Using Assurance Cases to Develop Iteratively
Security Features Using Scrum

Using Assurance Cases to Develop Iteratively
Effective Security Features

Abstract—A security feature is a customer-valued capability
of software for mitigating a set of security threats. Incremental
development of security features, using the Scrum method, often
leads to developing ineffective features in addressing the threats
they target due to factors such as incomplete security tests. This
paper proposes the use of security assurance cases to maintain
a global view of the security claims as the feature is being
developed iteratively and a process that enables the incremental
development of security features while ensuring the traceability of
tests to security requirements such that it ensures the effectiveness
of implemented features.

I. INTRODUCTION

A security feature is a customer-valued functionality and/or
property of software for mitigating a set of threats. Examples
of security features include controlled access to a database,
authentication to use resources, and secure communication
using Secure Sockets Layer (SSL).

There are three main risks in managing innovative software
projects which apply to developing security features: limited
knowledge about the technology needed to implement the
feature, change of customer needs, and impact of other soft-
ware quality aspects, such as performance. Innovative software
development projects often include the use of new methods and
technologies not well known by the developers. The developers
gain the required knowledge through research and developing
prototypes. For instance, they often use code libraries that
are not well documented. This limits the practicality of the
design since they could encounter incompatibilities of libraries,
absence of assumed functionalities (e.g., preferred encryption
algorithms), and interoperability of data structures–e.g., key-
store file structure.

Developers often estimate the load of the software and
deduce performance parameters, such as response delay and
processing time, during development. In some cases perfor-
mance measurements impact the design choices of security
mechanisms. For instance, assume that the developers imple-
ment a protocol for communicating a concentrator that serves
50 devices with a remote application, which encrypts each
message using the RSA algorithm. The processing require-
ments of RSA may prohibit the use of the same concentrator
to serve 1000 devices. This scaling up requires the adoption of
an encryption algorithm that requires shorter processing time.

As software evolves, its security requirements may change,
which may require extending existing security features. For ex-
ample, consider that a software that uses secure communication
between a device and a remote Web application feature stores
the private keys used by the feature in the flash memory of
the device. The customer of the software wants to enforce the
liability of the users through the use of smart cards included

in the device for private key storage. The implementation of
the requirement requires extending the security feature.

Controlling these risks favor the use of an iterative and
incremental approach for developing security features. Com-
panies commonly use Scrum [18], [19] to extend software
including their security features. Scrum is an iterative and
incremental software development method that enables produc-
ing potentially shippable software in successive iterations, each
lasting a few weeks. However, the incremental and iterative
nature of Scrum increases the complexity of ensuring that the
implemented security features are effective in mitigating the
threats they target, because code changes in the features could
affect the efficiency of the mechanisms they implement.

Errors in implementing security features, which are fre-
quent, make them ineffective. For example, Georgiev et al.
tested a set of applications including known payment systems
and mobile applications that use SSL to mitigate Man-in-the-
Middle attack (MITM) and found that the implemented secu-
rity features are ineffective [12].1 Fahl et al. interviewed the
developers of mobile applications that implement ineffective
secure communication features [9]. Among the main causes
that they found is incomplete security tests, that is, the errors
could have been avoided if complete tests were used.

This paper aims to address the following questions: How
can we ensure completeness of security tests and ensure effec-
tiveness of a security feature? And how can we incrementally
develop a security feature efficiently?

We address the first question by using security assurance
cases, which maintain a global view of the security of the
security features. We address the second question through a
process for developing security features that ensures the effec-
tiveness of the features in mitigating the threats they target. The
process supports experimental learning to address potential
challenges at each increment, enables developing increments in
each iteration, and prevents redeveloping security mechanisms.

The paper is organized as follows: Section II discusses
related work, section III describes the use of security assur-
ance cases for iterative development, section IV describes the
method we propose to develop security features, section V
illustrates the use of the proposed method using the case
study secure communication between a mobile device and a
remote service, section VI discusses the proposed approach,
and section VII concludes the paper.

II. RELATED WORK

Methods for developing secure software using the model
driven approach have been very popular in the literature. For

1The paper does not specify explicitly that the features are developed
iteratively, however, the authors learned that that’s the case for many of them.

example, Basin et al. [3] proposed a method that involves
the specification of system models along with their security
requirements and the automatic generation of system architec-
tures from the models. A second example is extending mod-
eling languages, such as Unified Modeling Language (UML)
to include system misuse cases during system requirements
specification [10].

Developing secure software that includes security features
using iterative development methods, such as Scrum is in-
creasingly getting attention. For instance, Peeters [16] proposes
the introduction of abuser stories in the requirements domain
of agile development, which extend user stories to achieve
traceability of security requirements. Abuser stories are ranked
based on their value (perceived damage and likelihood of
successful attack) and the amount of implementation effort
they require, much like the ranking of user stories.

Bostrom et al. [6] propose a way of extending Extreme
Programming (XP) to help developers and customers to en-
gineer security requirements while maintaining the iterative
feature of XP. Their approach extends the XP planning game
process of identifying business requirements to integrate two
kinds of new user stories into the development process: threat
scenarios (abuser stories) and security functionalities that are
used to address the identified threats. The selection of threat
scenarios to address is based on defining critical system assets
and risk assessment of abuser stories by calculating probability
of occurrence.

The Open Web Application Security Project (OWASP) [14]
proposes developing evil user stories (hacker abilities to com-
promise the system), and expressing them in a conversational
style. An example for an evil story is: As a hacker, I can send
bad data in URLs, so I access data for which I’m not autho-
rized. The stories address authentication, session management,
access control, input validation, output encoding/escaping,
cryptography, error handling and logging, data protection,
communication security, and HTTP security features.

Recently, Asthana et al. [2] proposed 36 generic security-
focused user stories and 29 security tasks. The security-focused
user stories are derived from the issues commonly seen by
the authors, from the CWE/SANS Top 25 [7] most dangerous
development errors, and the OWASP top 10 list [15]. The
security tasks include 12 operational security tasks that needs
to be performed by the development team in each sprint and
12 security tasks that could be performed as needed with the
guidance of security experts, especially at the beginning of the
project development.

These methods support considering security needs in the
software development life cycle but do not consider the se-
curity assurance of produced software. This issue has been
initially investigated by Beznosov and Kruchten [5] who
identified the conflicts between agile development practices
and security assurance techniques, and proposed strategies to
address the conflict. Although the authors provide insights
about the invention of new agile-friendly methods, they do
not mention any details regarding the implementation of such
methods.

Recently, Ben Othmane et al. [4] proposed a method for se-
curity reassurance of software increments in agile development
that integrates security engineering activities into the agile

development process. The method supports developing accept-
ably secure software at each development iteration through the
use of an incremental approach of security assurance.

Our approach in this paper differs from previous ap-
proaches in that it uses security assurance cases to build
security features incrementally, and maintains a global view
of how each new increment of a software system affects the
validity of security assurance cases from the previous iteration.
By maintaining this view, it provides efficiency in security
assurance, as it obviates the need to do a complete security
assessment at each iteration.

III. ITERATIVE SECURITY ASSURANCE CASES

This section provides an overview of security assurance
cases, describes our proposed method for using security assur-
ance cases for iterative development and discusses the use of
security assurance cases for traceability.

A. Overview of security assurance case

A security assurance case [22] is a semi-formal approach
for objectively supporting the claim that a software product
mitigates its security risks [4]. It is a collection of security-
related claims, arguments, and evidences. A claim (i.e., a
security goal) is a high-level security requirement. An evidence
is the result of a claim’s verification through, for example,
security tests, source code security review, and proofs. An
argument is a justification that a set of evidences support the
related claim.

A security assurance case has a tree structure, where the
root is the main claim, intermediate nodes are either sub-claims
or arguments, and the leaves are the evidences. A common way
to represent assurance cases is to use the Goals-Structuring
Notations (GSN) [13]. Goals-Structuring Notations is a graph-
ical argumentation notation that represents the elements of the
assurance case and the relationships between these elements.

The main steps of creating a security assurance case, in
sequence, are [4]:

1) Decompose the claim “the software is secure” into sub-
claims such that satisfying the sub-claims induce satis-
fying the claim. The sub-claims (which in turn become
claims) could be iteratively subdivided, until getting ver-
ifiable sub-claims.

2) Specify the context of the claims, such as definitions,
reference to documents, explanations, and assumptions.

3) Identify the strategies for decomposing the claims into
sub-claims. The strategy could be explicitly described in
the assurance case or be implicit if no strategy is specified.

4) Collect the evidences that support the claims, which are
the results of using the security evaluation techniques,
such as security testing and security review of source
code to evaluate the security countermeasures [20] used to
eliminate or reduce the risk of the threats to the software
and achieve the related security goals.

5) Describe the arguments that show that an evidence sup-
ports a claim. For example, the results of a security
analysis tool may report that the software has a buffer
overflow, but the argument could state that the “errors”
are false positives–so the claim is satisfied.

B. Incremental security assurance cases

Changes to the software increments (the software produced
by an iteration and includes software produced by the previous
iterations) affect the security assurance case in four ways,
which are [4]:

• Component updates could invalidate evidences and
claims associated with the component and could po-
tentially affect claims associated with components
related to the modified component.

• Adding a new component requires reevaluating the
claims related to the new component and the claims
that could be affected by updating other components
connected to the new component.

• A change of context of using the software requires
reevaluation of the related claim and other associated
claims.

• The set of claims that need evaluation due to adding
a new claim includes the new claim, sub-claims, and
parent claim, i.e. related claims.

C. Use of security assurance case for traceability

Traceability is the ability to describe and to follow the
life-cycle of the development artifacts [23], i.e., requirements,
design, code, and test results. It is commonly used to ensure the
maintainability of software by establishing relations between
the development artifacts. It is used to estimate the impacts
of changes, and to detect inconsistency and incompleteness of
the development artifacts [23].

A security assurance case relates security claims and se-
curity assessment results (e.g., security tests and security code
analysis results). It supports traceability of security develop-
ment artifacts. We use security assurance case as a traceability
technique, but to support changes to security artifacts–not
functional artifacts.

IV. PROPOSED ITERATIVE PROCESS FOR DEVELOPING
SECURITY FEATURES

This section gives an overview of iterative development
using Scrum, motivates the proposed method, and provides a
description of the proposed method.

A. Iterative development using Scrum

The Scrum2 method was discovered by Takeuchi and Non-
aka as a practice by several companies to develop innovative
products [21]. The method is commonly used to iteratively
develop software in increments.

The Scrum development process is composed of a con-
trolled set of loose activities [18]. The three phases of Scrum
are pregame, game, and postgame. The pregame phase, or
project inception, serves for planning and designing the system
at a high level. The game phase, or construction phase,
serves for developing the user stories. The postgame phase, or
closure phase, serves for preparing the increment for release
to customers.

2a formation for forwards binding in three rows.

Fig. 1. Evolution of security features.

B. Motivation for the proposed method

A security feature implements a set of system functionali-
ties that mitigates a set of security threats. Figure 1 relates the
development artifacts of a security feature to code changes.
The development artifacts of a security feature ordered by
level of abstraction are: security requirements and related test
scenarios, security design, functional requirements and related
test scenarios, functional design, and code that implements
the feature. Changes to a security feature requires revising all
the development artifacts to maintain the effectiveness of the
feature.

There are two commonly used approaches for developing
security features: the top-down approach and the bottom-
up approach. The top-down approach requires designing a
solution for the feature as a set of collaborating components.
The approach (1) disregards the value of feedback from the
business owner, and (2) assumes that the developers have full
knowledge about how to implement the feature. These issues
cause the developers to potentially fail the project due to (1)
unknown technical barriers (e.g., incompatibility of libraries)
that they could have avoided if they had the chance to develop
experiments and adapt the design according to the results and
(2) absence of mechanisms to adapt the feature according to
the feedback about the business context of using the feature.

The bottom-up approach is based on developing a simple
experiment and iteratively increasing its complexity to finally
have the full security feature. This approach potentially leads
to (1) redeveloping existing features and (2) implementing
insecure solutions that address only immediate needs. These
issues could waste developers’ time on developing unnecessary
components–e.g., encryption and signature components–that
could be avoided by using existing libraries, and result in
developing partial solutions that may have severe limitations.
For example, implementation of a communication protocol
between a mobile application and a remote service using a
symmetric key cannot be used by a set of mobile phones;
having a key shared by a set of parties limits confidentiality of
the exchanged messages–all parties can decrypt the messages–
through extending the feature from being used by one mobile
phone to being used by a set of phones.

In this paper we propose an approach that favors the

Fig. 2. The proposed iterative process for developing security features.

design of security features and incremental increase of the
complexity of implementation. The main steps are: design a
high-level architecture of a security feature, set a road map
for implementing the feature through incremental increase of
the complexity of the solution, and iteratively develop the
increment while applying lessons learned to address challenges
in subsequent iterations.

The approach enables developing increments in each it-
eration and prevents redeveloping security mechanisms. The
incremental increase of the software complexity (that we
propose) is different from the components-based method used
in the top-down approach. The latter favors developing the
components individually and integrating them. The former
favors updating all the components of the software for each
iteration–as needed–such that they implement together the
given user stories.

C. Proposed development process.

We propose to extend the three phases of the Scrum
process–i.e., pregame, game, and postgame–such that we en-
sure iterative development of security features that effectively
address the threats that they are designed to mitigate. Figure 2
shows the phases and the activities for each phase. The
description of this process, which should be used for each
security feature, follows.

Pregame Phase. The goal of this phase is to identify sufficient
information and make the main design decisions for developing
the selected security feature. First, the product owner and
developers select a security feature to develop (i.e., activity
A1) among the security features based on factors such as

the priority of the feature, availability of resources, cost, and
release date.

Next, the developers elicit the security requirements of
the feature; that is, what the feature should do and not do.
Examples of security requirements for a secure communication
feature include preventing unauthorized disclosure of data,
preventing unauthorized modification of data, using a strong
secret key, and protecting the system from Denial of Service
(DoS) attack exploiting TCP handshaking vulnerabilities.

Then, the developers design the feature. They evaluate
existing approaches that address similar problems from the
literature;3 design a set of functionalities that implement the se-
curity requirements; identify the technical constraints related to
implementing the design including the choice of programming
language, available libraries and frameworks, and processing
and memory constraints; and select algorithms and software
packages that will be used to develop the feature.

After that, they prepare the security assurance case of
the feature. They enumerate the claims associated with the
feature and design attack scenarios (a sequence of steps that
exploit vulnerabilities of the system and cause threats to the
software) that “verify” the claims. An example test scenario
for the secure communication between a device and a remote
server is letting a device communicate with a remote server
using an expired digital certificate.

Game Phase. The goal of this phase is to implement the
feature. The developers identify a set of user stories that
implement the design. A user story describes a functionality
valuable to the user of the software [8]. The user stories
must enable the incremental development of the feature by
increasing the complexity of the software.

Some stories have dependency relations with other stories
and others do not. Incremental development of the user sto-
ries that implement a security feature requires selecting user
stories (Activity B2) whose dependent user stories have been
implemented in previous sprints.

Then, the developers elicit the functional requirements for
the selected user story (Activity B3). They identify what the
software must do such that it mitigates the threats that the
feature addresses. For example, device certificates must be
signed using the system’s private key for signing certificates,
generated keystore and truststore must authenticate the specific
device, and generated keystore and truststore must be compat-
ible with the protocol.

Next, the developers design and code the user story
(Activity B4). They develop algorithms and mechanisms that
implement the functional requirements and identify a set of
tasks for changing the current software by e.g., adding new
methods and classes that implement the user story. Note
also that implementing a single user story may affect several
components of the system at the same time.

After selecting the user story to implement, the team
members proceed with preparing tests for the user story (Ac-
tivity B5). They develop test scenarios that test the functional

3We assume there are solutions in the literature that address the security
feature.

requirements and specify the expected results.4 A detailed ex-
ample of a test scenario is: update the file Mydevices.txt
and execute the script genCrypto.py. The script creates a
folder and generates a keystore file and a certificate for each
device listed in the file Mydevices.txt. Note that this test
scenario does not test the validity of the generated certificates,
which could be the subject of another test scenario.

After completing the development of the user story and the
preparation of the test scenarios, the developers perform the
test scenarios (Activity B6). They execute the test scenarios for
a set of selected cases and compare the obtained results to the
expected results. If the test results are positive they conclude
the user stories and proceed to selecting another user story
(Activity B2). If the tests are not conclusive the developers
identify how to address the differences. They have mainly two
choices: (1) review the design and code to fix the problem
or (2) identify new user stories that address the problem. The
team demonstrates the user story at the end of the sprint by
showing the successful test scenarios.

Postgame Phase. The goal of this phase is to prepare the
feature for use in a release. After developing (and testing) the
user stories that implement the feature, the team proceeds with
testing the feature (Activity C1). They execute the security
test scenarios defined in Activity A3 and compare the obtained
results to the expected results. If the obtained results mismatch
the expected results, the developers review the design of the
feature (Activity A4). Otherwise, they proceed with demon-
strating the feature (Activity C2) to the product owner. They
explain the value of the feature and why it mitigates the threats,
and demonstrate a set of security scenarios on a variant of the
system that does not have the feature and on a variant that has
the feature. Then, they update the security assurance case with
the test results.

V. CASE STUDY: SECURE COMMUNICATION BETWEEN A
MOBILE DEVICE AND A REMOTE SERVICE

In this section we illustrate the use of the proposed process
and iterative security assurance method to iteratively develop
the security feature for secure communication between a de-
vice and its remote control service. Figure 3 shows an example
of systems where a device installed in an unmanned aerial
vehicle (UAV) communicates with a remote control station.

We simulate the implementation of the feature in two
releases; each is developed using a set of user stories. The
descriptions of the releases follow.

First release: The goal of this release of the feature is to
“secure” the communication between the devices and the
control service. Table I lists a set of security requirements,
decision choices, and test scenarios for the feature5 identified
during the game phase. The security requirements become the
claims of the assurance case of the feature as illustrated in
Figure 4.

4Recall that a security test scenario is a set of steps to attack the system
and cause a threat. Differently, a functional test checks if the system performs
a function as expected. For example, a functional test is: The system checks
digital certificate of communicating partners, while a security test is: The
device authenticates with the remote service using an expired certificate.

5The list is only to illustrate the method and is not exhaustive, nor detailed.

Fig. 3. A remotely controlled unmanned aerial vehicle. (The UAV is a
Cadence Technologies SR-20.)

TABLE I. EXAMPLE OF SECURITY REQUIREMENTS, DESIGN
DECISIONS, AND TEST SCENARIOS FOR RELEASE 1 OF THE SECURITY

FEATURE “SECURE COMMUNICATION BETWEEN THE DEVICES AND
CONTROL SERVICE.”

Main requirements
SR1 Protect the confidentiality of data exchanged between the device and remote

control service
SR2 Protect the integrity of data exchanged between the device and remote control

service
SR3 Each device must authenticate the remote control service before sending

data.
SR4 Use of cryptographic keys and algorithms that are secure for the next 10

years.
SR5 The service authenticates the devices it communicates with.

Main design decisions
SD1 Use SSL protocol [11] for secure communication between two parties.
SD2 Use SSL libraries JESS for the remote service and JESSIE for the device.

(The decision is made considering the system architecture of the system.)
Test Scenarios
Intercept communication between a testing device and remote service using
Wireshark [1] and perform the following tests:

STS01 Test if the data in transit between the device and service are plain text.
STS02 Test if changing the data in transit between the device and service could be

detected.
STS03 Test if the device sends data to a service without successfully authenticating

it.
STS03a Authenticate a device using a signed certificate stored in its keystore.
STS03b Authenticate a device using an unsigned certificate stored in its keystore.
STS03c Authenticate a device using an expired certificate stored in its keystore.
STS04 Test if the service sends data to a device without the device successfully

authenticating it.

The team may consider other requirements, besides the
security requirements, in the design of the solution for the
security features. For instance, examples of requirements that
are often considered for the feature of secure communication
between two parties are optimizing the use of bandwidth and
optimizing the use of device processing time for security
operations.

Next, the developers start the game phase and enumerate
foreseen user stories required to implement the security fea-
ture, which we list in Table II. We note that the user story

TABLE II. LIST OF USER STORIES FOR THE FIRST RELEASE OF THE
SECURITY FEATURE.

Code User stories
R1U1 As a user, I can securely send data from a desktop to a server application.
R1U2 As a user, I can securely send data collected by the device to a server

application.
R1U3 As an administrator, I can identify the device that sends a particular set of

data.
R1U4 As a user, my device can store the data when it cannot connect to the server

and send it when communication is restored.
R1U5 As administrator, I can create a set of private/public keys pairs that are

associated with the identities of the devices in batches.
R1U6 As administrator, I can easily distribute each private/public key pair to the

associated device.
R1U7 As administrator, I can create for each device a set of private and public

keys, each constructed using the identity of the device.

Fig. 4. Security assurance case for Release 1 of the security feature. (The code of the tests are in table I.)

TABLE III. EXAMPLE OF FUNCTIONAL REQUIREMENTS, DESIGN
DECISIONS, AND TEST SCENARIOS FOR THE USER STORY R1U5

Code Main requirements
FR1 Generate a keystore and truststore for each device given a list of device

identities.
FR2 The certificate of each device must be signed using the company private key.
FR3 Each certificate must be associated with a single device.
FR4 The generated trustore and keystore files must be compatible with the device

software.
FR5 Use of cryptographic keys and algorithms that are secure for the next 10

years.
FR6 The service authenticates the devices it communicates with.

Main design decisions
FD1 Use a Python script to automate the generation of private keys and a

certificate and prepare them for use by the devices and service.
FD2 Use a text file that lists the identities of the devices to generate the private

keys and certificates.
Test Scenarios

FTS1 Generate a keystore and trustore for a set of devices.
FTS2 Authenticate a device using a signed certificate stored in its keystore.
FTS3 Reject authentication of a device using an unsigned certificate stored in its

keystore.

R1U7 does not depend on the user story R1U1. Therefore,
it does not need to be developed after R1U1. However, user
story R2U1 depends on R1U1 because R1U2 increases the
complexity of the software.

After that, the team selects successive user stories to
develop considering the dependencies between them. For each
selected user story they elicit the security requirements, design
a solution that implements the user story, identify a set of test
scenarios to test it, and develop the feature and evaluate it using
the test scenarios. For example, Table I lists the user story
R1U5: as administrator, I can create a set of private/public
keys pairs that are associated with the identities of the devices
in batches.

At the postgame phase, the team performs the security

tests and updates the security assurance case with the evidence
collected from the tests as in Figure 4. Then, they demonstrate
the feature in the retrospective meeting with the product owner.
The retrospective meeting is an end of iteration meeting to
discuss the successes and the challenges encountered in the
iteration and to set changes that enables to address the chal-
lenges, such as requesting trainings, changing the development
process, and acquiring new tools that help in addressing the
challenges.

Second release: In the first release the private keys are stored
in the flash drive of the device. Let’s assume that data sent
by the devices is required to be used in a legal context, which
requires the system to ensure non-repudiation of the sender.
The product owner requests to upgrade the feature to satisfy
the new requirement.

At the pregame phase of this release, the team members
review the security requirements, decisions and test scenarios.
Assume they decide to use a smart card embedded in the
device to store the cryptographic keys and use it to perform
computation using these keys. Therefore, the team reviews
the security assurance case of the feature. Since the design
decision requires using new components for the cryptographic
operations, the evidences of the security assurance case be-
come invalid and are removed from the case of the feature.

Then, the team starts the game phase and identifies the
user stories required to implement the security feature, which
are listed in Table IV. Next, they proceed with iteratively
implementing the user stories as in the first release–considering
the dependencies between them.

At the postgame phase, the team performs the security
test scenarios and updates the security assurance case with the
evidence collected from the tests. Figure 5 shows an updated

Fig. 5. Security assurance case for Release 2 of the security feature. (The code of the tests are in table III.)

TABLE IV. LIST OF USER STORIES FOR THE SECURITY FEATURE
SECURE COMMUNICATION BETWEEN DEVICES AND REMOTE SERVICE FOR

RELEASE 2.

Code User stories
R2U1 As a user, I want the smart card of the device to perform the cryptographic

functions required to communicate the device and remote service.
R3U2 As a user, I want the device to use the smart card to perform the crypto-

graphic functions required to communicate the device and remote service.
R4U3 As a user, I want the device to use the smart card for cryptographic operation

in its communication with the remote service.

security assurance case of the feature. The gray shapes indicate
components added to the case in the second release.

VI. DISCUSSION

This section discusses how the proposed process enables
iterative development of security features and traceability of
artifacts and how iterative assurance cases help to have better
coverage of test scenarios. It also discusses the limitations of
the method.

Iterative development. We applied the approaches discussed
in Section IV-B in developing a commercial project. We
learned that the causes of the failures are limited knowledge
about the technology needed to implement the feature, the
change of the customer needs, and impacts of other software
quality aspects, such as performance. Then, we applied the
proposed iterative development process to develop the first
iteration of the feature.

The proposed process enables iterative development at
two levels: product level and release level. The product level
enables to adapt the coherent design of the given security
feature that addresses a set of security requirements for a
given release such that it supports the security requirements

of a new release. The release level enables the controlled
implementation of the feature such that it is possible to adapt
the functional design of the feature and the development plan
to address the challenges as they are discovered.

The proposed iterative process uses two decomposition
levels: property level and functional level. The property level
is concerned with the security requirement, design and test
scenario. The functional level concerns the functional require-
ments, design, and test.

The Scrum process is commonly known for functional
features. The proposed iterative process extends the Scrum
process to support security features which are properties of
the system–not functions.

Traceability of artifacts. Traceability in the context of it-
erative development has two dimensions: vertical traceability
that relates development artifacts of the same increment and
horizontal traceability that relates iterations [23]. The proposed
process enables traceability of the development artifacts at both
the product level, i.e., horizontal traceability, and release level,
i.e., vertical traceability. For each release of the product, the
security test scenarios are related to the security design and
to security requirements. Also, for each iteration of a given
release, the functional requirements could be traced to specific
security design and the functional tests could be traced to
functional design and functional requirements.

The use of security assurance cases helps to manage
the impacts of changes on the security of the software. It
allows to identify–manually–invalidated evidences and related
claims and to detect inconsistency and incompleteness of the
evidences, arguments, and claims.

Test scenarios coverage. When we applied the development

process to develop and test the second release of the feature
in the commercial project (see case study) we faced the
challenge of identifying the evidence and claims that need
to be reevaluated. We found that the security assurance case
technique can address the problem. We did not practice with
the technique because the project ended at that time.

The tree structure of security assurance cases supports
identifying “potentially” the exhaustive list of the test scenarios
that assert the security claims of the case. The tree structure
enables dividing each node that represents a concept, such as
attack or claim, into sub-claims and helps to visually identify
the completeness of the sub-claims. This ability is used by
the attack tree technique [17] to help identify all potential
attacks. Security assurance cases also help solve conflicts of
requirements identified in different iterations and releases.

Limitations. The proposed method does not help to discover
vulnerabilities in libraries used by the features. Therefore, the
method may allow to claim that a feature is secure (since the
security test scenarios cover the security requirements), which
could be challenged because it uses a set of libraries that have
vulnerabilities that were not identified by the security tests.
This is considered a change of the scope of the feature.

We currently do not have tools that support the application
of the method. We hope to build such tools in the future.

VII. CONCLUSIONS

Using iterative methods, such as Scrum to develop security
features often leads to developing ineffective features because
of the incompleteness of the test scenarios and the conflict of
requirements between the iterations.

This paper proposes a process for iteratively developing
security features and a technique for ensuring that the feature
is effectively secure. The proposed process was developed in
response to several failures and it addresses the challenges of
limited knowledge about the technology needed to implement
the feature, change of the customer needs, and impact of other
software quality aspects, such as performance.

The method supports developing effective security features.
The use of the iterative security assurance case technique
helps identify all security test scenarios and it addresses
the conflicts between the security requirements identified in
different releases and functional requirements identified in
different iterations.

REFERENCES

[1] Wireshark. go deep. Accessed on Mar. 2014. [Online]. Available:
http://www.wireshark.org/

[2] V. Asthana, I. Tarandach, N. ODonoghue, B. Sullivan, and M. Saario,
“Practical security stories and security tasks for agile development
environments,” Online, July 2012. [Online]. Available: http://www.
safecode.org/publications/SAFECode Agile Dev Security0712.pdf

[3] D. Basin, J. Doser, and T. Lodderstedt, “Model driven security: From
uml models to access control infrastructures,” ACM Trans. Softw. Eng.
Methodol., vol. 15, no. 1, pp. 39–91, Jan. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1125808.1125810

[4] L. ben Othmane, P. Angin, H. Weffers, and B. Bhargava, “Extending
the agile development approach to develop acceptably secure software,”
Dependable and Secure Computing, IEEE Transactions on, vol. PP,
no. 99, pp. 1–1, 2014.

[5] K. Beznosov and P. Kruchten, “Towards agile security assurance,” in
Proc. of the 2004 Workshop on New Security Paradigms, ser. NSPW
’04, Nova Scotia, Canada, Sep. 2004, pp. 47–54.

[6] G. Boström, J. Wäyrynen, M. Bodén, K. Beznosov, and P. Kruchten,
“Extending xp practices to support security requirements engineering,”
in Proceedings of the 2006 international workshop on Software engi-
neering for secure systems. ACM, 2006, pp. 11–18.

[7] S. Christey, B. Martin, M. Brown, A. Paller, and D. Kirby, “Cwe
- 2011 cwe/sans top 25 most dangerous software errors,” Online,
Sep. 2011. [Online]. Available: http://cwe.mitre.org/top25/archive/2011/
2011 cwe sans top25.pdf

[8] M. Cohn, User Stories Applied: For Agile Software Development.
Boston, MA: Pearson Education, Inc., 2004.

[9] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking
ssl development in an appified world,” in Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security,
ser. CCS ’13. New York, NY, USA: ACM, 2013, pp. 49–60. [Online].
Available: http://doi.acm.org/10.1145/2508859.2516655

[10] I. Flechais, M. A. Sasse, and S. M. V. Hailes, “Bringing security home:
A process for developing secure and usable systems,” in Proceedings
of the 2003 Workshop on New Security Paradigms, ser. NSPW ’03.
New York, NY, USA: ACM, 2003, pp. 49–57. [Online]. Available:
http://doi.acm.org/10.1145/986655.986664

[11] A. Freier, P. Karlton, and P. Kocher, The Secure Sockets Layer (SSL)
Protocol Version 3.0, Internet Engineering Task Force (IETF) Std.,
Aug. 2011. [Online]. Available: http://tools.ietf.org/html/rfc6101

[12] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: Validating ssl
certificates in non-browser software,” in Proc. of the ACM Conference
on Computer and Communications Security, ser. CCS ’12, 2012, pp.
38–49.

[13] T. Kelly and R. Weaver, “The goal structuring notation–a safety argu-
ment notation,” in Proc. Dependable Systems and Networks–Workshop
on Assurance Cases, Florence, Italy, July 2004.

[14] OWASP, “Agile software development: Don’t forget evil user stories,”
August 2011. [Online]. Available: https://www.owasp.org/index.php/
Agile Software Development: Don%27t Forget EVIL User Stories

[15] ——, “Owasp top 10-2013 – the ten most critical web
application security risks,” Online, December 2013. [Online].
Available: http://owasptop10.googlecode.com/files/OWASP%20Top%
2010%20-%202013.pdf

[16] J. Peeters, “Agile security requirements engineering,” in Symposium on
Requirements Engineering for Information Security, 2005.

[17] B. Schneier, Secrets and Lies. John Wiley and Sons, New York, 2000,
ch. Attack Trees, pp. 318–333.

[18] K. Schwaber, “Scrum development process,” in Proc. of the 10th
Annual ACM Conference on Object Oriented Programming Systems,
Languages, and Applications (OOPSLA), R. Wirfs-Brock, Ed., Austin,
TX, Oct. 1995, pp. 117–134.

[19] K. Schwaber and M. Beedle, Agile Software Development with Scrum,
1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001.

[20] R. Shirey. (2007, aug) Internet security glossary, version 2. RFC 4949
(Informational). [Online]. Available: http://www.ietf.org/rfc/rfc4949.txt

[21] H. Takeuchi and I. Nonaka, “The new product development game,”
Harvard Business Review, vol. 64, no. 1, Jan 1986.

[22] J. Vivas, I. Agudo, and J. Lpez, “A methodology for security assurance-
driven system development,” Requirements Engineering, vol. 16, no. 1,
pp. 55–73, 2011.

[23] S. Winkler and J. Pilgrim, “A survey of traceability in requirements
engineering and model-driven development,” Softw. Syst. Model., vol. 9,
no. 4, pp. 529–565, Sep. 2010.

