
Extending the Agile Development Process to
Develop Acceptably Secure Software

Lotfi ben Othmane, Pelin Angin, Harold Weffers, and Bharat Bhargava, Fellow, IEEE

Abstract—The agile software development approach makes developing secure software challenging. Existing approaches for

extending the agile development process, which enables incremental and iterative software development, fall short of providing a

method for efficiently ensuring the security of the software increments produced at the end of each iteration. This article (a) proposes a

method for security reassurance of software increments and demonstrates it through a simple case study, (b) integrates security

engineering activities into the agile software development process and uses the security reassurance method to ensure producing

acceptably secure—by the business owner—software increments at the end of each iteration, and (c) discusses the compliance of the

proposed method with the agile values and its ability to produce secure software increments.

Index Terms—Agile software development, secure software, security assurance cases

Ç

1 INTRODUCTION

DEVELOPING secure software that continue to function cor-
rectly under malicious (intended) attacks [1] requires

integrating security engineering activities and verification
and validation gates into the development process. The
security engineering activities capture and refine protection
requirements and ensure their integration into the software
through purposeful security design [2], while the verifica-
tion and validation gates ensure traceability [3] of analysis,
design, coding, and testing artifacts; which helps addressing
the weakest link (i.e., least protected point) problem [4] by
ensuring completeness of the protection mechanisms.

The sequential software development approach suits
the integration of the security engineering activities, which
are commonly used in sequence, and the use of verifica-
tion and validation gates between the development stages:
analysis, design, coding, and testing. In contrast, the itera-
tive and incremental nature [5] of the agile software devel-
opment (ASD) [6] approach enables developing software
in regular intervals, i.e., iterations, producing the software
in increments. The iterative and incremental nature [5] of
the Agile Software Development (ASD) [6] approach limits
its ability to accommodate the security engineering activi-
ties and the use of verification and validation gates. The
development process it employs does not fit the sequential
use of the security engineering activities and the set of ver-
ification and validation gates.

There are several challenges that limit the use of ASD
for developing secure software such as, lack of complete

view of the system, absence of security engineering activ-
ities in the development process, lack of detailed docu-
mentation, lack of security awareness of the customers,
and conflict of interests between security professionals
and developers [7], [8], [9], [10]. Several solutions have
been proposed for extending the ASD process to produce
secure software, e.g., [11], [12], [13], but they either fall
short of ensuring the security of the increments produced
in each iteration, or require performing a long list of secu-
rity verification and validation tasks, (e.g., OWASP verifi-
cation requirements [14]) in each iteration—which
implies that all security requirements must be imple-
mented in the first development iteration.

This paper aims to address the question: Is it possible
to extend the agile development process to produce
acceptably secure software in each iteration? However,
to answer this question we need to answer the secondary
question: Is it possible to efficiently ensure the security
of software increments produced by development itera-
tions? We answer the secondary question through pro-
posing a method for security reassurance of software
increments. We address the issue through using security
assurance case technique [15], which supports security
reassurance of software increments thanks to its tree-like
structure. We answer the main question through extend-
ing the agile development process with security engi-
neering activities while preserving the ASD values.

The paper is organized as follows. First, we provide an
overview of the agile software development approach,
secure software development, and security assurance
cases (Section 2). Then, we discuss related work
(Section 3), describe our method for security reassurance
of software increments (Section 4), propose a process for
developing acceptably secure software using the ASD
approach (Section 5), and illustrate the use of the pro-
posed development process using a case study, a simple
HR Web Portal (Section 6). Next, we discuss the proposed
development approach (Section 7) and conclude the
paper (Section 8).

� L. ben Othmane is with Lero-The Irish Software Engineering Research
Center, Ireland.

� P. Angin and B. Bhargava are with the Department of Computer Science,
Purdue University, West Lafayette, IN 47907.

� H. Weffers is with the Department of Mathematics and Computer
Science, Eindhoven University of Technology, Eindhoven, North
Braband, The Netherland.

Manuscript received 4 Nov. 2013; accepted 31 Dec. 2013; published online xx
xx xxxx.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2013-11-0321.
Digital Object Identifier no. 10.1109/TDSC.2014.2298011

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. X, XXXXX 2014 1

1545-5971� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2 BACKGROUND

This section gives an overview of the ASD approach, secure
software development and security assurance cases.

2.1 Agile Software Development Approach

The ASD approach, as specified in the manifesto [6], has
four values: individuals and interactions, working software,
customer collaboration, and responding to change. The
approach is implemented by several methods including:
Scrum [16], extreme programming (XP) [17], and agile
modeling (AM) [18]. It enables producing potentially ship-
pable working software at regular intervals [18] (i.e., itera-
tions), which enables providing customers high value
features (customer-valued product functionalities) in a short
time. It applies a greedy-like approach with incomplete
information for selecting functionalities to develop.1 The
approach relies on the use of patterns, principles, and best
practices for developing “good” software. The approach
accommodates several classes of software, such as Web
applications [19].

The agile approach has several advantages. First, it
reduces the chance of project failure because it enables early
detection of gaps between business expectations and devel-
opers understanding. Second, it enables discovery of cus-
tomer needs rather than customer wishes since customers
can see demos of the product while being developed and
adapt the requirements based on their needs. Third, it ena-
bles early discovery of technical barriers since the develop-
ers experiment their ideas and use the results to adapt the
system architecture and work plan.

The ASD methods share a similar process, shown in
Fig. 1. The process supports developing software in an itera-
tive and incremental fashion. It has three phases (cf. [20]):
inception, construction, and transition. The inception phase is
for defining the scope of the project and model of the initial
architecture. The construction phase is for developing the
software in a set of iterations. For each iteration, the busi-
ness owner and development team determine the goal of
the iteration and select a set of user stories to achieve the
goal. Then, they elicit the requirements for the stories,
update the design to address the requirements, and code a
software increment that addresses the requirements and is
potentially shippable. They demonstrate the user stories
and review the team efficiency at the end of the iteration.

The transition phase is for integration testing and for harden-
ing the increment to make it ready as a release2 for use in a
production environment.

2.2 Secure Software Development

Secure software are developed using processes that inte-
grate security activities for capturing and refining protec-
tion requirements and for ensuring their integration into the
software through purposeful security design [2]. A known
reference model of engineering secure software is the
System Security Engineering Capability Maturity model
(SSE-CMM) [21]. Fig. 2 shows the Capability Maturity
model (CMM) security engineering process (SSE-CMM).
The process has three sub processes: risk process, engineer-
ing process, and assurance process. The risk process enables
identifying threats to and vulnerabilities of a given system
along with their associated impacts and likelihood of occur-
rence [22]; that is, their risks. The engineering process
supports determining and implementing solutions to the
threats. The security assurance process ensures that the
security features (high-level security requirements that
express protection capabilities of the software to mitigate
the threats [23]), practices, procedures, and architecture of
software accurately mediate and enforce the security policy
[2]. Security policies state the required protection of the infor-
mation objects [24]; they are rules for sharing, accessing,
and using information, hardware, and software.

2.3 Security Assurance Cases

Security assurance enables developing coherent objective
arguments—which could be reviewed—to support claim-
ing that a software product mitigates its security risks. A
security assurance case [15], a semi-formal approach for
security assurance, is a collection of security-related
claims, arguments, and evidences where a claim, i.e., a
security goal, is a high-level security requirement, an argu-
ment is a justification that a set of (objective) evidences jus-
tify that the related claim is satisfied, and an evidence is a
result of a verification through, for example, security test-
ing, source code security review, mathematical proofs,
checking use of secure coding standards, qualification of
the developers in terms of training on developing secure
software (cf.[25]), etc.

Fig. 1. The agile software development process.

Fig. 2. CMM security engineering process [21].

1. The greedy approach (the term “greedy algorithm” is used in the
literature) makes the choice that looks best at the moment with the
hope to have an optimal solution. 2. A software product could have many releases.

2 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. X, XXXXX 2014

Ensuring that software mitigates a security risk requires:

� ensuring that collected evidences indeed support the
related claim. For example, a source code static anal-
ysis of a Web application cannot justify that the com-
munication between a client and a Web server is
secure–it only supports the claim.

� having evidences that sufficiently justify the claims.3

For example, a verification of compliance with stand-
ards for writing secure code [27] helps avoiding
source code vulnerabilities, such as buffer overflow
[28] but does not justify a claim that the code is free
from source code vulnerabilities.

� evaluating and addressing conflicts and dependen-
cies between both the claims and the evidences.

A security assurance case has a tree structure, where the
root is the main claim, intermediate nodes are either sub-
claims or arguments, and the leaves are the evidences. A
common way to represent assurance cases is to use the
goals-structuring notation (GSN) [29]. Goals-Structuring
Notation (GSN)4 is a graphical argumentation notation that
represents each element of the assurance case and the rela-
tionships between these elements.

The main steps of creating a security assurance case (cf.
[31], [32]), in sequence, are:

1. Identify the claims—decompose the claim “the soft-
ware is secure” into sub-claims such that satisfying
the sub-claims induce satisfying the claim. The sub-
claims (which in turn become claims) could be itera-
tively subdivided, until getting verifiable sub-claims.

2. Establish the context—specify additional information
for claims, such as definitions, reference to docu-
ments, explanations, and assumptions.

3. Identify the strategies—provide information on how a
claim is decomposed into sub-claims. The strategy
could be explicitly described in the assurance case or
be implicit if no strategy is specified.

4. Identify evidences—collect the result of using the secu-
rity evaluation techniques, such as security testing
and security review of source code to evaluate the
security countermeasures [23] used to eliminate or
reduce the risk of the threats to the software and
achieve the related security goals.

5. Specify the arguments—show implicitly or explicitly that
an evidence supports a claim. For example, the results
of a security analysis tool may report that the software
has a set of code security vulnerabilities (e.g., buffer
overflow). The argument describes that the “errors”
are false positives and the claim is satisfied.

The two main advantages of security assurance cases
over checklists are (a) richness of argumentation and
(b) completeness of decomposition. Security assurance cases
provide richness of argumentation because they record the
evidences, arguments, assumptions, and contexts that jus-
tify why the evaluator5 believes that a claim is satisfied. For

instance, it records all results generated by a code security
analysis tool, lists false positives and the arguments for
ignoring them. In contrast, checklists require to assert for
each claim6 if it is satisfied, but does not justify how the evi-
dence supports the claim.

Security assurance cases have a tree-like structure,
which helps ensuring completeness of decomposition of
claims because the assurance method simplifies identify-
ing (known) sub-claims of a claim and helps identifying
the dependency relationship between the claims. In
contrast, checklists7 do not help to easily identify all the
divisions of claims. For instance, a security verification
checklist (e.g., [14]) may include the requirement “verify
that cryptographic module failures are logged” but it
does not help to easily identify the need for the claim
“Unauthorized access to the logs is prevented”—which
may cause a security flaw. In contrast, the security assur-
ance case technique helps to identify the need easily.

3 RELATED WORK

We describe in this section three approaches for extending
the agile development process to develop secure software
and a security assurance approach that is close to our work.
There are several other approaches, in the literature, that
integrate the security engineering activities into the agile
development process, e.g., [33]; however, they do not
ensure the security of the developed increments.

OWASP approach. The Open Web Application Security
Project (OWASP) [11] proposes developing evil user stories
(hacker abilities to compromise the system), and expressing
them in a conversational style. An example for an evil story
is: As a hacker, I can send bad data in URLs, so I access data
for which I’m not authorized. The stories address authenti-
cation, session management, access control, input valida-
tion, output encoding/escaping, cryptography, error
handling and logging, data protection, communication
security, and HTTP security features.

The main issues of the approach are: (1) it requires mit-
igating all applicable evil stories in every iteration, which
implicitly requires focusing on the security user stories in
the first iterations of the software and (2) it requires veri-
fication of a list of security requirements (e.g., [14]) for
the full software in each increment of the software. In
contrast, the approach that we propose requires that the
product owner (A project stakeholder that has a vision
about the system to build and represents the users of the
future system.) chooses for each iteration the security
user stories to implement and requires reassessing the
security of only a set of security claims. (Section 4
discusses the security reassessment process.)

Microsoft approach. Sullivan [12], [34] proposed integrat-
ing security-related activities in the development life-cycle
considering their required frequency of completion. He
divides the activities into three groups based on their
required completion frequency. The groups are: one-time
activities, cycle security-related activities, and bucket3. Note that security is a system property [26].

4. Goals-Structuring Notations (GSNs) could be traced back to
McDermid’s work [30], but without the graphical notations.

5. In general, an evaluator is a specialized professional who evalu-
ates whether the software complies with the requirements and how it
does so.

6. Checklists use the term security requirement to mean a claim.
7. The elements of checklists are commonly identified based on

experience.

OTHMANE ET AL.: EXTENDING THE AGILE DEVELOPMENT PROCESS TO DEVELOP ACCEPTABLY SECURE SOFTWARE 3

security-related activities. The one-time activities group
includes activities that are performed only once in each
project, during the preparation phase. The cycle security-
related activities group includes activities that are per-
formed in each iteration of the project. The bucket security-
related activities group includes one verification task, one
design review task, and one response planning task. Verifi-
cation tasks include, for example, attack surface analysis
and fuzz testing; design review tasks include, for example,
review of code that uses cryptographic operations; and
response planning tasks include, for example, update of
security response contacts.

The full set of bucket security-related activities are
performed in a cycle of a sequence of a set of iterations—
e.g., a cycle of six iterations. This reduces the set of incre-
ments that are ready for releasing to the increments pro-
duced by the last iteration of each cycle. In contrast, the
approach that we propose does not use bucket security-
related activities.

Risk-driven secure software development. V€ah€a-Sipil€a [13],
[35] proposes a risk-based approach for developing secure
software. The method is based on managing the security
risks and implementing security solutions.

Managing security risks is reducing the risks of security
threats, through implementing security controls, to a level
acceptable by the business owner. The security threats
include the threats related to the functionalities and the
architecture of the software (e.g., as a user, I do not want
my data to be used by anybody, except for processing my
transaction), threats related to specific user stories, and
threats related to code vulnerability and data validation.
The risks of threats are reduced using security mechanisms,
which are associated with implementation and operation
costs. The approach conditions the completeness of user sto-
ries to mitigating the related threats.

The main issue with the approach is that it focuses on
the threats to user stories individually and does not con-
sider the impact of code changes resulting from imple-
menting new user stories on the validity of the preexisting
security claims. In contrast, our approach maintains a
global state of the security assurance of the software in the
form of a security assurance case of the software. The
developers reassess the security assurance of the software
at the end of each iteration.

A similar approach is proposed by Ge et al. to develop
secure Web applications using the Feature-Driven Develop-
ment (FDD) method [36]. The authors integrate efficiently
the risk assessment activities into the development process.
However, their process does not integrate security assess-
ment activities, which limits the ability to claim that the pro-
duced increments are secure.

Security assurance-driven software development. Vivas
et al. [15] proposed a method for security assurance-
driven software development that focuses on evolving
the security assurance cases of software throughout the
development life-cycle phases: analysis, design, develop-
ment, and test. They proposed an approach for decom-
posing the claims of assurance cases and refining them
as the development team members identify the use cases
of the software, design the components of the software
and implement them as code classes.

The approach that we propose relates security assurance
cases elements to the software development artifacts as in
[15]. However, the approach enables reassurance of the soft-
ware as it evolves in increments—that is, produced itera-
tively in successive iterations.

4 SECURITY REASSURANCE OF SOFTWARE

INCREMENTS

Evolving software, through adding user stories, requires
reassessing the security assurance of the software. The
reason is: the changes to the software components could
invalidate the evidences and claims of the security assur-
ance case. For example, evidences collected using a code
security analysis tool become invalid if new code is
added to the software and the claim “access control to
files is enforced” becomes invalid if the files become
available in several locations.

The safe approach for assessing the security assurance of
a new increment of software is to discard the security assur-
ance case of the previous increment and perform a new
security assessment for the new increment. However, per-
forming a new security assessment for each increment is not
practical because it is time consuming and has high cost.
For instance, it is not possible to perform the 121 security
verification requirements required by OWASP [14] for a
Web application that has a new increment every week.

This section describes our method for developing secu-
rity reassurance cases of software increments. First, we ana-
lyze the security verification requirements of OWASP [14].
Then, we analyze the relationship between security assur-
ance case elements and software components, which helps
to implement the ideas identified in Section 4.1 and devise a
method of security reassurance of software increments that
we describe in Section 4.3.

4.1 Analysis of Security Verification Requirements
of OWASP

The Open Web Application Security Project developed a
standard for evaluating the security of Web applications
[14]. We classified the 121 security verification require-
ments of the standard (which are grouped in 14 security
verification areas) based on classes of security assess-
ment techniques, locality (the assessment concerns
specific components or all components of the software),
and automation (the assessment is automatic or manual).
Table 1 shows the statistics that we obtained. Based on
the analysis, we observe the following:

� Assessment automation: We use assessment tech-
niques to collect evidences. These techniques are
either manual (i.e., performed by humans) or
automatic (i.e., using tools and scripts). We
observe that most of the security verification
requirements, 79 percent (96 out of 121), require
manual assessment.

� Evidence locality: Some evidences apply to only
parts of the software (e.g., components or classes)
and others apply to the whole software. For instance,
verifying an authentication mechanism requires
verifying only the web pages and business logics

4 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. X, XXXXX 2014

that implement the security feature; there is no need
to assess all the software. The analysis shows that
most of the verification requirements, 74 percent (90
out of 121), are local.

The results of this analysis suggests that automation of

security verification requirements may not have big impact

on simplifying the security assurance activities as suggested

by [7].8 However, it does suggest that we could reduce the

risk assessment activities by considering the locality of the
software changes.

4.2 Relationship between Security Assurance Case
Elements and Software Components

Fig. 3 shows the conceptual model of security assurance
cases for agile software development. In this model, the
project owner specifies the user stories and the security poli-
cies. A user story describes a functionality valuable to the
user of the software [37]. A security policy states the required
protection of the information objects [24].

A security claim, i.e., a goal, specifies a capability of the
system to protect, prevent, detect, or deter a set of threats.
For example, the security claim “prevent unauthorized
users from accessing and using the application” specifies
that the software prevents the threat “unauthorized access
and use of the application.” A claim could be decomposed
into sub-claims using a decomposition strategy and
described using a context annotation.

Threats are mitigated by security countermeasures.
A countermeasure is an action, device, procedure, or

technique that counters a threat by eliminating or pre-
venting it, by minimizing the harm it can cause, or by
discovering and reporting it so that corrective action can
be taken [23]. Countermeasures are related to user sto-
ries, e.g., a countermeasure is implemented by a set of
user stories. They are also related to arguments, e.g.,
secure coding could contribute to the argument of the
claim “minimum source code vulnerabilities.”

Implementing a user story may require adding new com-
ponents,9 removing components, and/or updating existing
components—i.e., changing their structure or behavior.
These operations could invalidate the elements of the secu-
rity assurance case of the software, e.g., a claim becomes
false. The invalidation of claims and evidences depends on
the application because changing a component may or may
not invalidate related evidences. Invalidate means “does not
support” for evidences and “is not true” for claims. The
invalidation types are:

I1. Changes to a context could invalidate related claims.
We formulate this invalidation using the function:
IclðCxÞ ¼ fCi

lg.
I2. Changes to a component could invalidate related evi-

dences. We formulate this invalidation using the func-
tion: IevðCoÞ ¼ fEi

vg.
I3. Invalidation of evidences invalidates related claims.

We formulate this invalidation using the function:
IclðEvÞ ¼ fCi

lg.
I4. Claims could have relationships, such as dependency

and conflict. Changes to a claim could invalidate a
related claim. We formulate this relationship using
the function: TclðClÞ ¼ fCa

l g.
We use symbols Cx for context, Co for component, Ev for

evidence, Cl for claim, Ci
l for invalidated claim, Ei

v for
invalidated evidence, and Ca

l for potentially affected claim.

Fig. 3. Model of the relationship between security assurance case
concepts and software development artifacts.

TABLE 1
Analysis of the Verification Areas of OWASP [14]

Notes:
1) We use the following abbreviation: RA for review and analysis and
TFU for testing of security features and their use.
2) The numbers correspond to the count of the security verification
requirements of the class.

8. The reason is: the percentage of security verification requirements
that could be automated is low.

9. A software component is a unit of composition (and is also subject
to composition) with specified interfaces and explicit context depen-
dencies and can be deployed independently [38].

OTHMANE ET AL.: EXTENDING THE AGILE DEVELOPMENT PROCESS TO DEVELOP ACCEPTABLY SECURE SOFTWARE 5

We also use IclðCxÞ to denote a function that provides the
claims associated with the context provided as a parameter,
IevðCoÞ to denote a function that provides the evidences
associated with the component provided as a parameter,
IclðEvÞ to denote a function that provides the claims associ-
ated with the evidence provided as a parameter, and TclðClÞ
to denote a function that provides the claims related to the
claim provided as a parameter.

Note also that invalidation of claims makes evidences
associated to the claims useless. Also, invalidation of claims
and evidences makes associated arguments useless. (We do
not discuss invalidation of arguments because the process is
straightforward.)

4.3 Methodology of Security Reassurance
of Software Increments

The method of security reassurance of software incre-
ments needs to maintain the security assurance cases.
For instance, each assurance case shares a set of arti-
facts with the security assurance case of the previous
iteration. The security assurance case of a new incre-
ment requires only new evidences for invalidated claims
or new claims.

An efficient method for security reassurance of software
increments minimizes the reassurance task, which requires
minimizing the number and size of claims to evaluate. We
exploit the decomposition of software into a set of compo-
nents and we maintain the security assurance case based on
changes to the components—We exploit the locality prop-
erty identified in Section 4.1.

A software increment could affect the security assurance
case in several ways:

� Case 1. Context change. The set of claims that need
evaluation due to context change of a claim includes
the claim and related claims.

� Case 2. Component update. Component update
could invalidate evidences and claims associated
with the component. It could potentially affect
claims associated with components related to the
modified component.

� Case 3. New component. The set of claims that need
evaluation due to adding a new component includes
claims related to the new component and claims that
could be affected by updating other components

connected to the new component—e.g., they have a
dependency with the new component.

� Case 4. New claim. The set of claims that need evalua-
tiondue to adding a new claim includes the newclaim,
sub-claims, and parent claims—i.e., related claims.

We note that the reassurance method is recursive: imple-
menting a new claim may require implementing new com-
ponents or updating existing components which affects the
security assurance case as specified in Case 2 and Case 3.
Also, in the worst case, an iteration invalidates all claims of
the security assurance case, which requires reevaluation of
these claims and in the best case it preserves all the claims
of the previous iteration and evaluates the claims associated
with the new components integrated to the increment.

5 EXTENDING THE AGILE SOFTWARE

DEVELOPMENT PROCESS WITH SECURITY

ENGINEERING ACTIVITIES

The proposed approach for extending the agile develop-
ment process is based on the following: (1) redesign the use
of the security engineering activities (risk assessment, secu-
rity engineering, and security assurance) to accommodate
the iterative nature of the agile software development pro-
cess (see Section 2.1); and (2) use of our method of security
reassurance to reassure the security of software increments.

We extend the agile development process by integrating
the security sub-processes: risk assessment, security engi-
neering, and security assurance (see Section 2.2) to the agile
development process, and ensuring production of accept-
ably secure software at each development iteration. Recall
that acceptably secure software is a software increment that
demonstrates a set of security goals selected by the product
owner for the iteration [39].

Fig. 4 depicts the new process, called agile secure software
development process. The description of the phases of the pro-
cess follows.

5.1 Extending the Inception Phase

We extend the inception phase with three activities: threat
modeling, risk estimation, and security goals identification,
which are performed after scoping the project, sketching the
architecture, and identifying the main user stories. The focus
in this phase is on assessing the security risks to the software
and not on finding solutions that wemay never use [40].

Fig. 4. Process for agile development of secure software.

6 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. X, XXXXX 2014

The extension that we propose does not require the use
of a specific threat modeling or risk assessment method.
However, a possible approach to do so follows. A team
composed of developers, the product owner, and a security
expert could, for example, meet in a workshop to identify
the threats relevant to the software [40] and the possible vio-
lations of key security protection mechanisms, e.g., authori-
zation and data validation. (They could also use the misuse
case method [41] for threat modeling.) Then, the developers
and the security expert provide their perceptions of the like-
lihood of occurrence of the threats (the “chance” that an
attacker exploits a weakness or vulnerability and attacks the
software) and the product owner provides his/her percep-
tion of the severity of the impact of the threats—level of the
damage of a threat when successfully triggered. The likeli-
hood and severity estimates are combined for each threat to
obtain its risk level [42].

The team members compose a set of security goals that
address the threats. The security goals take the form of
claims for the assurance cases and are added as security
user stories to the project backlog.

5.2 Extending the Construction Phase

We extend the construction phase by adding a set of activi-
ties to enable producing “acceptably secure” software incre-
ments. At the beginning of each iteration, the product
owner defines “acceptably secure” software for the itera-
tion; that is, the security claims that the increment should
satisfy. (The product owner takes responsibility for choos-
ing the threats to mitigate and for accepting the impacts of
the remaining threats in each iteration or release.)

There are two types of user stories that the developers
and product owner could select from: functional user stories
and security user stories. The team members should con-
sider both the results of the risk assessment and the urgency
of the customer needs in selecting the security user stories.
The description of how to develop functional and security
user stories follows.

Developing functional user stories. In addition to the regular
software activities required in the development of a user
story (see Section 2.1), the development team members per-
form a risk assessment for the selected user stories and
develop security user stories to mitigate the threats they
identify. The team members need also to apply secure cod-
ing and data validation techniques [43] to avoid source code
vulnerabilities. For example, they need to carefully use
memory allocation and exception handling.

Developing security user stories. The steps are:

1. Elicit the security requirements—use a threat-based
security requirements eliciting process, such as Sin-
dre and Opdahl method [44], to derive the security
requirements related to the chosen security goal.

2. Develop security test scenarios—develop attack sce-
narios to test if the software satisfies its security
requirements. For example, they design experiments
for bypassing access data policy through performing
a SQL injection attack.

3. Design a security feature for the user story—design a
security feature that implements the security
requirements and that could be integrated to the

software architecture. The design transforms the
security requirements expressed as constraints to a
software behavior.

4. Develop the security feature—split the security fea-
ture into a set of user stories and implement them.

5. Test the security feature—implement and execute the
security test scenarios to evaluate the compliance of
the increment with the security requirements.
The team concludes that the software implements the
security user story if the results of the tests are positive.

Security assurance. The developing team members define
the claim “acceptably secure” for the iteration and use the
method that we described in Section 4.3 to ensure the secu-
rity of new increment.

We note that we record the evidences collected from the
test scenarios of a security feature in the assurance case only
when the security feature is fully developed because the
assurance case notation does not provide a simple way to
record partial satisfaction of a claim without ambiguity—in
our opinion.

5.3 Extending the Transition Phase

In this phase, the team members perform the security assur-
ance tasks that require extensive time and cost. They could
also perform automated security tests and analysis of all the
software with the aim to identify inconsistencies and
increase the confidence in the security of the software. The
team may seek the help of external reviewers at this phase.

6 CASE STUDY: HR WEB PORTAL

This section illustrates the use of the agile secure software
development process including the security reassurance
method that we propose using a simple HRWeb portal. The
portal enables viewing and updating employees’ personal
information and holidays.

6.1 Inception Phase

At the project inception, the product owner and the devel-
opers sketch the architecture of the intended software as
depicted by Fig. 5 and identify the initial user stories as pro-
vided in Table 2. Then, they choose to develop the applica-
tion using Java and run it on an Apache Web server [45].

The product owner sets two security policies: (1) each
employee can view and update his/her own personnel
information; and (2) HR officers can view and update all
employee records. Next, the team members analyze the
threats and assess the risks to the software. Then, they select
four main security goals, which we describe in Table 3.10

Fig. 5. Architecture of the HRWeb portal application.

10. The use of dependencies column is helpful in the security assur-
ance task.

OTHMANE ET AL.: EXTENDING THE AGILE DEVELOPMENT PROCESS TO DEVELOP ACCEPTABLY SECURE SOFTWARE 7

(We do not describe the threat modeling and risk assess-
ment process that helped to choose the security goals
because this work does not contribute to these subjects and
the choice of the methods does not have impact on the pro-
cess that we propose.)

6.2 Construction Phase

The team planned three development iterations to imple-
ment the user stories, which end with a release. To ease the
understanding of the evolution of the software we show the
relationship between the components of the presentation
and business layers of the application in Table 4 and we
summarize the impacts of the user stories on the compo-
nents of the software in Table 5. Table 5 includes the func-
tional user stories of Table 2 and two security user stories:
(U4) for authenticating users and (U5) for controlling use of
the application.11

Now, we describe the development iterations and show
the evolution of the security assurance case of the application.

Iteration 1. This iteration involves the development of the
user story U1. The components of the increment are the
CreateEmployee, ViewEmployee, and UpdateEm-

ployeeWeb forms and the Employee class.
The team members define the security claim “the system

is acceptably secure” for the iteration as satisfying the
claims: C01, C03 and C04. They decide to host the applica-
tion on a server that only HR officers could authenticate to
using their network login.

Fig. 6 shows the security assurance case of this iteration.
Claim C01 is satisfied by the evidence collected from a
review of the software deployment architecture. Claim C03
is satisfied because all input for the CreateEmployee,
ViewEmployee, and UpdateEmployee Web forms are
validated, hence the sub-claims: C03:1, C03:2, and C03:3 are
satisfied. This argument is supported by two forms of
evidences: results of code review for the Web forms: Crea-
teEmployee, ViewEmployee and UpdateEmployee;
and security testing of the three Web forms with invalid

TABLE 4
Relationships between Presentation and Business

Layer Components

TABLE 5
Impact of User Stories on the Components of the Architecture

We use the code “A” for adding a new component and “U” for updating
an existing component.

TABLE 6
List of Evidences

TABLE 3
Relationships between the Security Claims

TABLE 2
List of User Stories

11. These tables are not part of the proposed method.

8 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. X, XXXXX 2014

input handled successfully by the application. Claim C04 is
satisfied because its sub-claims C04:1, C04:2, C04:3 and
C04:4, which state that source code vulnerabilities were
reduced as much as possible for the Employee, Crea-

teEmployee, ViewEmployee, and UpdateEmployee

components respectively, are satisfied. The claim is
supported by the results from the code security analysis
tool run on the software components. (Fig. 6 shows the evi-
dences collected by the assessment techniques and relates
them to the claims they support.)

Iteration 2. This iteration involves implementing user
story U2. The resulting increment could be used by HR offi-
cers to create, view, and update employee records and by
employees to view and update their records.

The team members define again the claim “the system is
acceptably secure” of the iteration as satisfying the claims
C01, C03, and C04. However, implementing user story U2
requires hosting the application on a server accessible by
HR officers and employees.

The change of the deployment architecture invalidates
the argument of evidence E01:1. An alternative approach
to satisfy claim C01 (anonymous access to the software
is prevented) is to develop an authentication mechanism,
which we formulate as security user story U4. This itera-
tion results in adding the Login and Authentication

components to the increment and updating the configu-
ration files of the application to require the user to be
authenticated.

The iteration affects the security assurance case. The
assurance case is modified as follows:

� Invalidate the evidence E01:1 and the claims C01
and C00.12 Claim C01 is now supported by the evi-
dence from successful tests with the authentication

mechanism implemented in addition to a review of
the deployment architecture.

� Add a sub-claim, C03:4 and associated evidences
E03:4:1 E03:4:1, to claim C03. The changes state
that we ensured the Login Web form validates its
data input.

� Add a sub-claim, C04:5 and associated evidences
E04:6:1 E04:6:1, to claim C04. The changes state that
we ensured the newly added login and authentication
components have reduced source code vulnerability.

Note that the security claims for this iteration enforce
user authentication to gain access to the system, but do not
ensure proper access control for the system resources, i.e.,
do not distinguish between HR officers and regular employ-
ees for authorizing actions.

Iteration 3. This iteration involves implementing user
story U3. The resulting increment could be used by HR offi-
cers to create/view/update employee records and manage
holidays, and by employees to view/update their records.

In this iteration, the top level security claim is com-
posed of the three sub-claims: C02, C03, and C04. (Claim
C01 becomes a sub-claim of claim C02.) Claim C02 (Pre-
vent unauthorized access and modification of personal
information) is satisfied by implementing an access con-
trol mechanism, which we formulate as security user
story U5.

This iteration results in adding the ManageHoliday,
Holidays, ManageResources, Resource, AssignAc-

cessControl, and AccessControl components to the
increment and updating the ViewEmployee, UpdateEm-
ployee and LoginWeb forms to enforce the access control
policies.

Fig. 7 shows the invalidated evidences as a result of
this increment in blue dashed circles, and the invali-
dated claims in green dashed rectangles. The changes
required the following modifications to the security
assurance case:

12. Recall that claims become invalid as a result of invalidating sup-
porting evidences or sub-claims.

Fig. 6. Security assurance case for Iteration 1. (Table 6 describes the evidence codes.)

OTHMANE ET AL.: EXTENDING THE AGILE DEVELOPMENT PROCESS TO DEVELOP ACCEPTABLY SECURE SOFTWARE 9

� Collect new evidences for the claims C03:1, C03:2,
C03:3, and C03:4 since the evidences collected in the
previous iteration become invalid.

� Collect new evidences for the claims C04:3, C04:4,
and C04:5 since the evidences collected in the previ-
ous iteration become invalid.

� Add sub-claims and associated evidences to C03 to
state that the forms ManageHoliday, ManageRe-
sources and AssignAccessControl validate the
input data they receive.

� Add sub-claims and associated evidences to C04 to
state that the components ManageHoliday, Holi-
days, ManageResources, Resource, AssignAc-
cessControl, and AccessControl have reduced
source code vulnerabilities.

� Relate the claim C02 to the (turned) sub-claim C01
and collect evidences from successful test scenarios
for the access control mechanism.

6.3 Transition Phase

At this phase, the development team members document
the main decisions they make and the security tests of
the user stories they perform. They also request the help
of the security expert who review the documentation
and perform more tests to verify the security user stories
U4 and U5.

7 DISCUSSION

This section discusses how the proposed method preserves
the agile development values and produces secure software.
It also lists the limitations of the method.

7.1 Preserving the Agile Values

This section discusses how the proposed method preserves
the agile values [6].

Individuals and interactions. The proposed method favors
individuals and interactions over processes and tools
because several of the security engineering activities are
performed in collaboration between the developers and the
product owner. For instance, the threat modeling and risk
estimation activities are performed in workshops that
include the developers and the product owner.

Working software. The proposed method favors imple-
menting security mechanisms and uses a security assurance
approach (i.e., security assurance cases) that does not
require extensive documentation, but rather connects the
claims to evidences that justify them. We consider the evi-
dences as light documents that record the results of the
security assessment activities.

Customer collaboration. The proposed method considers
the customer perspective of secure software instead of the
attacker perspective. For instance, the product owner, who
represents the customers, collaborates with the developers
in identifying the security threats and estimating the risks
to the software. He/She is also responsible for selecting the
priority of achieving the security claims.

Responding to change.The proposedmethod accommodates
changes through (a) identifying emerging threats related to
user stories selected for implementation in a new increment
and (b) reassuring the security of the new increment.

7.2 Producing Secure Software

The proposed method produces secure software from a
risk management perspective. For instance, it integrates

Fig. 7. Invalidated claims and evidences upon the transition from Iteration 2 to Iteration 3. (Table 6 describes the evidence codes.)

10 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. X, XXXXX 2014

the sub-processes: risk assessment, security engineering,
and security assurance. The sub-processes ensure identi-
fication of the threats to the software, engineering of
security mechanisms for the main threats as perceived
by the product owner, and ensuring the implemented
security mechanisms mitigate the threats. The use of
security assurance cases builds confidence into the secu-
rity of the software; it provides the arguments justifying
the evidences supporting the claims.

7.3 Limitations of the Method

The proposed method has three main limitations. Their
descriptions follow.

Limited scalability. The maintenance of the security assur-
ance cases relies on tracing the impacts of developing new
user stories on the components of the software, the eviden-
ces, arguments, and claims. The difficulty of tracing the
impacts grows very fast as the number of components of
the software, the number of claims, evidences, and argu-
ments grow, which limits the use of the method.

We propose to address the issue through grouping the
user stories and grouping the components of the soft-
ware. This requires associating the claims, evidences,
and arguments to groups of user stories and groups of
components. The loss of granularity in specifying the
relationships between the assurance artifacts and the
software artifacts limits the efficiency of the method
because it increases the number of claims, arguments,
and evidences that could be affected by a change to a
component.13

Extra cost. The periodic security reassurance of a software
and the need to reassess a set of claims increase the cost of
security assurance. The cost of the reassessment depends
strongly on the software changes for the specific iteration.
For instance, Fig. 7 shows that for iteration 3 most of the
claims (10 out of 14 claims) require a new assessment. The
cost is still lower than reevaluating all the claims at the end
of each iteration as it would be required if we used check-
lists of security verification requirements.

The rework cost can be justified for the case of software
that evolve based on the needs of the customers–mainly
produced by commercial companies. However, it may not
be justified if the security goals are all known in advance
and the software can be only released for use if all the goals
are achieved.

Requirement of high independence between the software
components. The method is based on the assumption of
high independence between the components of the soft-
ware. The assumption limits the security reassurance of a
new increment to the reevaluation of a set of claims asso-
ciated with the components that have changed and the
few claims that are associated with all the components of
the software.

The assumption is valid for software that have com-
ponents-based [46] architecture or Service Oriented
Architecture (SOA) [47] because they reduce the number

of connections between the components and are highly
testable.14

This assumption is strong for the general case. For
instance, Ren et al. [48] analyzed the impact of code
changes on the tests of the functionalities of a software,
Daikon, which evolved over the period of a year. They
found that, on average, 52 percent of the tests are affected
by the changes made in a week. The statistics show the
limitation of the efficiency of our approach for software
that have high dependency between the components.
This requires more research to analyze the impacts of
software changes on the different kinds of security claims
and the efforts required to reevaluate invalidated claims.

8 CONCLUSION

This paper concludes that the agile software development
approach does not prevent ensuring the security of software
increments produced at the end of each iteration. It proposes
a method for security assurance of software increments and
integrates security engineering activities into the agile soft-
ware development process. The method enables ensuring
the delivery of secure software at the end of each iteration.

The main advantages of the approach are: (1) helping
reduce the cost of reassurance of software security, and (2)
helping reduce the cost of mitigating threats. The reason for
the first advantage is: the development team could reuse
parts of the security assurance cases in the assessment of
the new increments. The reason for the second advantage is:
the approach ensures that security goals achieved in the
early iterations of the development are preserved in the sub-
sequent software increments.

The main limitations of the current method are: (1) it is
not scalable enough; (2) it requires extra cost; and (3) it
applies to modular software, where security claims are asso-
ciated with specific components.

This paper demonstrates the possibility to develop a
secure software using the agile development process
through a simple case study that simulates the methods we
propose. Our future work include automating the proposed
development process and security reassurancemethod, eval-
uating the cost of security reassurance on the development
time, and investigating how to consider security design prin-
ciples—such as the “fail safe” principal in the assurance.

ACKNOWLEDGMENTS

The work was performed while L. ben Othmane was with
the Eindhoven University of Technology, the Netherlands.

REFERENCES

[1] G. McGraw, Software Security: Building Security In. Software Secu-
rity Series, Addison-Wesley, 2006.

[2] CNSS Glossary Working Group, “National Information Assur-
ance (IA) Glossary,” CNSS Instruction No. 4009, http://jitc.fhu.
disa.mil/pki/documents/committee_on_national_security_sys-
tems_instructions_4009_june_2006.pdf, June 2006.

[3] O. Gotel, J. Cleland-Huang, J.H. Hayes, A. Zisman, A. Egyed, P.
Grnbacher, A. Dekhtyar, G. Antoniol, J. Maletic, and P. Mder,
“Traceability Fundamentals,” Software and Systems Traceability,
pp. 3-22, Springer-Verlag, 2012.13. A change to a component, member of a group, requires assess-

ing the claims and evidences associated to all the components of the
group instead of only the claims and evidences associated to the com-
ponent itself. 14. Easier to write tests that ensure the required properties.

OTHMANE ET AL.: EXTENDING THE AGILE DEVELOPMENT PROCESS TO DEVELOP ACCEPTABLY SECURE SOFTWARE 11

[4] J. Grossklags and B. Johnson, “Uncertainty in the Weakest-Link
Security Game,” Proc. First Int’l Conf. Game Theory for Networks
(GameNets ’09), pp. 673-682, May 2009.

[5] C. Larman andV.R. Basili, “Iterative and IncrementalDevelopment:
A Brief History,” Computer, vol. 36, no. 6, pp. 47-56, June 2003.

[6] Agile Alliance, Agile Alliance. Agile Alliance, http://www.
agilealliance.org/, Sept. 2012.

[7] K. Beznosov and P. Kruchten, “Towards Agile Security
Assurance,” Proc. Workshop New Security Paradigms (NSPW ’04),
pp. 47-54, Sept. 2004.

[8] J. Wayrynen, M. Boden, and G. Bostrom, “Security Engineering
and eXtreme Programming: An Impossible Marriage?” Proc.
Fourth Conf. Extreme Programming and Agile Methods, pp. 117-128,
Aug. 2004.

[9] K.M. Goertzel and T. Winograd, “Enhancing the Development
Life Cycle to Produce Secure Software,”Technical Report DAN
358844 Defense Technical Information Center (DTIC), https://
buildsecurityin.us-cert.gov/bsi/resources/1185-BSI/1191-BSI.
html,, 2008.

[10] K.M. Goertzel, T. Winograd, H.L. McKinley, P. Holley, and B.A.
Hamilton, “Security in the Software Lifecycle,” Draft Version 1.2,
www.cert.org/books/secureswe/SecuritySL.pdf, Aug. 2006.

[11] OWASP, “Agile Software Development: Don’t Forget Evil User
Stories,” https://www.owasp.org/index.php/Agile_Software_-
Development:_Don 27t_Forget_EVIL_User_Stories, Aug. 2011.

[12] B. Sullivan, “Agile Security; or, How to Defend Applications with
Five-Day-Long Release Cycles,” Black Hat, DC, http://www.
blackhat.com/presentations/bh-dc-10/Sullivan_Bryan/Black-
Hat-DC-2010-Sullivan-SDL-Agile-slides.pdf, Jan. 2010.

[13] A. V€ah€a-Sipil€a, “Product Security Risk Management in Agile
Product Management,” OWASP AppSec Research, https://www.
owasp.org/images/c/c6/OWASP_AppSec_Research_2010_Agi-
le_Prod_Sec_Mgmt_by_Vaha-Sipila.pdf, May 2013.

[14] M. Boberski, J. Williams, and D. Wichers, OWASP Application
Security Verification Standard 2009. The Open Web Application Secu-
rity Project (OWASP), https://www.owasp.org/images/4/4e/
OWASP_ASVS_2009_Web_App_Std_Release.pdf, June 2009.

[15] J. Vivas, I. Agudo, and J. Lpez, “A Methodology for Security
Assurance-Driven System Development,” Requirements Eng.,
vol. 16, no. 1, pp. 55-73, 2011.

[16] K. Schwaber and M. Beedle, Agile Software Development with
Scrum. first ed., Prentice Hall PTR, 2001.

[17] R.C. Martin, Agile Software Development: Principles, Patterns, and
Practices. first ed., Prentice Hall PTR, 2006.

[18] S.W. Ambler, The Agile Scaling Model (ASM): Adapting Agile
Methods for Complex Environments, IBM, ftp://ftp.software.
ibm.com/common/ssi/sa/wh/n/raw14204usen/RAW14204U-
SEN.PDF, Dec. 2009.

[19] M. Jazayeri, “Some Trends in Web Application Development,”
Proc. Future of Software Eng. (FOSE ’07), pp. 199-213, May 2007.

[20] S.W. Ambler. The Agile System Development Lifecycle (SDLC),
http://www.ambysoft.com/essays/agileLifecycle.html,May 2013.

[21] Int’l Organization for Standardization and Int’l Electrotechnical
Commission, Information Technology: Systems Security Engineering:
Capability Maturity Model (SSE-CMM), Std., 2008.

[22] J. Meier, A. Mackman, B. Wastell, P. Bansode, J. Taylor, and R.
Araujo, Security Engineering Explained, http://www.microsoft.
com/en-us/download/details.aspx?id=20528, May 2013.

[23] R. Shirey. Internet Security Glossary, Version 2. RFC 4949 (Infor-
mational), http://www.ietf.org/rfc/rfc4949.txt, Aug. 2007.

[24] R. Kissel, Glossary of Key Information Security Terms, Nat’l Inst. of
Standards and Technology Std. NIST IR 7298, Rev. 1, http://csrc.
nist.gov/publications/nistir/ir7298-rev1/nistir-7298-revision1.
pdf, Feb. 2014.

[25] D. Jackson and D. Cooper, “Where Do Software Security Assur-
ance Tools Add Value?” Proc. Workshop Software Security Assurance
Tools, Techniques, and Metrics, pp. 14-21, Nov. 2005.

[26] S.M. Bellovin, “Security as a Systems Property,” IEEE Security &
Privacy, vol. 7, no. 5, p. 88, Sept./Oct. 2009.

[27] Software Engineering Institute—Carnegie Mellon University. Cert
Secure Coding Standards, https://www.securecoding.cert.org/
confluence/display/seccode/CERT+Secure+Coding+Standards,
Jan. 2013.

[28] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole, “Buffer
Overflows: Attacks and Defenses for the Vulnerability of the Dec-
ade,” Proc. DARPA Information Survivability Conf. and Exposition
(DISCEX ’00), pp. 119-129, Jan. 2000.

[29] T. Kelly and R. Weaver, “The Goal Structuring Notation—A
Safety Argument Notation,” Proc. Dependable Systems and Net-
works—Workshop Assurance Cases, July 2004.

[30] J.A. McDermid, “Support for Safety Cases and Safety Arguments
Using SAM,” Reliability Eng. & System Safety (Special Issue on Soft-
ware Safety), vol. 43, no. 2, pp. 111-127, 1994.

[31] J. Goodenough, H. Lipson, and C. Weinstock, Arguing Security-
Creating Security Assurance Cases, https://buildsecurityin.us-
cert.gov/bsi/articles/knowledge/assurance/643-BSI.html, May
2013.

[32] R.E. Bloomfield, S. Guerra, M. Masera, A. Miller, and O.S. Sayd-
jari, “Assurance Cases for Security,” Proc. Workshop Assurance
Cases for Security, http://www.csr.city.ac.uk/AssuranceCases/
Assurance_Case_WG_Report_180106_v10.pdf, June 2005.

[33] D. Baca and B. Carlsson, “Agile Development with Security Engi-
neering Activities,” Proc. Int’l Conf. Software and Systems Process
(ICSSP ’11), pp. 149-158, 2011.

[34] Microsoft, Agile Development Using Microsoft Security Develop-
ment Lifecycle. Microsoft, http://www.microsoft.com/security/
sdl/discover/sdlagile.aspx, May 2013.

[35] A. V€ah€a-Sipil€a, Software Security in Agile Product Management,
h t t p : / /www . f o k k u s u . fi / a g i l e - s e c u r i t y / S o f tw a r -
e%20security%20in%20agile%20product%20management.pdf,
May 2013.

[36] X. Ge, R.F. Paige, F.A. Polack, H. Chivers, and P.J. Brooke, “Agile
Development of Secure Web Applications,” Proc. Sixth Int’l Conf.
Web Eng. (ICWE ’06), pp. 305-312, July 2006.

[37] M. Cohn, User Stories Applied: For Agile Software Development.
Pearson Education, 2004.

[38] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming. second ed., Addison-Wesley Longman, 2002.

[39] K. Beznosov, “Extreme Security Engineering: On Employing
xp Practices to Achieve ”Good Enough Security” without
Defining It,” Proc. First ACM Workshop Business Driven Security
Eng. (BizSec), Oct. 2003.

[40] B. Wastell, J.D. Meier, and A. Mackman, “Walkthrough: Creating
a Threat Model for a Web Application,”technical report Microsoft
Corporation, http://msdn.microsoft.com/en-us/library/
ff649749.aspx, May 2013.

[41] I. Alexander, “Misuse Cases: Use Cases with Hostile Intent,” IEEE
Software, vol. 20, no. 1, pp. 58-66, Jan./Feb. 2003.

[42] G. Stoneburner, A. Goguen, and A. Feringa, Risk Management
Guide for Information Technology Systems—Recommendations of the
National Institute of Standards and Technology, Nat’l Inst. of Stand-
ards and Technology (US) Book, Online, Special Publication 800-
30, http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.
pdf, May 2013.

[43] Software Assurance Forum, Secure Coding. ftp://ftp.sei.cmu.
edu/pub/pruggiero/bsi-swa/1/SecureCoding_PocketGui-
de_v2%200_05182012_PostOnline.pdf, May 2013.

[44] G. Sindre and A.L. Opdahl, “Eliciting Security Requirements with
Misuse Cases,” Requirement Eng., vol. 10, no. 1, pp. 34-44, Jan.
2005.

[45] The Apache Software Foundation. Apache http Server Project.
The Apache Software Foundation, http://httpd.apache.org/,
May 2013.

[46] D. Garlan and M. Shaw, “An Introduction to Software
Architecture,” Advances in Software Engineering and Knowledge Engi-
neering, vol. 2, pp. 1-39,World Scientific PublishingCompany, 1993.

[47] T. Erl, Service-Oriented Architecture: Concepts, Technology, and
Design. Prentice Hall PTR, 2005.

[48] X. Ren, F. Shah, F. Tip, B.G. Ryder, and O. Chesley, “Chianti: A
Tool for Change Impact Analysis of Java Programs,” Proc. ACM
SIGPLAN 19th Ann. Conf. Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’04), pp. 432-448, Oct. 2004.

12 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. X, XXXXX 2014

Lotfi ben Othmane received the BS degree from
the University of Sfax, Tunisia, in 1995, the MS
degree in computer science from the University
of Sherbrooke, Canada, in 2000, and the PhD
degree from Western Michigan University
(WMU) in 2010. He has extensive experience in
the industry as a programmer, software architect,
system analyst and technology manager in Tuni-
sia, Canada and USA. He is currently a postdoc-
toral research fellow at Lero-The Irish Software
Engineering Research Center, Ireland. Previ-

ously, he was a postdoctoral research associate at the Laboratory for
Quality Software (LaQuSo), Eindhoven University of Technology (TU/e),
The Netherlands. His main research topics include development of
secure systems using Agile approach and safety and security in con-
nected vehicles.

Pelin Angin received the BS degree in com-
puter engineering from Bilkent University, Tur-
key, in 2007. She is currently working toward
the PhD degree at the Department of Computer
Science, Purdue University. Her research inter-
ests lie in the fields of mobile-cloud computing,
cloud computing privacy and data mining. She
is currently working under the supervision of
Professor Bharat Bhargava on leveraging
mobile-cloud computing for real-time context-
awareness and development of algorithms to

address the associated privacy issues.

Harold Weffers received the MSc degree in
computer science in 1993, and the PDEng
degree in software technology in 1995. He is a
director of the Laboratory for Quality Software
(LaQuSo) at the Eindhoven University of Tech-
nology. After working for the Royal Netherlands
Navy and Philips, he joined the Eindhoven Uni-
versity of Technology in 1998 as the director of
the Professional Doctorate in Engineering degree
Programme in software technology. In 2008, he
moved to his current position and is currently a

member of a number of committees as well as a member the NEN Norm
Committee on systems and software engineering (related to ISO/IEC
JTC1-SC7).

Bharat Bhargava received the BE degree from
the Indian Institute of Science, and the MS and
PhD degrees in electrical engineering from Pur-
due University, West Lafayette, IN. He is currently
a professor of computer science at Purdue Uni-
versity. His research involves mobile wireless net-
works, secure routing and dealing with malicious
hosts, providing security in Service Oriented
Architectures, adapting to attacks, and experi-
mental studies. His name has been included in
the Book of Great Teachers at Purdue University.

Moreover, he was selected by the student chapter of ACM at Purdue Uni-
versity for the Best Teacher Award. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

OTHMANE ET AL.: EXTENDING THE AGILE DEVELOPMENT PROCESS TO DEVELOP ACCEPTABLY SECURE SOFTWARE 13

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

