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Abstract. Until 2020 more than 20 billion devices will be connected to
the Internet. The communication between these devices must be secured
for privacy, security and safety reasons. Constrained environments, low
power assumptions and rapidly changing networks introduce new prob-
lems for classical communication protocols. One solution to this problem
is to adapt successful protocols as lightweight implementations to fit the
requirements established in an IoT context.
In this work, we discuss cryptographic protocols and their lightweight
variants with focus on the applicability to the Internet of Things. We give
recommendations on which protocol to use in which application area and
examine the applicability of the discussed protocols in the automotive
environment, a concrete use case of the Internet of Things.
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1 Introduction

Over the past years, the Internet of Things (IoT) has become one of the most used
buzzwords in the computer industry. It is an umbrella term for the connection
of different real world objects with each other via internet.

Consider Car-to-X communication as an example for an IoT environment.
Car components like the breaks, airbags, fuel consumption, speedometer and the
board computer are connected with each other. The car, for its part, is connected
to the vendor and to its environment. This includes other cars and the traffic
system.

A large majority of contributions and discussions regarding IoT is focused on
the benefits which could or will arise from the upgrade of current infrastructure
or the inclusion of unconnected parts to IoT networks.

With more and more different devices communicating, the question is how to
secure the data traffic. Traditionally, most components connected to the internet
are systems with enough computing power and memory to perform sufficiently
secure cryptographic operations within suitable time and effort. This is not the
case for most IoT components. These components are usually lacking the re-
quired memory or computing power to perform standard protocols offered by
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classical network theory, like TLS, to enforce security through authentication,
encryption and integrity.

This work addresses security in IoT by analyzing different cryptographic
protocols which are already in use and which are thought of as suitable for
secure communication between IoT components. The examined protocols are
representatives for mechanisms located on different layers of the OSI model to
honor the fact that security can be enforced on different layers.

The work is structured as follows. Section 2 summarizes related work on
similar topics. In Section 3, the Datagram Transport Layer Security protocol
is presented. Section 4 describes IPSec. Section 5 introduces the IEEE 802.11i
protocols and in Section 6, a comparison of the presented protocols is given. The
work is concluded in Section 7.

2 Related Work

In previous works, different protocols to ensure security have been studied and
surveyed.

Clark and Jacob did a survey on cryptographic authentication protocols [1].
The authors discussed ten different types of authentication protocols and de-
scribed attacks against some of them. They did not perform a comparison or
give advise on which protocol is suitable for which application area.

Akyildiz et al. performed a survey on sensor networks [2]. In a first step, the
authors performed a requirement analysis for sensor network protocols, followed
by a discussion of the different layers and an overview of different sensor network
protocols. However, the security aspect is not discussed in this work.

Akkaya and Younis did a survey on network routing protocols in wireless
sensor networks with respect to their constrains [3]. Only the path establishment
is discussed.

Güngör et al. discussed communication protocols in smart grids with respect
to the physical layer and the application area [4]. The focus is on the application
not on security.

In contrast to the related work, this work gives an overview of security pro-
tocols with their applicability in the context of IoT, including sensor and less
constrained networks. By analyzing protocols located on different layers and ap-
plying them to a concrete scenario, this survey work is the first one of its kind
to the knowledge of the authors.

3 Datagram Transport Layer Security

Datagram Transport Layer Security (DTLS) is a Session Layer protocol for se-
cure datagram-based communication. It was introduced by Nagendra Modadugu
and Eric Rescorla in 2004 and is standardized in RFC 4347 [5]. Its current version
is version 1.2 and it is specified in RFC 6347 [6].
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Fig. 1. Position of DTLS in the OSI Reference Model (derived from [7])

It is located in the Session Layer between the Presentation Layer and the
Transport Layer. DTLS enables end-to-end security between applications in
multi-hop networks.

DTLS is an extension of the Transport Layer Security (TLS), which unfortu-
nately is not capable of handling datagram traffic since it is using communication
via TCP. DTLS is still very similar to TLS, hence we focus on the differences.
It reuses pre-existing protocol infrastructures of TLS and additional features to
support datagram-based communication, e.g. using UDP.

DTLS ensures authentication, confidentiality and integrity. Due to its sim-
ilarities, DTLS inherits security issues from TLS. It is rated as secure as TLS
in a comparable configuration and under the assumption that similar crypto-
graphic primitives are used [6]. Security issues based on TCP are not inherited
by DTLS, because it is relying on datagram traffic, i.e. for example communica-
tion via UDP.

DTLS provides a simple interface to a generic security, so it is easy to be
used in software. It is also referred to as Datagram TLS [8].

Fig. 2. The Structure of DTLS (derived from Figure 1 in [8])

As shown in Figure 2, DTLS contains a record layer with a connection for UDP-
based communication with various types of messages. DTLS supports a hand-
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shake protocol to establish a secure communication between a client and a server.
Similar to TLS, it also supports alert messages, changes in cipher specifications
and sending application data.

3.1 Record Layer

TLS uses a Record Layer to handle actual data and DTLS reuses this concept
with some minor changes. It takes data from the Session Layer and serves it to the
Transport layer after reformatting and encryption. It uses a record format but
unlike TLS, it does not use fragmentation in the record layer. Data is formatted
as single datagrams.

Fig. 3. Record format for DTLS ([8])

The record format (see Figure 3) contains similar information as the record
format of TLS. Type is the higher-level protocol used to process the enclosed
fragment as specified in TLS 1.1 [9]. Version is a struct of two integers, the
major version number and the minor version number of the protocol. The record
format also contains a field for the payload and the payload-length.

Compared to TLS, two new fields are introduced in the record format: epoch
and sequence number. Endpoints use epoch numbers to distinguish which cipher
state has been used to secure the payload. The epoch number is incremented in
the handshake, when the cipher state changes. It is also used to resolve ambiguity
when data loss occurs during session negotiation.

For instance, consider a server receiving two records: one record with sequence
number 9 and epoch number 2 and another record with sequence number 11
and epoch number 3. The client sent data records with sequence numbers 9, 10,
11 and 12. Records 10 and 12 are lost. Since epoch numbers are incremented
when sending ChangeCipherSpec (see Section 3.2) the server can resolve possible
ambiguity, assuming record 10 was the ChangeCipherSpec, because record 9 and
11 would have the same epoch number otherwise.

Sequence Numbers are used for reordering and to protect against replay
attacks. Due to datagram transport, records can get lost or be delivered in a
different order than intended. While TLS uses implicit record sequence numbers
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(RSNs), DTLS enforces explicit RSNs to protect against replay attacks and for
reordering.

3.2 Handshake Protocol

The Handshake protocol of DTLS is a three round-trip key establishment and
algorithm negotiation protocol and it is very similar to the handshake protocol
used in TLS. Figure 4 depicts the handshake protocol as it is used in DTLS.

Fig. 4. Handshake Protocol (derived from [6])

Compared to TLS, the handshake protocol contains an additional round-
trip, which is needed for cookie exchange. DTLS uses cookies to prevent denial
of service attacks and to verify that the client is capable of receiving packets at
its claimed address.

Given a client and a server, the client initializes the handshake by sending
ClientHello message, containing a 32-bit timestamp, a 28-bit random nonce
Rc, the protocol version, a list of applicable algorithms and a session id, to the
server. This message contains also a cookie field, which is initialized with an
empty cookie. The server checks for liveliness of the client by responding with a
HelloVerifyRequest message containing a cookie.

In the next round of the handshake, the client sends the ClientHello with
the same parameter values as before, but it adds the received cookie from the
HelloVerifyRequest. In case that the client already has a cached, stateless
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cookie from previous exchanges, the first round can be skipped by sending a
ClientHello message containing the cookie. The server does not need to check
for liveliness anymore and continues. The message formats of ClientHello and
HelloVerifyRequest are displayed in Figure 5.

Fig. 5. ClientHello and HelloVerifyRequest format (derived from [8])

In the second round, the server responds with multiple messages. It sends a
ServerHello message including similar information as in the ClientHello, as
well as a random nonce Rs. The Certificate message contains the certificate
information of the server for authentication of the server towards the client. This
message is optional (as indicated with a star * in Figure 4)

Additionally, a ServerKeyExchange message may be sent to hand out a tem-
poral public key for RSA. This is required if the server has no certificate, or if its
certificate is for signing only. By sending a CertificateRequest, the server can
request the clients certificate. The ServerHelloDone is the last message and it
is a marker that no other message is to be expected after this.

After receiving the ServerHelloDone message, the client sends multiple mes-
sages depending on the response of the server. If the client received a certificate
of the server, it verifies it. When receiving a CertificateRequest message, the
client responds with its certificate information.

Next, the client sends a ClientKeyExchange message. It contains a pre-
master secret and it is encrypted with the servers public key. If no certificate was
sent by the server, the temporal public key of the ServerKeyExchange message
is used to encrypt the pre-master secret. The shared pre-master secret will be
used as key material to compute the master secret on both sides separately. With
the master secret, client and server can derive the keys for the chosen algorithm.

Suppose the client only has a signing certificate. To enable the server to verify
the previously sent certificate, a CertificateVerify containing a signed hash
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over all previously transmitted handshake messages is sent. This way, the server
can verify the authenticity of the client.

The purpose of the ChangeCipherSpec message is to commit to the agreed ci-
pher suite. It is sent in the third round of the handshake protocol. The Finished
message contains a message authentication code (MAC) of the previous hand-
shake messages encrypted with the agreed cipher suite. When receiving the
Finished message, the server changes its cipher suite and acknowledges it too.
To finalize the handshake, the server sends a Finished message like the client
did before. Both Finished messages, contain a MAC over all sent messages com-
puted with the master secret. If the MAC values are equal, the handshake was
successful and both parties can begin transmitting application data.

Because handshake messages can be larger than a single DTLS record, frag-
menting is supported. In Figure 6, the format of the handshake messages is
displayed.

Fig. 6. Handshake format for DTLS (derived from [8])

The handshake header contains the overall message length, a message sequence
number (MSN, message seq), as well as the fragment offset (frag offset) and
its length (frag length). These information ensure that handshake fragments
can be ordered and reassembled correctly.

As previously stated, DTLS does not support fragmentation for the record
layer. Fragmentation is only supported for handshake messages.

3.3 Timeout and Retransmission

Due to the fact that handshake messages can be lost, a state machine for re-
transmission is implemented using a single timer at each endpoint. An endpoint
keeps retransmitting its last message until a reply is received or a maximum
timer value is reached. Retransmission timer values can vary between one and
three seconds, but due time-sensitive applications, one second is recommended
[6].

As shown in Figure 7, the state machine is based on four states, i.e. Prepar-
ing, Sending, Waiting and Finished.
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In the Preparing state, all computations that are necessary to prepare the
next transmission of messages are done. It buffers the messages for transmission
and enters the Sending state.

In the Sending state, the buffered messages are transmitted. Once the mes-
sages have been sent, the Finished state is entered if it was the last round in
the handshake. Or, if more messages are expected, a retransmission timer is set
and the Waiting state is entered.

In the Waiting state, there are multiple ways to continue:

– When the retransmission timer expires, the Sending state is entered, where
it retransmits the messages, resets the retransmission timer, and returns to
the Waiting state.

– A retransmitted round of messages is received and the Sending state is
entered, where it retransmits the messages, resets the retransmission timer,
and returns to the Waiting state.

– When receiving a round of messages and it is the final round of the hand-
shake, the Finished state is entered. If the received round of messages was
not the final round, the Preparing state is entered.

Fig. 7. Handshake format for DTLS (derived from [6])
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Because DTLS clients send the first message (ClientHello), their state machine
starts in the Preparing state. For the servers, the state machine starts in the
Waiting state, but with empty buffers and no retransmission timer.

When the server wants to redo a handshake, the state machine transitions
from the Finished state to the Preparing state transmitting the HelloRequest.
If the client receives a HelloRequest, its state machine transitions from Fin-
ished to Preparing to transmit the ClientHello.

When a retransmission timer expires the timer value is doubled, up to a max-
imum of 60 seconds [6]. Congestion should not be a concern, since retransmission
is only used in the handshake and not in the application data transfer.

3.4 ChangeCipherSpec Protocol

The ChangeCipherSpec Protocol contains just a single message. It is one byte
large and contains the value 1. By sending it in the handshake, the sender informs
the receiver about switching to the negotiated cipher suite. The ChangeCipherSpec
Protocol can not be used for key renewal later in the session. It is simply used
in the handshake protocol.

3.5 Alert Protocol

The Alert Protocol of DTLS is used to notify the other party that an error
might have occurred, for example if a certificate could not be verified. It is also
used for warnings.

If a warning is send out, the connection remains established, but when send-
ing an error, the connection will be shut down.

Another purpose for alert messages is the graceful termination of the con-
nection when one party is done and has nothing to send anymore. Therefore, a
CloseNotify message is send by both parties.

3.6 Record protection

The cipher modes of TLS 1.0 are all unsuitable for DTLS because of residual
states between records. By chaining the records during encryption, TLS requires
data records to be processed without any loss and in the intended order. DTLS
cannot ensure reliable or in-order delivery, such that if a record gets lost all
remaining records would be useless.

For TLS 1.1, a cipher block chaining mode (CBC) was proposed, which has
been adopted to DTLS. By using explicit initialization vectors (IVs) instead
of using the last ciphertext block from the previous message, CBC is suitable
for DTLS. Within each datagram, a random data block is prepended to the
datagram encrypted with CBC and all encrypted blocks are transmitted. The
receiver discards the first plaintext block to retrieve the actual record data. With
an explicit IV each record can be separately decrypted [8]. Therefore, AES and
Triple-DES are suitable encryption algorithms for DTLS.
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For message integrity, MACs are used to secure the payload. In the current
version of DTLS, the same MAC computation as in TLS 1.2 is used, but in-
stead of using implicit sequence numbers, the epoch and sequence number (as
described in 3.1) from the record itself is used. The offered MAC computations
are HMAC-MD5, HMAC-SHA-1 and HMAC-SHA-256.

As shown in Figure 8, securing the payload’s confidentiality and integrity is
done in two steps. First, the MAC over the concatenation of SQN, HDR and the
payload is computed. SQN are 8-bytes for the sequence number and epoch of the
current record and HDR is a concatenated value containing the version number,
the type and the length of the payload. In the second step, the payload, the
computed MAC value and a padding are concatenated, such that the resulting
plaintext length is a multiple of the block size b of the used encryption scheme
(b = 8 for Triple-DES and b = 16 for AES) [10, 11].

Fig. 8. Securing the payload (derived from [11])

3.7 Known Attacks

Based on its high similarity to TLS, DTLS and TLS have a similar attack surface.
Most attacks on TLS can be considered to be an attack on DTLS if the attack
does not target TCP. DTLS is implemented on UDP, hence TCP-based attacks
are not applicable to DTLS. For more details on known attacks on TLS, [12]
summarized known attacks on TLS 1.2 and also stated the applicability to DTLS
but without further explanations. Newer versions of TLS are not applicable since
DTLS’ current version is designed by TLS 1.2.

Throughout the design of DTLS, known weaknesses of TLS and UDP-based
communication have been considered. Replay attacks during data transmission
are resolved with sequence numbers in the record layer. Also DTLS is susceptible
to Denial of Service (DoS) attacks but with no fragmentation in the record layer,
hosts do not need to buffer partial records. Memory can be used more efficiently
and DoS attacks are less effective.
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During the handshake, a stateless cookie exchange prevents DoS attacks. This
way, DTLS is secured against resource consumption attacks and amplification
attacks. In order to optimize the handshake, servers can skip parts of the cookie
exchange. But this should only be done in environments which are safe against
DoS attacks.

The authors of [13] describe a plaintext recovery attack against the OpenSSL
implementation of DTLS, and a partial plaintext recovery attack against the
GnuTLS implementation of DTLS. The attack is possible because of differences
between the implementations and the RFC 4346 [9]. It could have been prevented
if the implementation had been in accordance with the specification instead
of using a prior release version of DTLS. An extension of these attacks was
presented by the authors of [11]. Al Fardan and Paterson developed more attacks
against DTLS and TLS based on a timing analysis of decryption processing.

As mentioned earlier, DTLS ensures authentication, confidentiality and in-
tegrity. Overall, it is rated as secure as TLS in a comparable configuration and
known attacks on TLS have also been applied to DTLS [11, 12].

3.8 Differences to TLS

The main goal in the design of DTLS was to follow the specification of TLS
as closely as possible. Newly introduced features of DTLS are for dealing with
unreliable datagram communication and therefore the differences between TLS
and DTLS are rather small [5]

TLS provides secure, transparent communication and is used in environments
where no memory or power limitations are given. It requires reliable transport
channels, typically with TCP and no datagram traffic is intended. Due to more
datagram traffic in today’s applications, less connection-oriented but still reliable
and secure communication is needed. DTLS holds the requirement of a secure
channel, but no reliable communication is possible. Messages can be lost or arrive
in a different order. DTLS uses explicit sequence numbers to resolve reordering
problems and lost messages are retransmitted based on a timer. Compared to
TLS, DTLS has a smaller Path Maximum Transmission Unit (PMTU) and does
not support fragmentation. This way, hosts can use memory more efficiently
because they do not have to buffer partial records before decryption.

While TLS comes with different cipher suites, DTLS cannot use most of them,
due to fragmentation and datagram loss in UDP. DTLS supports CBC mode, like
it was introduced for TLS 1.1. Triple-DES and AES are compatible encryption
schemes with DTLS is this mode. RC4, which secures TLS 1.0 connections is
computationally efficient but insecure and cannot be applied to lossy datagram-
based traffic.

The handshake protocol and record layer of TLS and DTLS are quite similar.
The additional round for the stateless cookie exchange in the handshake protocol
and the epoch and sequence numbers in the record format differ from DTLS to
TLS.

As compared in [8], DTLS and TLS are very similar, but DTLS has a small
overhead in the handshake protocol. Due to an additional round and larger
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message fragments, the handshake protocol is larger than for TLS. Because of
single datagram traffic, DTLS records have no fragmentation headers, which
means the overhead for data records is lower than for TLS. Latency measures of
TLS and DTLS handshakes showed exactly the expected difference of one extra
round-trip time (RTT).

3.9 DTLS in IoT

DTLS was not designed for lossy networks and constrained devices at first, but
it quickly became a key candidate for security in IoT anyway [14]. Since it is
considered to be heavy, lightweight implementations of DTLS were needed. As
presented in [14, 15], lightweight DTLS implementations could be based on using
Pre-shared Keys (PSK) or raw public keys. TinyDTLS is one candidate which was
developed by Bergmann [16]. The major advantage of DTLS over other security
protocols is the UDP-based communication and the memory efficient properties
on the host.

Another approach to adapt DTLS to IoT environments was suggested by
Raza et al. [17, 18]. By proposing a DTLS header compression, DTLS can be used
with the 6LowPAN standard and the compression does not compromise the end-
to-end security properties of DTLS. In IoT scenarios lower power communication
stacks are very common and DTLS can be adapted to it.

The IETF DTLS in Constrained Environments (DICE) working group [19]
leads the research on supporting DTLS usage in constrained environments with
tasks like adapting record layer for secure multicast messages or developing rea-
sonable implementations for IoT purposes. The IETF Constrained RESTful en-
vironments (CoRE) [20] working groups specifies the standardization of CoAP
and also proposed DTLS usage with CoAP as still the standard [21]. Consider-
ing the ongoing standardization activities, there is necessity for modifications in
order to adapt DTLS more and more to IoT scenarios.

4 IPSec

The IPSec standard is specified in its current version by the Internet Engineering
Task Force in 4301 [22] and 4302 [23]. IPSec is located on the Internet layer (layer
3) of the OSI layer model. It can be used to ensure confidentiality, integrity and
authenticity [2]. With the introduction of IPSec, a security model was introduced,
which provides security on a low layer in the OSI model. It allows to secure
multiple connections between hosts or gateways without the need to change the
implementation on the higher layers. IPSec ensures end-to-end security between
devices respectively networks on the internet layer.

4.1 Internet Key Exchange Protocol

Before IPSec can be used to protect connections, keys must be shared between
the communication parties to establish a so called security association (SA). In
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IPSec, the keys can be managed manually, which is called manual keying or with
internet key exchange protocol (IKE). With manual keying, the keys between
the parties are pre-shared and configured on the endpoints. IKE runs on UDP
and is therefore connectionless and not reliable. If IKE is used, the keys are
shared automatically. IKE defines how security parameters are agreed upon and
shared keys are exchanged. IKE defines two phases.
In phase one, mutual authentication and session keys are established. This is
based on pre-shared secrets or public key pairs for authentication. IKE exists
in two versions: IKEv1 and IKEv2 [5]. To reduce the complexity of IKEv1, the
protocol was fundamentally simplified with IKEv2. In IKEv1 and IKEv2, dif-
ferent crypto suites can be chosen to establish a secure communication between
parties. Beside the negotiation of the crypto suites, IKE provides stateless cook-
ies, which prevent Denial-of-service attacks. In IKEv2, the party to which the
connection is established decides whether to use cookies or not. If cookies are
used, the number of messages increases from 4 to 6 messages in IKEv2. In this
work the use of IKEv2 is assumed.
In phase two, Security Associations (SA) are established. If public key authenti-
cation is used in phase one, IKE is a hybrid cryptographic protocol. But even if
pre-shared secrets are used, the negotiated keys in phase two are independently
chosen from those in phase one. This ensures perfect forward secrecy. The SAs
are used to secure the data transmission after. One of the most important draw-
backs of IKE is the fact that it does not support certificate transmission. In order
to authenticate a peer the peer must be known before SAs can be established.

All in all, it can be said, that in phase one the security parameters are
negotiated, which are used to share SAs. In phase two, the SAs are negotiated
and the information inside the SAs are used to secure the connection between
the parties.

4.2 Databases and data structures

To be able to secure an IP connection with IPSec, the device must create at
least three databases. These databases are called Security Association Database
(SAD), Security Policy Database (SPD) and Peer Authorization Database (PAD).

Security Association and Security Association Database
The Security Association (SA) is a dataset stored in the Security Association
Database (SAD). SAs store how to secure the connection between parties. Each
SA entry contains at least a Security Parameter Index (SPI), Destination IP and
Security protocol identifier. The SPI identifies the security parameters to secure
a connection. SAs are unidirectional, which means that for each connection and
security protocol identifier one SA must be established. There are two types of
SAs. The IKE SA, which has a long time validity, is based on a PKI or pre-shared
secret and is used to negotiate the CHILD SA. CHILD SAs, which are used for data
transmission, are the second type of SAs. In the IKE SA the parameters used in
phase one of the IKE are stored. The parameters negotiated in phase two of the
IKE protocol are stored in CHILD SAs.
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Security Policy Database
The Security Policy Database (SPD) manages the SAs. The SPD decides if the
incoming or outgoing traffic has to be protected via IPSec or not according to the
stored policies. An entry in the SPD consists of at least protocol, local IP, local
port, remote IP, remote port and action. The action can be ’bypass’, ’discard’ or
’protect’. If the action is ’protect’, the mode and the IPSec security mechanism
is specified inside the SPD.

Peer Authorization Database
The Peer Authorization Database (PAD) provides the link between SPD and
SA management protocol (IKE). In the PAD, the peers or groups of peers which
are authorized to communicate via IPSec with the local entity are identified.
The protocol and method to authenticate each peer is specified inside the SAD.
Constrains for types and values of IDs that can be asserted by a peer with regard
to child SA creation are managed in the PAD. This ensures that no peer can
assert identities for lookup in the SPD which it is not authorized to represent,
when child SAs are created.

4.3 IPSec Modes and Security Mechanisms

In IPSec two modes and two security mechanisms are standardized. Depending
on the scenario of use and protection targets different combinations of mode and
security mechanism are used.

Modes
The two modes of IPSec are Tunnel Mode and Transport Mode. Transport Mode
sets up a secure end-to-end connection between two hosts. In Transport Mode,
the end-nodes must be configured to use IPSec. Tunnel Mode sets up a secure
connection between two networks. If Tunnel Mode is used, the IP packet is encap-
sulated inside an IPSec packet. A private tunnel between gateways is established
in Tunnel Mode. This allows two networks to communicate securely through a
public network. In Tunnel Mode only the gateways have to be configured for the
IPSec connection and not each peer behind the gateways.

Security Mechanisms
The IPSec security mechanisms are Authentication Header (AH)[6] and Encap-
sulated Security Payload (ESP)[7].
Authentication Header:
If Authentication Header is used as security mechanism, the IPSec header con-
tains an encrypted hash of the whole IP packet. AH offers source authentication
and message integrity, but not message confidentiality [4]. It authenticates the IP
header, the AH header and the IP payload. For authentication, the field with the
authenticated data in the AH and mutable fields are set to zero. All fields which
are present in the packet before the HMAC is generated for authentication must
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be authenticated. All Fields which are manipulated during respectively after au-
thentication must be set to zero to ensure a valide autehntication check. Figure
9 illustrates how AH is applied. In figure 10 the structure of AH is illustrated.
The destination peer uses the Security Parameter Index (SPI) in the header to
identify the the correct security association. The sequence number is used to
prevent replay attacks. The Integrity Check Value (ICV) is the cryptographic
hash value which allows the receiver to check the integrity of the whole IP packet
including the AH.

Fig. 9. Authentication Header

Fig. 10. Authentication Header Structure (derived from [23]

Encapsulated Security Payload:
Encapsulation Security Payload (ESP) guarantees the integrity and confiden-
tiality of the original IP payload combining a secure hash and encryption of
the IP payload (including the ESP trailer). If used in Tunnel Mode (gateway to
gateway), the whole IP packet is protected. Figure 11 illustrates how ESP is ap-
plied. In figure 12 the structure of the ESP header is illustrated. The payload is
contained in the header because the payload is encapsulated in the header fields.
The fields Padding, Padding length and Next header are part of the trailer com-
ponents. The SPI and the sequence number take over the same task as in AH.
The IP payload and the padding are ecrypted. The padding length is needed for
the decryption. The ESP-Auth is used to authenticate the ESP header, the IP
payload and the ESP trailer as illustrated in figure 11.

Both AH and ESP use HMAC for authentication and ESP uses symmetric
encryption to encrypt the IP payload and the ESP trailer. ESP and AH can be
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Fig. 11. Encapsulated Security Payload

Fig. 12. Encapsulated Security Payload Structure (derived from [24]

combined. AH does not only authenticate the payload but also the non mutable
IP Header field. By combining AH and ESP all ESP security mechanisms can
be applied with this additional AH mechanism. In IPSec, a replay prevention
technique called anti-replay window is used. Since AH and ESP contain sequence
numbers, the anti-replay window makes use of these sequence numbers. The se-
quence numbers increase per packet. The anti-replay window has a specific size
(n). If packet ’m’ arrives and no packet with a higher sequence number arrived
before, the window is shifted so that the oldest packet which the peer will accept
is m-n. If packet ’b’, a packet with a higher sequence number than ’m’, arrived
before the packet ’m’, the sequence number of ’m’ must be in the window a-n
to be accepted. If ’m’ has a lower sequence number, it will be discarded. As al-
ready mentioned, SAs are unidirectional. If the connection between two parties
is secured with AH and ESP, each party has to create four SAs. Nowadays, the
most common usage of IPSec is Tunnel Mode with ESP.

4.4 IPSec Workflow

After key exchange via manual keying or IKE, respectively after the SAs are
established IPSec can be used. In dependence of the data flow (inbound or out-
bound connection), IPSec uses the databases in different order.
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Inbound Connection
Figure 13 illustrates how incoming connections are processed. If an IPSec packet
is received, the SPI from the packet (packet SPI) is looked up in the SAD. If the
SAD contains a SA which matches the information provided by the packet, it
is picked for further processing. If no SA is defined the message is send without
IPSec protection. With the information from the SA the packet is processed,
which means authenticated and/or decrypted. Then the SPD is used to look
up whether the policies are fulfilled. If the policies are fulfilled, the packet is
forwarded to the next instance of the OSI layer. If not, the packet is discarded.
Note that not just the packet SPI is evaluated to match an SA. The lookup in
the SAD is a longest match search with the order

– SPI, destination, and source address
– SPI and destination address
– SPI

Fig. 13. Inbound Connection

Outbound Connection
The processing of outgoing connections is illustrated in figure 14. Before an IP
packet is passed to the link layer, a lookup in the SPD is performed to check
whether to secure the packet with IPSec or not. If the SPD has no policy, the
packet is send without IPSec protection. If at least one policy in the SPD is
found, the SA or SAs in the SAD associated with the policy are used to protect
the packet and the SPI is inserted into the IPSec packet so that the receiver can
process the IPSec packet.

Fig. 14. Outbound Connection
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Known Attacks
In this section known attacks are discussed. The Sans institute4 published a
document with vulnerabilities. The Cut-And-Past attack is an attack which is
only possible if IPSec is used in tunnel mode and the attacker has access to a
second machine in each of the two networks. A second attack with the same
setup is Session-Hijacking. The prerequisites for this attacks are that the at-
tacker has access to networks connected via IPSec tunnel. Such an attacker is
out of the IPSec protection goals scope. Replay attacks in general are prevented
by sequence numbers and the replay window. Attacks against the chosen cipher
suites are issues rather concerning the cryptographic primitives than the proto-
col. Attacks against IKE, like DoS attacks are prevented by stateless cookies.

4.5 IPSec in IoT

IPSec can be used to protect traffic between peers at a low level in the OSI layer
model. Vasseur & Dunkels [25] argued that 6LoWPAN enabled sensors will be
the basis for the IoT. Therefore IPSec should work with 6LoWPAN devices.

Overview of 6LoWPAN
The 6LoWPAN-Standard is introduced to work upon the link layer in the OSI
Stack for wireless networks communication between low power devices[26] based
on the IEEE 802.15.4 standard. The main component is the 6LowPAN adaption
layer which replaces the IP layer. One main feature is the advanced header
compression[26]. The maximum transmission unit (MTU) is 102 byte (127 if
the link layer is included). Between the link layer and the 6LowPAN layer an
additional encryption layer can be added optional. This layer consists of 40 byte.
The standard IPv6 header requires 40 byte and the UDP header 8. Therefore
only 30 byte are reserved for payload. In 6LoWPAN networks the IPv6 and UDP
headers are compressed to 8 byte.

Problems with IPSec in 6LoWPAN
The IPSec specifications from the IETF are not applicable in 6LoWPAN net-
works. 6LoWPAN networks use header compression [27] which is not usable with
the standard implementation of ESP. Further problems with IPSec are header
size, computing power and memory. Granjal et al. [28] analyzed the performance
of typical IPSec cryptographic algorithms in real sensor networks and the per-
formance of AES, 3DES, SHA1 and SHA2 on a MicaZ 5 embedded computer.
Only SHA1 could be performed with 6LoWPAN, because TinyOS and 6LoW-
PAN implementations do not leave enough SRAM for additional cryptographic
mechanisms. According to them, SHA1 is the most energy efficient and most
suitable hash algorithm in terms of performance, but insecure.

4 www.sans.org
5 http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz datasheet-t.pdf
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Lightweight variants of IPSec
To address the problems with IPSec in IoT scenarios lightweight IPSec im-
plementations for use with 6LowPAN were introduced. In this section, two
lightweight solutions are presented. One for the use of a lightweight IKEv2 proto-
col and one lightweight IPSec implementation which supports 6LoWPAN header
compression. With reasonable effort we were just able to find two paper treating
IPSec in 6LoWPAN networks. Both from the same main author.
Raza et al. [29] proposed a lightweight variant of the IKEv2 protocol for 6LoW-
PAN networks. The proposed lightweight IKEv2 can be used for IPSec and for
IEEE 802.15.4 link layer security. They proposed that IPSec enabled devices
should recognize UDP-IKE packets due to problems with header compression.
The NHC encoding for the IKE header contains 4 bits for the NHC ID (1101),
one bit for each of SPI, exchange-type (ET), Message ID (ID) and next header
(nh). If the SPI header field is 0, the default sensor network SPI is used. If it
is set to 1, the SPI is carried inline after the header. If ET is set to 0, two bits
specify the four standard exchange-type. If ET is set to 1, all 8 exchange-type
bits are carried after the header. ID specifies a sequence number. If ID is set to
0, a 16 bit sequence number is used. If ID is set to 1, a 32 bit sequence number is
used. NH indicates the next header. This header format allows header compres-
sion and minimizes IPSec overhead. The minimized overhead makes lightweight
IKEv2 applicable for 6LoWPAN networks.
Raza et al. [30, 31] proposed a lightweight IPSec header format for AH and ESP.
The proposed AH header contains 4 bits for the NHC identifier and one bit for
each of payload length (PL), SPI, sequence number (SN) and next header (NH).
The NHC identifier is needed to be 6LoWPAN conform. If PL is set to 0, the
length field is omitted and can be obtained from the SPI value. If PL is set
to 1, the length is carried inline after the header. The SPI and the NH fields
are constructed as in the proposed lightweight IKEv2 and SN is constructed as
the Message ID in the lightweight IKEv2. The proposed lightweight ESP header
contains 4 bits for the NHC Identifier and one bit for each of payload length
(PL), SPI, sequence number (SN), a reserved bit and next header (NH). SPI,
SN and NH are constructed as the proposed lightweight AH. Raza et al. [31]
evaluated the energy consumption, traffic overhead and processing time over-
head of IPSec in 6LoWPAN networks with AES-CBC and AES-XBC-MAC-96.
The energy consumption, traffic overhead and processing time are ”a bit higher”
than without, but the evaluation shows that it is feasible to use IPSec for sensor
networks.

Discussion
The proposed lightweight variants of IPSec are not standardized. More evalua-
tions of the implementations must be performed to make a good decision whether
to standardize it or not. The research of Raza et al. [31] did not consider nodes
or peers with less memory which is named as a bottleneck by Granjal et al.
[28]. The cryptographic systems evaluated in [31] are not part of the standard
IPSec crypto suites, but recommended for IoT devices. In the case of IKEv2
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for IoT systems a identity management must be generated, which is faster in
terms of identifying peers and authenticating performance than normal public
key systems and more scalable than pre-shared keys. Even if a large number of
problems must be solved before IPSec for 6LoWPAN can be used, IPSec seems
to be a promising candidate to ensure confidentiality, integrity and authenticity
on the network layer.
IPSec is a widely used standard in cooperate environments. Even if it is widely
used we want to highlight, that IPSec reduces the OSI layer structure to absur-
dity and that security features are removed with the introduction of IKEv2.

5 IEEE 802.11i

IEEE 802.11i-2004 or shortly 802.11i is a amendment to the IEEE 802.11 stan-
dard. It specifies security mechanisms for wireless networks. Published in 2004
[32] by the Institute of Electrical and Electronics Engineers (IEEE), it was later
incorporated into the IEEE 802.11-2007 standard [33]. In 802.11i, security asso-
ciation management protocols called the 4-Way Handshake and the Group Key
Handshake are introduced as part of the authentication process. Furthermore,
the Temporal Key Integrity Protocol (TKIP) and the CTR with CBC-MAC Pro-
tocol (CCMP) for data confidentiality and integrity are defined. All protocols are
located on the data link layer.

Sources of information for sections 5.1 and 5.2 are [32] and [34], if not other-
wise stated.

5.1 Authentication

When a device, like a smart phone for example, wants to join a wireless network,
it has to prove that it is eligible to join the network. This process is called
authentication. The device, or Station (STA) in this context, requests network
access at a so called Access Point (AP).

The first of two steps of the authentication process described by 802.11i
is access control via either IEEE 802.1X EAP [35] or pre-shared key (PSK)
authentication. The two cases yield the same result: Both STA and AP hold
the Pairwise Master Key (PMK) upon completion of this step. Since the details
regarding this are not part of 802.11i, we only give a brief description here on
how the PMK is constructed on both sides.

In case of 802.1X EAP authentication, an Authentication Server (AS) is
involved, being responsible for the decision whether to grant or deny network
access. With this approach, the STA and the AS construct the PMK by using
information obtained during their communication. The AS then sends the PMK
to the AP. In case of PSK authentication, there is no need for an AS. The PMK
is simply constructed by the STA and the AP using the PSK.

Before we go on with the second step of the authentication process, an
overview of the involved keys is given at this point, to give the reader a bet-
ter understanding of the following explanations.
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As ’pairwise’ indicates, the PMK plays a role in unicast communication be-
tween STA and AP. Equivalent to the PMK, there is also a Group Master Key
(GMK) for multicast communication from one AP to multiple STAs. PMK and
GMK are not used for encryption or message integrity itself, but to derive the
Pairwise Transient Key (PTK) and the Group Temporal Key (GTK). A descrip-
tion on how this derivation is done is given later. PTK and GTK are further
split up into multiple keys, resulting in key hierarchies. Due to the different way
of working of the Temporal Key Integrity Protocol (TKIP) and the CTR with
CBC-MAC Protocol (CCMP), the key hierarchies differ for those two protocols.
TKIP needs separate keys for data confidentiality and integrity, whereas CCMP
achieves these properties with only one key. Figures 15 and 17 illustrate the key
hierarchies when using TKIP. The resulting key hierarchies when using CCMP
are shown in Figures 16 and 18. The boxes with a grey background are not part
of the official terminology, but indicate how parts of the Temporal Key are used.
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Fig. 15. TKIP Pairwise Key Hierarchy (derived from Figure 10.3 in [34] and Figure
43s in [32])

Fig. 16. CCMP Pairwise Key Hierarchy (derived from Figure 10.5 in [34] and Figure
43s in [32])
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Fig. 17. TKIP Group Key Hierarchy (de-
rived from Figure 10.4 in [34] and Figure
43t in [32])

Fig. 18. CCMP Group Key Hierarchy
(derived from Figure 10.6 in [34] and Fig-
ure 43t in [32])

4-Way Handshake Protocol

Up to this point, STA and AP both hold the PMK, but both sides constructed
it on their own behalf. Now they need to prove each other their knowledge of the
PMK, so they know they can trust each other. Also, the PTK has to be derived
from the PMK and the AP might want to send a GTK to the STA for multi-
cast communication in a secure way. Lastly, STA and AP need to synchronize
on when to start encrypted communication. All of this done by executing the
4-Way Handshake Protocol, illustrated in Figure 19. It is the second step and
hence the conclusion of the authentication process.

First, both STA and AP generate a nonce. We call it SNonce for the STA
and ANonce for the AP.

The AP sends its ANonce to the STA in the first message. The message is not
protected in any way. This is simply not necessary, because any modification of
the message would cause the handshake to fail. The STA now has all information
it needs to derive the PTK.

The second message contains the SNonce and a MIC value computed over the
whole message (with the MIC field being zero at the time of calculation) using
the KCK (a part of the PTK, see Figures 15 and 16). The term ’MIC’ stands for
’Message Integrity Check’. It is basically the same as a message authentication
code. The term was introduced, because in 802.11i, the abbreviation ’MAC’ is
already used for ’Media Access Control’. The MIC function is HMAC-MD5 when
TKIP should be used and HMAC-SHA1-128 (output truncated to 128 bits [36])
for CCMP. Including a MIC value in the second message enables the AP to check
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Fig. 19. 4-Way Handshake Protocol (derived from Figure 11c in [32])

whether the message was modified or not. Furthermore, it is a proof to the AP
that the STA holds the same PMK.

To see why this is true, consider the following. Since the AP got the SNonce
from the STA, it now can also derive the PTK and thereby compute the MIC
value of the last received message using its KCK. If the MIC value matches the
one it got from the STA, both AP and STA must have used the same PMK to
derive the PTK.

If the AP wants to use multicast communication, it generates a GMK, which
is a cryptographically-secure random number. It then derives a GTK from the
GMK. If there is already a GTK in use, that one is taken at this point. Since
the GMK is a random number, the step of deriving a GTK could be omitted,
generating the GTK directly. The derivation from a GMK is only done for being
consistent with the PMK to PTK case.

The third message contains information telling the STA to install the PTK
and a MIC value over the whole message (again with the MIC field being zero at
the time of calculation). If needed, the message also includes the GTK, encrypted
using the KEK and the sequence number that is used in the next multicast
message from the AP (for basic replay protection). As in the previous message,
the MIC value ensures the message’s integrity and at the same time it is a proof
for the STA that the AP holds the same PMK.

The last message is an acknowledgement send from STA to AP to synchronize
the start of encrypted communication. Both STA and AP install the derived keys
and are then ready to communicate securely.
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Both STA and AP have the possibility to cache the PMK. This is useful if a
STA exits the network and wants to join again later. If the cached PMK is still
valid, only the 4-Way Handshake protocol has to be executed, omitting 802.1X
EAP authentication and thus saving time. Using nonces in the PTK derivation
ensures that the derived PTK is different each time, even when using the same
PMK.

Group Handshake Protocol

When a STA exits the network, the corresponding PTK is deleted. But still,
we have to make sure that it can no longer decrypt multicast communication.
This means a new GTK is needed and each STA in the network needs to install
this new GTK. The Group Handshake Protocol is defined for this purpose. Its
steps are shown in Figure 20.

Fig. 20. Group Handshake Protocol (derived from Figure 11d in [32])

First, a new GTK is derived by the AP. Then the AP sends each STA in
the network a message containing the new GTK, encrypted using the KEK, a
sequence number that is used in the next multicast message from the AP (for
basic replay protection) and a MIC value over the whole message, using the
KCK. The KEK and KCK are different for each STA as they are part of the
PTK and each STA shares a different PTK with the AP.

Each STA installs the new GTK and sends an acknowledgement back to the
AP. When the AP has received all acknowledgement messages, it can use the
new GTK to protect multicast communication.

Even though Figure 17 indicates that a part of the GTK is used for multicast
communication originating from a STA (lower right corner of the figure), this
part of the GTK is not used at the moment, because such multicast communi-
cation is not yet provided.
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Key Derivation

So far, we simply said that the PTK is derived from the PMK and the GTK
from the GMK. To do this, a pseudo-random function (PRF) is defined:

H-SHA1(K,A,B,X) = HMAC-SHA1(K,A‖Y‖B‖X)

PRF(K,A,B,Len):
for i=0 to (Len+159)/160 do

R = R ‖ H-SHA1(K,A,B,i)
return L(R,0,Len)

Where Y is a single octet containing 0, X is a single octet containing the
parameter, ‖ denotes concatenation and L(R,0,Len) returns the first Len bits
of R.

With this PRF on hand, the keys are derived the following way.

– TKIP PTK = PRF(PMK, ”Pairwise key expansion”,
Min(AP MAC-Adr, STA MAC-Adr) ‖
Max(AP MAC-Adr, STA MAC-Adr) ‖
Min(ANonce, SNonce) ‖
Max(ANonce, SNonce), 512)

– TKIP GTK = PRF(GMK, ”Group key expansion”,
AP MAC-Adr ‖ GNonce, 256)

– CCMP PTK = PRF(PMK, ”Pairwise key expansion”,
Min(AP MAC-Adr, STA MAC-Adr) ‖
Max(AP MAC-Adr, STA MAC-Adr) ‖
Min(ANonce, SNonce) ‖
Max(ANonce, SNonce), 384)

– CCMP GTK = PRF(GMK, ”Group key expansion”,
AP MAC-Adr ‖ GNonce, 128)

The Group nonce (GNonce) is a random or pseudo-random value contributed
by the 802.1X authenticator.

5.2 Data Confidentiality and Integrity

After authentication is done and all keys are in place, secure communication can
start. To do so, a suitable protocol has to be used. This section describes the
the two protocols which were introduced by 802.11i for that purpose.

MSDUs and MPDUs

Before we can take a look at the data confidentiality and integrity protocols, the
terms MAC service data unit (MSDU) and MAC protocol data unit (MPDU)
have to be briefly explained. MSDU denotes the unit in which data is received by
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and handed to the upper layer. Before handing data to the lower level for wire-
less transmission, MSDU’s might be split into multiple smaller MPDU’s. When
receiving MPDU’s, they are re-assembled to retrieve the original MSDU’s. Just
like MSDU’s, each MPDU also has a MAC header containing control and routing
information.

Temporal Key Integrity Protocol

In 2001, Fluhrer, Mantin and Shamir published a paper on the weaknesses in
the key scheduling algorithm of RC4[37]. Soon after, it was shown that these
weaknesses could be used to completely break the Wired Equivalent Privacy
protocol (WEP) in practice [38], leading to a need of a secure alternative. The
Temporal Key Integrity Protocol (TKIP) was developed as a stop-gap solution,
with the need to run on computational weak legacy hardware. It is implemented
as part of Wi-Fi Protected Access (WPA). Since TKIP is already deprecated at
the time of writing this work [39], we will not go too much into detail here.

Like WEP, TKIP still uses the RC4 cipher, but several features are added to
correct the flaws of WEP. For an overview of WEP’s design flaws, take a look
at [40].

Figure 21 provides an overview of how TKIP encapsulation works.

Fig. 21. TKIP encapsulation (derived from Figure 11.4 in [34])
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First, a MIC value is computed and appended to the MSDU. The used MIC
function is Michael, which was specially designed for TKIP. It only uses substi-
tutions, rotations, and XOR operations for its calculation. If the MSDU is too
large for transmission, it is split into multiple MPDU’s in the next step. Then
the initialization vector (IV) and an integrity check value (ICV) are appended to
the MPDU. The IV needs to be included, because the receiver needs it as input
for the key mixing function when decrypting the data. The ICV is an adopted
feature of WEP. It is a CRC32 check sum of the MPDU. Lastly, a MAC header is
prepended and the data, ICV and MIC (only present in the last MPDU, because
the MIC value is calculated for the MSDU) parts of the MPDU are encrypted
using the output of the key mixing function. Key Mixing produces a new key
for every frame that is encrypted. This is a protection against RC4 weak key
attacks and used to incorporate the extra bits of the extended IV (48 bits, which
is double the size of the WEP IV).

Decapsulation is shown in Figure 22.

Fig. 22. TKIP decapsulation (derived from Figure 11.5 in [34])

The first thing to check is the TKIP Sequence Counter Window (TSC). This
is done for replay protection. Then the MPDU is decrypted using the output
of the key mixing function. Now the ICV is calculated and compared to the
included one. If everything is fine up to this point, the MPDU’s are re-assembled
to retrieve a MSDU. The MIC value of the MSDU is computed and compared to
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the included one. If the MIC check is positive, the MSDU is accepted. If it fails,
countermeasures might be invoked (i.e. hold MPDU processing for 60 seconds,
change PTK or GTK).

Counter with CBC-MAC Protocol

Counter with CBC-MAC Protocol (CCMP) is the long-term replacement for
WEP. It was designed from scratch, without the need to run on legacy hard-
ware. Therefore, the goal was a protocol that provides the best possible protec-
tion. CCMP uses the block cipher mode Counter with CBC-MAC (CCM) [41]
in conjunction with AES-128. CCM is an authenticated encryption mode, which
means confidentiality, integrity and authenticity of data are provided using a sin-
gle key. Additionally, CCMP also provides replay protection. It is implemented
as part of Wi-Fi Protected Access 2 (WPA2).

CCM mode has two parameters M and L. CCMP uses M = 8 and L = 2 as
values for these parameters. The first parameter indicates that the MIC value
has a length of eight octets. The second one is the size of the length field. Two
octets are enough to hold the length of the largest possible IEEE 802.11 MPDU.

Unlike TKIP, all steps of CCMP happen at MPDU level. The first step in
CCMP is to construct a CCMP header. The header size is eight octets and
it is composed of a six octet Packet Number (PN), one reserved octet and a
one octet KeyId. The PN is a non-negative integer that is incremented for each
processed MPDU. That means, during the operating time of a PTK or GTK,
each PN value must only be used once. For the PTK and each GTK an own PN
is maintained. On start-up or when refreshing a PTK or GTK, the corresponding
PN is initialized to 1. The usage of a PN provides replay protection. The reserved
octet is for future extensions and the KeyId indicates which GTK was used in
multicast communication.

Next, the MIC value is computed using CBC-MAC. This is done by encrypt-
ing data in Cipher Block Chaining (CBC) mode and using the last block of
the chipertext as output. Since CCMP uses AES-128, but an eight octet MIC
value, only the first half of the CBC-MAC output is used as MIC. In CCMP,
the input for the MIC calculation is not simply the data portion of the MPDU,
but rather a construction of 1st block ‖ MAC Header ‖ CCMP Header ‖ Pad

‖ PlaintextData ‖ Pad. CCM mode defines the term Additional Authenticated
Data (AAD), which is any kind of data that is authenticated, but not encrypted.
In the case of CCMP, the AAD is the MAC and the CCMP header. If the length
of the AAD or the plaintext data is not a multiple of the block length, they get
padded with zeros. The 1st block is specially constructed as shown in Figure
23.

The Flag field has a fixed value of 01011001 for CCMP. The Priority field is
used to assign a priority to a frame. The Source Address is the MAC address of
the sender. It is extracted from the MAC header. The PN is used like previously
described. The DLen field indicates the length of the plaintext data.



30 Survey on Protocols securing the IoT

Fig. 23. Structure of the first block for CBC-MAC (derived from Figure 12.10 in [34])

The source address is included in the nonce, because otherwise the same
nonce value might be used several times for the same PTK or GTK, as these
keys are shared between STA(s) and AP.

After calculating the MIC value, encryption takes place, using AES-128 in
Counter (CTR) mode. The input that gets encrypted is PlaintextData ‖ MIC.
No padding is needed at this point, because CTR mode turns a block cipher
into a stream cipher. In CTR mode, a counter block is encrypted using a block
cipher and a corresponding secret key. The result of this step and a block of the
data to encrypt are combined using XOR to produce one block of the ciphertext.
For each block processed this way, the value of the counter block is incremented.
When the last portion of data does not have block length, only the needed
number of bits of the intermediate result is used for the XOR operation. Figure
24 illustrates how the counter block is constructed for CCMP.

Fig. 24. Structure of the counter block (derived from Figure 12.11 in [34])

The value of the Ctr field is initialized with 1. It is incremented for each
processed block in CTR mode. The other fields are the same as in the first block
for the CBC-MAC. Including a nonce as part of the counter block ensures that
encrypting the same data more than once always results in a different ciphertext.

The MPDU composed of MAC Header ‖ CCMP Header ‖ Ciphertext is then
ready for transmission. Upon receiving such a MPDU, the receiver first checks
the PN in the CCMP header. If it is not greater than the PN of the previously
received MPDU, the MPDU is discarded for replay protection. The next step is
to decrypt the ciphertext. To do so, the receiver extracts the source address from
the MAC header and the PN from the CCMP header. With this information,
he can build the same counter block the sender used for encryption and thus
decrypt the ciphertext, since he also holds the same key. Then the MIC value of
the MPDU is calculated and compared to the included one. If the MIC is valid,
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CCMP header and MIC are removed from the MPDU, which is then ready for
re-assembly to retrieve a MSDU.

5.3 Known Attacks

WPA and WPA2 both use the 4-Way Handshake protocol in the authentication
process. Due to the fact that the first message in the 4-Way Handshake is not
protected in any way, the protocol is vulnerable to Denial of Service (DoS)
attacks [42]. If an attacker sends a forged first message between the actual first
and third message, the handshake fails. This can be used to launch DoS attacks.

The 4-Way Handshake protocol causes another problem when using pre-
shared keys for authentication [43]. A PSK is usually derived from a passphrase.
When an attacker listens to the network traffic and records the messages of the
4-Way Handshake, he gets to know ANonce and SNonce, because the messages
are send unencrypted. With this information, he can launch a dictionary attack.
The entries of the dictionary are the possible passphrases, which are used by the
attacker to derive possible PSKs. These possible PSKs and the known ANonce
and SNonce are then used to derive possible PTKs. For each of these PTKs, the
attacker then checks if he is able to calculate the same MIC values as in the
recorded handshake messages. If he succeeds, it is highly likely that he found
the correct passphrase and thus now holds the correct PTK, which enables him
to decrypt the communication between STA and AP. This attack can easily be
prevented by using a strong passphrase (suitable length, use of digits, uppercase,
lowercase and special characters).

There are a few known attacks against TKIP. In 2008, Tews and Beck were
able to inject seven forged packets with custom content into an WPA protected
network, passing the Michael MIC check [44]. However, this attack has several
limitations. It takes about 12-15 minutes, the size of the forged packets is limited
and Quality of Service (QoS) needs to be enabled. Beck improved this attack in
2010, allowing more and longer forged packets to be injected into the network
[45]. Ohigashi and Morii also improved the Beck-Tews attack in 2009 [46]. They
combined the original attack with a man-in-the-middle approach, reducing its
limitations. QoS is not required and executing the attack takes about one minute
in the best case.

In [45], Beck also presented a novel attack against Michael, which allows an
attacker to concatenate a forged with an unknown valid TKIP packet in such
a way that the MIC of the valid TKIP packet is still valid for the new entire
packet.

Up to now, there are no known attacks against CCMP.

5.4 802.11i in IoT

The presented protocols are heavily relevant for the Internet of Things. There
are a lot of IoT use cases, in which wireless networks are used. Most of the
time, such a wireless network is used in the form of a IEEE 802.11 network,
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involving at least the 4-Way Handshake and TKIP or CCMP. However, there
are exceptions. One of them is described in section 6.1.

As for lightweight implementations of the presented protocols, researchers
have proposed improved variants of both TKIP [47, 48] and CCMP [49, 50]. The
problem with using CCM mode in CCMP is the fact that CCM has to perform
AES encryption on the data once to get the CBC-MAC and then a second time
for the actual encryption. This is inefficient. The proposed improvements try
to tackle this problem. Another possibility would be not to use CCM mode in
802.11 networks at all, but rather some other authenticated encryption scheme,
since there are several ones with better performance than CCM.

6 Comparison

In this section, the usage of the presented protocols IPSec, DTLS and IEEE
802.11i for IoT is reviewed. Based on an IoT scenario, which involves different
areas of application, the utilization is examined and the advantages and limita-
tions of the protocols are discussed.

6.1 Scenario

The considered scenario involves an automotive environment and the commu-
nication within a car itself, between different cars and with the infrastructure.
The aspect of how the presented protocols are applicable is discussed. As a short
introduction to the automotive environment and the major communication chan-
nels, a quick overview is given first.

In the future, cars will be involved in the following networks:

– Car-to-Car ad-hoc networks (C2C)

– Car-to-Infrastructure networks (C2I)

– Inter-Car-Communication networks

– Car-to-Facility and Car-to-Company networks

For each of these networks, different security protocols are more or less suit-
able. Ad-hoc networks, like a C2C network, need to establish a secure commu-
nication between parties which do not know each other at first. It is important
that these networks have a high performance in connection establishment as well
as data transfer.

Inter-Car-Communication networks are networks with a fixed number of par-
ties, but the parties themselves have to deal with limitations in computing power
and memory.

Car-to-Facility and Car-to-Company networks connect the cars to manufac-
turers or other companies. The connection between cars and companies respec-
tively manufacturers are not time critical, but still needs to be highly secure.
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DTLS in the scenario DTLS is suitable for Inter-Car-Communication, Car-
to-Facility and Car-to-Company networks but less applicable in C2C ad-hoc
networks and C2I networks due to its quickly changing parties.

As described in section 3.9, lightweight versions of DTLS can be imple-
mented using pre-shared keys. This enables DTLS to be used in Inter-Car-
Communication networks. The setup of DTLS in an Inter-Car-Communication
network could be done once, such that algorithms and keys are already nego-
tiated and the handshake can be optimized. Also the memory efficiency on the
devices in inter car networks makes DTLS even more applicable. Small low power
sensors can simply transmit data to other devices inside the car.

When connecting a car to companies or facilities, DTLS is fully applicable
to secure the communication. Stateless cookies between companies and cars can
be used in the handshake. Also, there are less restricted power assumptions in
networks like these, since the endpoints are the main control unit in a car and
and the hosts of companies or facilities.

For C2C ad-hoc networks and C2I networks, the applicability is controversial.
Due to its quickly changing parties, an ad-hoc network between cars needs to
be established fast. Also, authentication needs to be established with unknown
partners. Hence, pre-shared keys and cookies are not applicable in this type of
networks. The four rounds in the handshake to negotiate keys and algorithms
are considered to be expensive, but the advantages of datagram communication
are very important. Datagram-based communication is faster than TCP-based
communications via TLS, since no acknowledgments have to transmitted back
and forth. After all, performance reasons and the lossy communication with UDP
disqualify DTLS for C2C ad-hoc networks. In case of message loss during the
handshake, retransmission in the handshake protocol uses timer values about one
second or longer. In C2C communication, message exchange should be performed
faster, since one scenario could be two cars driving in opposing directions.

Connections between a car and its infrastructure vary a lot, since a car is mo-
bile by its design. Therefore, the applicability of DTLS is similar as for the C2C
ad-hoc networks. Quickly changing parties make it impossible to use pre-shared
keys. Raw public keys could be a solution to reduce message complexity, but
the three round-trip handshake is still very expensive. It would take respectively
long to establish an authenticated, secure communication between two parties
and hence, DTLS is not recommended for C2I networks either.

IPSec in the scenario IPSec can be used in IoT context for Inter-Car-
Communication, Car-to-Facility and Car-to-Company networks. SAs cannot be
established with unknown peers without involving a trusted third party. Hence,
IPSec does not seem to be suitable for ad-hoc networks.

The lightweight variants of IPSec can be used in networks with power and
memory restrictions, i.e. in sensor networks. In in-vehicle networks, the identity
of all parties can be pre-shared and the SAs can be pre-setup. It is important that
the algorithms can be implemented in hardware in order to perform the de- and
encryption more efficiently. This allows fast communication without the need for
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IKE handshakes. The keys can be re-negotiated in defined intervals to ensure
confidentiality and perfect forward secrecy. IPSec should be used in transport
mode with AH in most cases to prevent face data injection. ESP should only be
used if the information has to be kept confidential.

For Car-to-Company and Car-to-Facility networks, IPSec can be used in the
standard variant. Public-Key cryptography can be used to identify the commu-
nication party as defined in IKE standards. Only the main control unit needs to
communicate with facilities and companies. This allows the usage of standard
IPSec. If sensor data is requested by facilities, the main control unit should act
as a information aggregator to prevent external parties from injecting content
into the car’s internal network. This means not that the connection should be
protected with IPSec in Tunnel mode. It means that the external identity should
not be able to address sensors, actuators or other entities in the vehicle at all.
The communication should be protected with AH and ESP to achieve maximum
security.

IEEE 802.11i in the scenario The protocols defined by IEEE 802.11i can
be utilized in Inter-Car-Communication. Although such communication happens
mostly over a wired connection nowadays, it is imaginable to establish a Wireless
LAN network inside a car, which then could be used to connect the individual
parts.

For Car-to-Facility and Car-to-Company communication, the applicability of
the 802.11i protocols depends on the actual setup. Most likely this is a combi-
nation of C2I communication and a wired connection from the Roadside Unit
(RSU) to the facility or company. If this is the case, the 802.11i protocols are
not relevant. The other possibility is that the RSU does not have a wired access
to the internet itself, but is connected to some AP via an 802.11 network. In this
case, the protocols defined by 802.11i are used to secure the data traffic.

C2C ad-hoc networks and C2I networks both use Wireless LAN connections
for communication, so one might think that the 802.11i protocols apply here.
However, this is not the case. The mobility aspect in these networks requires
extremely low latencies in communication. The protocols defined by 802.11i are
not suitable for such requirements. Instead, C2C and C2I communication makes
use of IEEE 802.11p [51] and the IEEE 1609 family [52]. The 802.11p amendment
introduces a new functionality, allowing a STA to transmit data frames outside
the context of a Basic Service Set (BSS). This mode does not utilize the IEEE
802.11 authentication, association or data confidentiality services. These services
are moved to the network, transport layer or session layer, as described in IEEE
1609.2 [53].

6.2 Discussion

As described above, different problems occur when applying the protocols to
the Car-to-X networks. Each protocol has its own strengths and limitations.
Lightweight variants help to apply the protocols to more constrained networks,
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but in some cases, basic design decisions of the protocols make them non-
applicable.

Table 1 shows which protocol is applicable to which type of network (marked
by an ×).

Table 1. Comparison of the applicability of the protocols

Area of application DTLS IPSec IEEE 802.11i

Car-to-Car ad-hoc networks - - -

Car-to-Infrastructure networks - - -

Inter-Car-Communication networks × × ×
Car-to-Company networks × × (×)

Car-to-Facility networks × × (×)

Due to quickly changing parties and the need for fast connection establish-
ment, the IEEE 802.11i protocols and IPSec are not applicable in C2C ad-hoc
networks, as well as in C2I networks. While IPSec uses SAs, which cannot be
established without a third party, the 802.11i protocols can not guarantee low
latency communication. For C2C or C2I, IEEE 802.11p and the IEEE 1609 fam-
ily are recommended instead. This way, security is handled on an upper layer,
for example on the Network or Transport Layer. The connection establishment
in DTLS is done in a four round-trip handshake and therefore is considered ex-
pensive. Its datagram-based communication on the other hand is very efficient
and therefore, very suitable for C2C and C2I networks. Overall, lossy datagram-
based communication and long retransmission timers make DTLS not applicable
to C2C and C2I networks.

Inter-Car-Communication networks contain sensors, actuators and other en-
tities in the vehicle itself. Often small sensors and control units work on low power
assumptions and have limited memory. Lightweight variants of all protocols are
applicable to those kinds of networks. Compression approaches enable protocols
to be used with 6LowPAN. Also, the fixed number of participants makes it even
easier to apply lightweight versions, since they often use pre-shared keys and
identities.

In Car-to-Company and Car-to-Facility networks, communication needs to
be secured, but performance and power restrictions are less critical. While IPSec
and DTLS are applicable without any changes, the 802.11i protocols can be used
if the connection is required to be wireless. If a wired connection is given, the
IEEE 802.11i protocols are not relevant. For both types of networks, lightweight
variants can be considered, but it is not necessary since the communications are
between the main control unit of the car and the host of the facility or company,
which are both considered to be computational powerful.

In Table 2 the properties of the proposed protocols are compared. In the
case of IPSec the security goals confidentiality, integrity, and authenticity can
be achieved. If IPSec is configured properly it can be used for authorization as
well. Since IKEv2 deprecated the DoS prevention cookie IPSec can not ensure
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availability. Even with the DoS prevention cookies it seams impossible to ensure
availability in 6LoWPAN networks based on the power, memory and computing
power constraints and the network architecture. The additionally needed power,
computing power and memory for IPSec in 6LoWPAN is mainly determined by
the used algorithms. IPSec in 6LowPAN has an overhead of 1 byte for each packet
during communication by only concerning the headers without the integrity
checksums. That seams to be fair by concerning the security benefits. IPSec
ensures Device-to-Device security.

For DTLS, the security goals of confidentiality, integrity and authenticity
are supported. It has never been suggested to use DTLS for authorization. Since
DTLS the availability is dependent on a successful handshake and DTLS retrans-
mission timers are usually configured with a large delay, DTLS cannot achieve
full availability in constrained networks. Due to mentioned IoT implementa-
tions of DTLS, power and memory consumption as well as computation time
are depended on the implementation chosen for the network. While TLS uses
fragmentation and hence has a fragementation overhead, DTLS does not have
any fragmentation overhead during communication (except in the handshake,
but this is not of major concern). Therefore, DTLS is considered to have no
overhead during communication. Finally, DTLS is suitable for application-to-
application security since it is located in the Session Layer.

IEEE 802.11i provides confidentiality, integrity and authenticity for wireless
communication. Authorization is not a supported feature. Due to the nature
of wireless communication, availability can not be guaranteed. Radio signals
can be maliciously disrupted, which is called jamming, or densely crowded radio
bands might cause interference. Additionally, the authentication process of IEEE
802.11i is prone to Denial of Service attacks as described in section 5.3. Power and
memory consumption as well as computation time depends on whether TKIP
or CCMP is used. In general AES used by CCMP is more expensive in terms of
computation time than RC4 used by TKIP. However, TKIP was designed to run
on legacy hardware, which is optimized for WEP. On modern routers equipped
with AES optimized hardware, CCMP is the ’faster’ protocol. Regarding message
overhead, TKIP adds 8 Bytes per MSDU for the MIC value and 4 Bytes per
MPDU for the extension of the WEP IV. CCMP extends each MPDU by 16
Bytes, 8 Bytes for the CCMP header field and 8 Bytes for the MIC value. IEEE
802.11i ensures Hop-to-Hop security in multi-hop networks.

Overall, the applicability of the three examined protocols strongly depends
on the given restrictions and the interest in performance. When establishing
connections with unknown but quickly changing parties, i.e. in C2C or C2I,
performance is most important. For Inter-Car-Communication, performance is
still important, but low power assumptions determine the network specifications
and therefore, lightweight variants are required. In networks between cars and
facilities or companies, less restricted networks are considered and therefore all
protocols are suitable.
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Table 2. Comparison of the protocol properties (with abbreviations ’Impl.’ for Imple-
mentation and ’App.’ for Application)

Property DTLS IPSec IEEE 802.11i

Confidentiality × × ×
Integrity × × ×
Authenticity × × ×
Authorization - × -

Availability - - -

Power Consumption Impl. depended Algorithm depended Algorithm depended

Computation Time Impl. depended Algorithm depended Algorithm depended

Memory Consumption Impl. depended Algorithm depended Algorithm depended

Overhead - 1 Byte Algorithm depended

End-to-End Type App-to-App Device-to-Device Hop-to-Hop

7 Conclusion

The Internet of Things is rapidly evolving. More and more devices are connected
and networks are growing constantly. Securing data traffic is a crucial point for
the success and acceptance of IoT. To do so, suitable protocols are needed.

This work presented the protocols DTLS, IPSec and the ones defined by IEEE
802.11i, namely 4-Way Handshake and Group Handshake Protocol, Temporal
Key Integrity Protocol and Counter with CBC-MAC Protocol. For each of these
protocols an explanation was given on how they work and what they are used for.
Additionally, lightweight variants were presented and the general applicability
in an IoT context was discussed. DTLS, IPSec and the IEEE 802.11i protocols
are located on different layers and have been selected to emphasize that security
can be established on different layers with different properties.

The work is concluded by the description of a concrete IoT scenario, for
which we examined how each protocol can be applied in this context.

DTLS, IPSec and the IEEE 802.11i protocols are not the only protocols that
are used to secure communication. Therefore, future work should take a look at
more protocols, examine their lightweight variants and analyze the applicability
in an IoT context as well and compare them to the work at hand.
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