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Abstract. We study a scheme of Bai and Galbraith (CT-RSA’14), also
known as TESLA. TESLA was thought to have a tight security reduction
from the learning with errors problem (LWE) in the random oracle model
(ROM). Moreover, a variant using chameleon hash functions was lifted to
the quantum random oracle model (QROM). However, both reductions
were later found to be flawed and hence it remained unresolved until now
whether TESLA can be proven to be tightly secure in the (Q)ROM.
In the present paper we provide an entirely new, tight security reduction
for TESLA from LWE in the QROM (and thus in the ROM). Our security
reduction involves the adaptive re-programming of a quantum oracle.
Furthermore, we propose parameter sets targeting 128 bits of security
against both classical and quantum adversaries and compare TESLA’s
performance with state-of-the-art signature schemes.
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1 Introduction

Our interest in the present paper is in a quantum-resistant signature scheme
proposed by Bai and Galbraith [6]. Those authors argue the security of their
scheme via reductions from the learning with errors (LWE) and the short inte-
ger solutions (SIS) problems in the random oracle model (ROM). This scheme
was subsequently studied by Alkim, Bindel, Buchmann, Dagdelen, and Schwabe
under the name TESLA [4], who provided an alternate security reduction from
the LWE problem only.

Since then, there have been several follow-up works on the Bai-Galbraith
scheme [2, 4, 8, 47]. Most notably, a version of the scheme called ring-TESLA,
whose security is based on the ring-LWE problem [2], has the potential to
evolve into a practical, quantum-resistant signature scheme that might one day
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see widespread use as replacement for contemporary signature schemes such as
ECDSA.

In what follows, we review the concepts of tightness and the quantum random
oracle model as they relate to TESLA. We then list the contributions of the
present paper and discuss related work by others.

1.1 Background

Security reduction and parameter choice. The security of digital signature
schemes is often argued by reduction. A reductionist security argument typically
proves a claim of the form, “any attacker A who can break the scheme can be
used to build an algorithm B that solves some underlying hard computational
problem”. Hence, the security gap can be determined; it measures how much
extra work B must perform in order to convert A into solving the underlying
hard problem. If the run-time and probability of success of B are close to those of
A, i.e., if the security gap is approximately 1, then the reduction is called tight.
Achieving a small security gap, ideally a tight security reduction, is of theoretical
interest in its own right, but it should also be an important consideration when
selecting parameters for a concrete instantiation of a scheme. Specifically, the
parameters of a signature scheme ought to be selected so that both (i) the effort
needed to solve the underlying hard computational problem, and (ii) the security
gap are taken into account. Hence, a tight security reduction is of advantage.

The need to instantiate schemes according to their security reductions and
the role tight reductions play in these instantiations have been well argued by
numerous authors. We refer the reader to [1, 18, 28] for a representative sample
of these arguments.

The quantum random oracle model. Security arguments for the most effi-
cient signature schemes—which therefore enjoy the most widespread real-world
use—are typically presented in the ROM. (We refer to [31] by Koblitz and
Menezes for discussion on why this might be the case.) The ROM postulates
a truly random function that is accessible to attackers only through “black box”
queries to an oracle for it—a random oracle. Any concrete proposal for a signa-
ture scheme must substitute a specific choice of hash function for the random
oracle. An attacker armed with a quantum computer can be expected to evaluate
that hash function in quantum superposition. Arguments that establish security
even against such quantum-enabled attackers are said to hold in the quantum
random oracle model (QROM).

It is conceivable that a signature scheme shown to be secure in the ROM
may not be secure in the QROM. Thus, it is important that security arguments
for quantum-resistant signature schemes hold not merely in the ROM, but also
in the QROM.

Boneh et al. have proven that a security reduction in the ROM also holds in
the QROM if it is history-free [15]. Unfortunately, many signature schemes have
security reductions in the ROM that involve the re-programming of a random
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oracle; these reductions are not history-free. For these schemes, there remains a
need to precisely clarify under what conditions these security reductions remain
meaningful in the QROM.

Tightness in the QROM for TESLA. The security reduction presented by
Bai and Galbraith for their signature scheme employs the Forking Lemma [41].
As such, it is non-tight and it involves re-programming, so it holds in the ROM
but is not known to hold in the QROM.

As mentioned above, Alkim et al. presented an alternate security analysis for
the Bai-Galbraith scheme, which they call TESLA. Their reduction is a tight
reduction from LWE in the ROM. Moreover, those authors observed that their
reduction can be made history-free at the cost of replacing a generic hash func-
tion with a chameleon hash function. It then follows from [15] that the history-
free security reduction for TESLA holds also in the QROM. (Unfortunately, the
use of a chameleon hash function would likely render any signature scheme too
inefficient for widespread practical use.)

Unfortunately, a flaw in the original TESLA security reduction has been
identified by the present authors. (The flaw was independently discovered by
Chris Peikert.) This flaw is also present in several TESLA follow-up works, in-
cluding ring-TESLA. As such, the status of the TESLA signature scheme and
its derivative works has been open until now.

1.2 Our contribution

Our primary contributions are as follows:

New security reduction. We present a new security reduction from LWE to
TESLA. Our new reduction is tight. It seems that the flaw in the original
tight security reduction of TESLA does not admit a fix without a huge
increase in the parameters; our new reduction is a significant re-work of the
entire proof.

Security in the QROM with re-programming. Our new security reduction
involves the adaptive re-programming of a random oracle and hence it is not
history-free. Nevertheless, we show that it holds in the QROM by apply-
ing a seminal result from quantum query complexity due to Bennet, Bern-
stein, Brassard, and Vazirani [11]. It is possible that our approach can be
abstracted so as to yield a general result on security reductions with re-
programming in the QROM.

Our secondary contributions are as follows:

Parameter selection. We propose three sets of parameters for the concrete
instantiation of TESLA: TESLA-0 and TESLA-1 targeting 96 and 128 bit
security against a classical adversary, respectively; and TESLA-2, targeting
128 bits of security against a quantum adversary. All three parameter sets
are chosen according to our (tight) security reduction.
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The concrete parameter space admitted by our new security reduction is
worse than that of previous reductions, but those previous reductions are
either flawed or non-tight. Consequently, our proposed parameter sets lead
to concrete instantiations of TESLA that are less efficient than previous
proposals given in [4, 6, 47] that were not chosen according to the given
security reduction.

Implementation. We provide a software implementation for the parameter
sets TESLA-0 and TESLA-1. Our implementation targets Intel Haswell
CPUs to provide a comparison of TESLA’s performance with other signature
schemes with different security levels. Unfortunately, the TESLA-2 parame-
ter set does not seem to admit an implementation that can take advantage of
the same fast parallel arithmetic instructions available on modern processors
that were used in our implementations of TESLA-0 and TESLA-1, and so
we do not provide a software implementation for TESLA at this parameter
set. See Section 6 for details.

1.3 Related work

Tightness from “lossy” keys. In order to avoid the non-tightness inherent in
the use of the Forking Lemma, we take an approach that was introduced by Katz
and Wang to obtain tightly-secure signatures from the decisional Diffie-Hellman
problem [28].

The idea is to use the underlying hardness assumption to show that “real”,
properly-formed public keys for the signature scheme are indistinguishable from
“lossy”, malformed public keys. The task of forging a signature for a lossy key is
then somehow proven to be intractable.

Any attacker must therefore fail to forge when given a lossy public key. Thus,
any attacker who succeeds in forging a signature when given a real public key
can be used to distinguish real keys from lossy keys, contradicting the underlying
hardness assumption.

In the case of TESLA, the real keys are matrices A and T = AS+E for some
matrices S,E with small entries. (See Section 2.2 for a proper definition of these
matrices and the LWE problem.) We call these real keys LWE yes-instances. The
lossy keys are LWE no-instances: matrices A,T selected uniformly at random,
so that the existence of S,E as above occurs with only negligible probability. We
prove that the task of forging a TESLA signature for lossy keys is intractable,
so that any TESLA forger must be able to solve the decisional LWE problem.

A Fiat-Shamir transform for “lossy” identification schemes. The TESLA
signature scheme could be viewed as the result of applying the Fiat-Shamir trans-
form to a “lossy” identification scheme based on LWE. A tight security reduction
for TESLA then follows from a general theorem of Abdalla, Fouque, Lyuba-
shevsky, and Tibouchi (AFLT theorem) on the tight security of any signature
scheme obtained in this way [1].
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In order to leverage the AFLT theorem, one must propose an identification
scheme and prove that it is lossy. Such a proof could be obtained by excerpt-
ing the relevant parts of our security reduction to establish the simulatability
and lossiness properties of a suitably chosen identification scheme. Such an ex-
ercise might make our rather monolithic security reduction easier to digest by
modularizing it and phrasing it in a familiar framework.

However, security reductions obtained by applying the AFLT theorem are
guaranteed to hold only in the ROM. In order to fully recover our security
reduction from this framework, one must first re-prove the AFLT theorem in the
QROM. This limitation is due to the fact that the proof of the AFLT theorem
involves adaptively re-programming a hash oracle. As such, it does not meet any
known conditions for lifting a given proof from the ROM into the QROM.

Given that our security reduction in the QROM also involves the adaptive re-
programming of a hash oracle, perhaps our approach could be mined for insights
to establish the AFLT theorem in the QROM.

Other tightly-secure LWE or SIS signature schemes. Gentry, Peikert,
and Vaikuntanathan present a signature scheme with a tight security reduction
from SIS in the ROM using a trapdoor construction based on possessing a secret
short basis of a lattice [25]. Boneh et al. observed that the security reduction for
this scheme is history-free, and thus holds in the QROM [15].

Boyen and Li present a signature scheme with a tight security reduction from
SIS in the standard model [17], also using a short basis trapdoor. Since standard
model security reductions do not rely on any assumptions about a random oracle,
these reductions hold in the QROM.

The use of a short-basis trapdoor in a signature scheme imposes an additional
constraint on the concrete parameter space admitted by that scheme’s security
reduction. This additional constraint on the parameters of short-basis trapdoor
schemes seems to render them too inefficient for practical use. Since TESLA and
its derivatives do not use a trapdoor construction, they do not suffer from this
impediment.

Other than TESLA, we are aware of only one example of a signature scheme
based on the Fiat-Shamir transform with a tight security reduction from LWE
or SIS. Prior to Bai and Galbraith, a variant of a scheme by Lyubashevsky [33]
was shown to admit a tight security reduction in the ROM by Abdalla et al. as
part of an illustration of the aforementioned AFLT theorem [1]. An artifact of
this reduction required Abdalla et al. to increase the parameters of the scheme,
rendering it too inefficient for practical use. As mentioned earlier, security re-
ductions produced via the AFLT theorem are not known to hold in the QROM.

Re-programming a quantum oracle. Adaptive reprogramming of a quan-
tum oracle has been addressed in some specific cases. Unruh considered a re-
programmed quantum oracle in order to establish the security of a quantum
position verification scheme [45]. It is not clear whether Unruh’s results apply
to our setting.
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Eaton and Song present an asymptotic result on re-programming in the
QROM [24] in a context quite different from ours. Since their result is asymp-
totic, it does not allow for concrete parameter selection, for which the tightness
of the reduction needs to be explicit.

Our approach to re-programming is independent of these previous works,
though some works—such as [15,24]—do draw upon the same result by Bennet et
al. [11] that we employ. To our knowledge we are the first to present progress
on re-programming in the QROM in the context of a cryptographic scheme with
potential for quantum-resistant standardization.

A note on “lattice-based” cryptography. Part of the allure of cryptosystems
based on LWE or SIS is that those problems enjoy worst-case to average-case
reductions from fundamental problems about lattices such as the approximate
shortest independent vectors problem (SIVP) or the gap shortest vector problem
(GapSVP). (See Regev [42] or the survey of Peikert [38] and the references
therein.)

These reductions suggest that the ability to solve LWE or SIS on randomly
chosen instances implies the ability to solve SIVP or GapSVP, even on the hard-
est instances. Indeed, cryptosystems based on LWE or SIS are often referred to as
lattice-based cryptosystems, suggesting that the security of these cryptosystems
ultimately rests upon the worst-case hardness of these lattice problems.

However, as observed by Chatterjee, Koblitz, Menezes, and Sarkar, existing
worst-case to average-case reductions for LWE and SIS are highly non-tight [18].
We are not aware of a proposal for a concrete instantiation of a cryptosystem
based on LWE or SIS with the property that the proposed parameters were
selected according to such a reduction. Instead, it is common to instantiate such
cryptosystems based on the best known algorithms for solving LWE or SIS. (In
addition to TESLA, see for example [5, 16].)

For TESLA, we take care to instantiate the scheme according to its security
reduction from LWE. However, we are unable to instantiate TESLA according
to reductions from underlying lattice problems, due to the non-tightness of these
reductions.

2 Preliminaries

In this section we clarify our notation used throughout the paper. We assume
familiarity with the fundamentals of quantum information, such as the Dirac ket
notation |·〉 for pure quantum states and the density matrix formalism for mixed
quantum states. (Recall that a mixed state can be viewed as a probabilistic
mixture of pure states.) For background on quantum information the reader is
referred to the books [29,37].

2.1 Notation

Integer scalars are denoted using Roman letters and if not stated otherwise,
q is a prime integer in this paper. For any positive integer n the set Zn of
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integers modulo n is represented by {−b(n − 1)/2c, . . . , bn/2c}. Fix a positive
integer d and define the functions [·] , [·]L : Z → Z as follows. For any integer
x let [x]L denote the representative of x in Z2d , i.e., x = [x]L (mod 2d), and let
[x] = (x− [x]L)/2d. Informally, [x]L is viewed as the least significant bits of x and
[x] is viewed as the most significant bits of x. The definitions are easily extended
to vectors by applying the operators for each component. An integer vector y is
B-short if each entry is at most B in absolute value.

Vectors with entries in Zq are viewed as column vectors and denoted with
lowercase Roman letters in sans-serif font, e.g., y, z,w. Matrices with entries in
Zq are denoted with uppercase Roman letters in sans-serif font, e.g., A,S,E.
The transpose of a vector or a matrix is denoted by vT or MT , respectively. We
denote by ‖v‖ the Euclidean norm of a vector v, and by ‖v‖∞ its infinity norm.
All logarithms are base 2. With Dσ, we denote the centered discrete Gaussian
distribution with standard deviation σ. For a finite set S, we denote sampling
the element s uniformly from S with s←$ U(S) or simply s←$ S.

Let χ be a distribution over Z, then we write x← χ if x is sampled according
to χ. Moreover, we denote sampling each coordinate of a matrix A ∈ Zm×n with
distribution χ by A ← χm×n with m,n ∈ Z>0. For an algorithm A, the value
y ← A(x) denotes the output of A on input x; if A uses randomness then
A(x) is a random variable. Aχ denotes that A can request samples from the
distribution χ.

2.2 The Learning with Errors Problem

Informally the (decisional) learning with errors (LWE) problem with m samples
is defined as follows: Given a tuple (A, t) with A ←$ Zm×nq , decide whether
t←$ Zmq or whether t = As+ e (mod q) for a secret s← Dnσ and error e← Dmσ .
The security of the signature scheme covered in this paper is based on the matrix
version of LWE (M-LWE): Given a tuple (A,T) with A←$ Zm×nq , decide whether
T ←$ Zm×n′

q is chosen uniformly random or whether T = AS + E (mod q) for
a secret S ← Dn×n′

σ and E ← Dm×n′

σ . We call (A,T) ∈ Zm×nq × Zm×n′

q a yes-
instance if T is generated by selecting S = (s1, ..., sn′) with s1, ..., sn′ ← Dnσ
and E ← Dm×n′

σ , and setting T = AS + E (mod q). Otherwise, when (A,T) ←$

U
(
Zm×nq × Zm×n′

q

)
, we call (A,T) a no-instance. Similar concepts from the

literature are also known as lossy [1, 10,40] or messy keys [39].
We know that if an attacker can break LWE parametrized with n,m, and q in

time t and with success probability ε/n′, then he can solve M-LWE parametrized
with n, n′,m, and q in time t and with success probability ε. Intuitively this is
correct since an adversary that can solve LWE has n′ possibilities to solve M-
LWE (see also [6, 16,40]).

For the remainder of the paper, ‘LWE’ refers to the matrix version M-LWE,
unless otherwise specified.

7



3 The Signature Scheme TESLA

In this section, we present the LWE-based signature scheme TESLA. Its orignal
construction was proposed in 2014 by Bai and Galbraith [6]. It was later revisited
by Dagdelen et al. [47] and by Alkim et al. [4].

TESLA’s key generation, sign, and verify algorithms are listed informally
in Algorithms 1, 2, and 3. More formal listings of these algorithms are given
in Figure 1 in Section 5. Our proposed concrete parameter sets are derived in
Section 5 and listed in Table 1.

Algorithm 1 KeyGen
Input: A.
Output: Public key T, secret key (S,E).

1: Choose entries of S ∈ Zn×n′

q and E ∈ Zm×n′

q from Dσ
2: If E has a row whose h largest entries sum to L or more then retry at step 1.
3: If S has a row whose h largest entries sum to LS or more then retry at step 1.
4: T← AS+ E.
5: Return public key T and secret key (S,E).

TESLA is parameterized by positive integers q, m, n, n′, h, d, B, L, LS , U , a
positive real σ, a hash oracle H(·), and the publicly available matrix A←$ Zm×nq .
Let H denote the set of vectors c ∈ {−1, 0, 1}n′

with exactly h nonzero entries.
For simplicity we assume that the hash oracle H(·) has range H, i.e., we ignore
the encoding function F , cf. Table 1. We call an integer vector w well-rounded
if w is (bq/2c − L)-short and [w] is (2d − L)-short.

In contrast to earlier proposals [6,47], we add two additional checks. The first
one is the check in Line 3 in Algorithm 1. It ensures that no coefficient of the
matrix S is too large, which allows for more concrete bounds during the security
reduction. The parameter LS is chosen such that the probability of rejecting S
is smaller than 2−λ, cf. Section 5. The second additional check is in Line 5 in
Algorithm 2. To ensure correctness of the scheme, it checks that the absolute
value of each coordinate of Ay − Ec is less or equal than bq/2c − L.
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Algorithm 2 Sign
Input: Message µ, secret key (S,E).
Output: Signature (z, c).

1: Choose y uniformly at random among B-short vectors from Znq .
2: c← H([Ay] , µ).
3: z← y + Sc.
4: If z is not (B − U)-short then retry at step 1.
5: If Ay − Ec is not well-rounded then retry at step 1.
6: Return signature (z, c).

Algorithm 3 Verify
Input: Message µ, public key (A,T), purported signature (z, c).
Output: “Accept” or “reject”.

1: If z is not (B − U)-short then reject.
2: If H([Az− Tc] , µ) 6= c then reject.
3: Accept.

4 Security Reduction for TESLA

Our main theorem on the security of TESLA informally states that as long
as M-LWE can not be solved in time t and with success probability ε then no
adversaryA exists that can forge signatures of TESLA in time t′ and with success
probability ε′, if A is allowed to make at most qh hash und qs sign queries. The
main theorem is as follows.

Theorem 1 (Security of TESLA). Let q, m, n, n′, h, d, B, L, LS, U , σ,
λ, κ be TESLA parameters that are convenient6 (according to Definition 1 in
Section 5.3) and that satisfy the bounds in Table 1.

If M-LWE is (t, ε)-hard then TESLA is existentially (t′, ε′, qh, qs)-unforgeable
against adaptively chosen message attacks with t′ ≈ t in (i) the quantum random
oracle model with

ε′ < ε+
3

2λ
+

2m(d+1)+3λ+1

qm
(qh + qs)

2q3s + 2(qh + 1)

√
1

2h
(
n′

h

) , (1)

and in (ii) the classical random oracle model with

ε′ < ε+
3

2λ
+

2m(d+1)+3λ+1

qm
(qh + qs)

2q3s + qh
1

2h
(
n′

h

) . (2)

6 It is not necessary that TESLA parameters be convenient in order to derive negligibly
small upper bounds on ε′; the definition of convenience merely facilitates a simplified
statement of those bounds.
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The proof of Theorem 1 is given in the full version of the paper. Here we present
a sketch of this proof and a selection of some intermediate results we feel are the
most significant technical contributions of the present manuscript.

Let F be a forger that forges signatures of the TESLA scheme with probabil-
ity Pr [forge(A,T)], where forge(A,T) denotes the event that F forges a signature
on input (A,T), which is a yes- or a no-instance of LWE. We build an LWE-
solver S whose run time is close to that of F and who solves LWE with success
bias close to Pr [forge(A,T)]. It then follows from the presumed hardness of LWE
that Pr [forge(A,T)] must be small.

Given an LWE input (A,T), the LWE-solver S treats (A,T) as a TESLA
public key; S runs F on input (A,T) and outputs “yes” if and only if F succeeds
in forging a TESLA signature.

In order to run F , the LWE-solver S must respond in some way to F ’s
quantum queries to the hash oracle and to F ’s classical queries to the sign oracle.
Our description of S includes a procedure for responding to these queries.

That S solves LWE with success bias close to Pr [forge(A,T)] is a consequence
of the following facts:

1. For yes-instances of LWE, the probability with which S outputs “yes” is close
to Pr [forge(A,T)].

2. For no-instances of LWE, F successfully forges (and hence S outputs “yes”)
with only negligible probability.

4.1 Yes-Instances of LWE

We argue that S’s responses to F ’s oracle queries are indistinguishable from the
responses F would receive from real oracles, from which it follows that S reports
“yes” with probability close to Pr [forge(A,T)].

Each time S simulates a call to the sign oracle, it must “re-program” its
simulated hash oracle on one input. Because F is permitted to make quantum
queries to the hash oracle, we must show that F is unlikely to notice when a
quantum random oracle has been re-programmed.

To this end, let Y denote the set of vectors y ∈ Znq such that y is B-short and
define the following quantities for each choice of TESLA keys (A,T), (S,E):

nwr(A,E): The probability over (y, c) ∈ Y×H that Ay−Ec is not well-rounded.
coll(A,E): The maximum over all w ∈ {[x] : x ∈ Zmq } of the probability over

(y, c) ∈ Y×H that [Ay − Ec] = w.

We prove the following in the full version of our paper.

Proposition 1 (Re-Programming in TESLA, Informal Statement). The
following holds for each choice of TESLA keys (A,T), (S,E), each hash oracle
H(·), and each γ > 0.

Suppose the quantum state ρH was prepared by some party D using t quantum
queries to H(·). Let H′(·) be a hash oracle that agrees with H(·) except on a small
number of randomly chosen inputs (·, µ) for each possible message µ. Let ρH′ be
the state prepared when D uses hash oracle H′(·) instead of H(·).
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Then ‖ρH′ − ρH‖Tr < γ except with probability at most

t2

γ2
· coll(A,E)

1− nwr(A,E)
(3)

over the choice of inputs upon which H(·) and H′(·) differ.

We also prove bounds on nwr(A,E) and coll(A,E) that hold with high probability
over the choice of TESLA keys (A,T), (S,E).

4.2 No-Instances of LWE

We argue that, except with negligibly small probability over the choice of hash
oracle H(·) and LWE no-instance (A,T), a TESLA forger cannot forge a signature
for (A,T) without making an intractably large number of queries to the hash
oracle.

To forge a signature for message µ, a forger must find a hash input (w, µ)
whose output c = H(w, µ) has the property that there exists a (B − U)-short
z ∈ Znq for which [Az− Tc] = w. Let H(w,A,T) ⊂ H denote the set of all such
c. A hash input (w, µ) is called good for H(·) and (A,T) if H(w, µ) ∈ H(w,A,T).
(Once a good hash input has been found, the forger must then somehow find the
vector z witnessing this fact. For our purpose, we assume that the forger gets it
for free.)

For each LWE no-instance (A,T), a given hash input (w, µ) is good for H(·)
and (A,T) with probability

#H(w,A,T)

#H
(4)

over the choice of hash oracle H(·). In the full version of our paper, we argue
that, except with negligibly small probability over the choice of H(·) and (A,T),
the fraction of hash inputs that are good is at most the expectation over LWE
no-instances (A,T) of the ratio (4), maximized over all w ∈

{
[x] : x ∈ Zmq

}
. We

then prove the following

Proposition 2 (Good Hash Inputs are Rare).
If the TESLA parameters are convenient (according to Definition 1 in Section

5.3) then

Ex
(A,T)

[
max
w

{
#H(w,A,T)

#H

}]
≤ 1

#H
. (5)

Thus, the fraction of good hash inputs is at most 1/#H except with vanishingly
small probability over the choice of hash oracle H(·) and LWE no-instance (A,T).

Since each hash input is good with a fixed probability independent of other
hash inputs, the only way to discover a good input is via search through an
unstructured space. It then follows from known lower bounds for quantum search
over an unstructured space that the forger cannot find a good hash input—and
thus a TESLA forgery—using only qh quantum queries to the hash oracle.
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5 Selecting Parameters for TESLA

In this section we propose parameter sets for TESLA. Moreover, we present a
more detailed description of TESLA in Figure 1. Table 1 illustrates our concrete
choice of parameters and Table 2 gives the hardness of the corresponding LWE
instances. We propose three parameter sets: TESLA-0 that targets the same
(classical) bit security of 96 bit as the instantiation proposed in [47], called
DEG+. TESLA-1 targets 128 bit of classical security and TESLA-2 targets 128
bit of security against quantum adversaries. Note that the parameter set DEG+

was orignally proposed to give 128 bit of security, i.e., λ = 128, but due to new
methods to estimate the bit security its bit security is now only 96 bit.

Algorithm KeyGen

INPUT: 1λ;A, n, n′,m, q, σ
OUTPUT: (S,E, s),T

1. S←$ Dn×n
′

σ

2. E←$ Dm×n
′

σ

3. if checkE(E) = 0 ∨ checkS(S) = 0
4. then Restart
5. s←$ {0, 1}κ

6. T← AS+ E (mod q)
7. sk← (S,E, s),pk← T

8. return (sk,pk)

Algorithm Verify

INPUT: µ, q, z, c,A,T
OUTPUT: {0,1}

1. c← F (c)
2. w′ ← Az− Tc (mod q)
3. c′ ← H(

[
w′

]
, µ)

4. if c′ = c ∧ ‖z‖∞ ≤ B − U
5. then return 1
6. return 0

Algorithm Sign

INPUT: µ, q,A, S,E, s
OUTPUT: (z, c)

1. j ← 0
2. k← PRF1(s, µ)
3. y← PRF2(k, j)
4. v← Ay (mod q)
5. c← H([v] , µ)
6. c← F (c)
7. z← y + Sc
8. w← v − Ec (mod q)

9. if ‖[w]L‖∞ > 2d−1 − LE
∨ ‖w‖∞ > bq/2c − LE ∨ ‖z‖∞ > B − U

10. then j ← j + 1 and go to Step 1
11. return (z, c)

Fig. 1. Specification of the signature scheme TESLA = (KeyGen, Sign,Verify); for de-
tails of the functions checkE and checkS see the explanation of the public parameters
and definition of functions.

Public Parameters and Definition of Functions. TESLA is parameterized
by the dimensions n, n′, m of the matrices, the size κ of the output of the hash
function, and the security parameter λ withm > n > κ ≥ λ; by the matrix A←$

Zm×nq ; by the hash function H : {0, 1}∗ → {0, 1}κ, by the encoding function
F : {0, 1}κ → H (see [26] for more information), by the pseudo-random function
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PRF1 : {0, 1}κ × {0, 1}∗ → {0, 1}κ, and the pseudo-random generator PRF2 :
{0, 1}κ × Z → [−B,B]n. The remaining values, i.e., the standard deviation σ,
the number h of non-zero coefficients in the output of the encoding function, the
number of rounded bits d, the value B defining the interval of the randomness
during Sign, the value U defining (together with B) the rejection probability
during rejection sampling, and the modulus q, are derived as shown in Table 1
and described in Sec. 5.1.

Moreover, we define the functions checkE, introduced in [47, Section 3.2], as
follows: for a matrix E, define Ei to be the i-th row of E. The function maxk(·)
returns the k-th largest entry of a vector. The matrix E is rejected if for any
row of E it holds that

∑h
k=1 maxk(Ei) is greater than some bound L. We apply

a similar check checkS to S: The matrix S is rejected if for any row of S it holds
that

∑h
k=1 maxk(Si) is greater than some bound LS .

Remark 1 (Deterministic signature). Note that signing is deterministic for each
message µ since the randomness is determined by the vector y which is determin-
istically computed by the secret key and the message to-be-signed. In the original
scheme by Bai and Galbraith [6] the vector y was sampled uniformly random
in [−B,B]n. The idea to use a pseudo-random function to generate signatures
deterministically was deployed several times before [9, 12,28,36,46].

5.1 Derivation of System Parameters

Our security reduction for TESLA minimizes the underlying assumptions which
allows us to choose secure parameters from a greater set of choices compared
to [6,47]. More precisely, our parameters do not have to involve a hard instance
of the SIS assumption as it was done by Bai and Galbraith [6] before. We sum-
marize the bounds and conditions of each parameter in Table 1 and explicate
the computation of some of the listed parameters in the following. Furthermore,
we state the resulting key and signature sizes in the table.

Compared to [6,47], we introduce the parameter n′ as the column dimension
of the secret matrices S and E to get more flexibility in the choice of parameters.
The value of n′ influences the parameters h (and hence B, U , q, and the encoding
function F ) and the size of the secret key.

Another important parameter of the signature scheme is the value L. In the
original work [6], it is set to L = 7hσ, whereas it is set to L = 3hσ in [47]. We
choose L to be roughly L = 2.8hσ. We note that the smaller the value L, the
higher the probability of acceptance in the signature algorithm (Line 9, Figure 1)
becomes.

We add checkS to the key generation algorithm and the corresponding param-
eter LS to bound ‖Sc‖ ≤ LS in the security reduction. We determine the value
LS such that S is rejected only with negligibly small (in the security parameter
λ) probability. Hence, we do not decrease the size of the key space further. We
choose LS to be 14hσ.

The acceptance probabilities of a signature δSign and of a secret key (S,E) in
Table 1 are determined experimentally.
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Table 1. Concrete instantiation TESLA-2 of 128 bit of security against classical and
quantum adversaries, and TESLA-0 of 96 bit and TESLA-1 of 128 bit of security against
classical adversaries; comparison with the instantiation proposed in [47], called DEG+,
of 96 bit security (classically); sizes are given in kilo byte [KB]; sizes are theoretic sizes
for fully compressed keys and signatures; for sizes used by our software see Table 3.

Parameter Bound DEG+ TESLA-0 TESLA-1 TESLA-2

λ 128 96 128 128
κ 256 256 256 256
n 532 644 804 1300
n′ 532 390 600 1036
m 840 3156 4972 4788

σ > 2
√
n 43 55 57 73

L 3hσ or 2.8hσ, see Sec. 5.1 2322 5082 6703 17987
LS 14σh - 25410 33516 89936

h
2h
(
n′

h

)
≥ 23λ (classically) 18 33 42 -

2h
(
n′

h

)
≥ 25λ (quantumly) - - - 88

B ≥ 14n
√
hσ 221 − 1 222 − 1 222 − 1 224 − 1

U d14
√
hσe 2554 4424 5172 9588

d (1− 2L/2d)m ≥ 0.3 23 25 26 27

q satisfying the bound in Eq. 7, 229 − 3 231 − 99 231 − 19 40582171961
≥
(
2m(d+1)+4λ+1(qh + qs)

2q3s
)1/m ≈ 235.24

δKeyGen empirically, see Sec. 5.1 0.99 1 1 future work
δSign 0.314 0.307 0.154 future work

H {0, 1}∗ → {0, 1}κ SHA-256

F {0, 1}κ → Hn′,ω see [26]

PRF1 {0, 1}κ × {0, 1}∗ → {0, 1}κ - SHA-256
PRF2 {0, 1}κ × Z→ [−B,B]n - ChaCha20

public-key size mn′dlog2(q)e 1 582 4 657 11 288 21 799
secret-key size (nn′ +mn′)dlog2(14σ)e 891 1 809 4 230 7 700
signature size ndlog2(2(B − U))e+ κ 1.4 1.8 2.3 4.0

To ensure both correctness and security of our signature scheme, we choose
parameters with respect to our reduction, hence, we choose parameters such that
ε′ ≈ ε in Equation (1) and (2). We propose to choose qh ≤ 2λ and qs ≤ 2λ/2, since
a hash query is merely the evaluation of a publicly available function and hence
the adversary can use all its computational power to make hash queries. The
number of sign queries is somewhat limited since it involves more complicated
operations. We refer to [30] (especially, Section 7) for further discussion.

5.2 Concrete Bit Security of TESLA

Choosing our parameters such that ε ≈ ε and t ≈ t′ in Theorem 1 implies that
we do not lose bits of security due to our security reduction. However, we lose
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dlog(n′)e bits of security due to the reduction from LWE to M-LWE. Hence,
we have to choose an LWE instance with slightly higher bit hardness than the
targeted bit security of the TESLA instances.

To estimate the classical hardness we use a recent fork [43, 44] of the LWE-
Estimator by Albrecht, Player, and Scott [3]. The extension takes the number
of given LWE samples into account.

To estimate the quantum hardness of LWE we use the same method: we
use the LWE-Estimator which already includes (from commit-id b929691 on)
the run time estimates for a quantumly enhanced sieving algorithm [32] as a
subroutine of the lattice reduction algorithm BKZ 2.0 [20]. Moreover, we apply
a recently published quantum algorithm [35] to the currently fastest enumeration
estimations by Micciancio and Walter [34] and add the resulting estimations as a
subroutine to be used in BKZ 2.0. We summarize the estimations using quantum
sieving and quantum enumeration in Table 2.

Table 2. Estimation of the hardness of LWE instances given in TESLA-0, TESLA-1,
and TESLA-2 against the decoding attack and the (dual and standard) embedding
approach, in comparison to the parameter sets proposed by Dagdelen et al. [47], called
DEG+; estimations are computed using the LWE-Estimator with a restricted number
of samples [3, 44].

Problem Attack DEG+ TESLA-0 TESLA-1 TESLA-2

Classical Hardness [bit]

LWE Decoding 156 110 142 204
Dual Embedding 96 110 142 205

Standard Embedding 164 111 143 205

Post-Quantum Hardness [bit]

LWE Decoding 73 74 98 146
Dual Embedding 61 71 94 142

Standard Embedding 111 71 95 142

5.3 Convenient Parameters

We make some simplifying assumptions on the choice of TESLA parameters.
These assumptions are not necessary in order to derive a negligibly small upper
bound on the forger’s success probability—they merely facilitate a simplified
statement of the upper bound in Theorem 1 in Section 4.

Let ∆H be the set of differences of elements in H. That is, ∆H def
= {c − c′ :

c, c′ ∈ H}. In the full version of our paper we compute the size of ∆H, but for a
trivial upper bound one can note that #∆H ≤ (#H)2.
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Definition 1 (Convenient TESLA Parameters). TESLA parameters are
convenient if the following bounds hold:

2mL

(
1

2d
+

1

q

)
+

√
2λ(q + 1)

(2B − 1)n
< 1/2 (6)

#∆H(4(B − U)− 1)n(2d+1 − 1)m < qm. (7)

All our proposed parameter sets for TESLA meet this condition.

6 Results and Comparison

To evaluate the performance of our proposed parameter sets we present a soft-
ware implementation targeting the Intel Haswell microarchitecture. The starting
point for our implementation is the software presented by Dagdelen et al. [47],
which we obtained from the authors. Our software offers the same level of pro-
tection against timing attacks as the software presented in [47]. The software
makes use of the fast AVX2 instructions on vectors of four double-precision
floating-point numbers.

Table 3 gives benchmarking results for TESLA-0 and TESLA-1, and compares
those benchmarks to state-of-the-art results from the literature. Due to the large
values q and B of the parameter set TESLA-2, certain elements do no fit into
the 53-bit mantissa of a double-precision floating point variable. Hence, we do
not compare the performance of TESLA-2 in Table 3.

We obtain our benchmarks on an Intel Core-i7 4770K (Haswell) processor
while disabling Turbo Boost and hyperthreading. Benchmarks of TESLA for
signing are averaged over 100, 000 signatures; benchmarks of TESLA for veri-
fication are the median of 100 verifications. The reason for not reporting the
median for TESLA signing performance is that because of the rejection sam-
pling, it would be overly optimistic. For all software results we report the sizes
of keys and signatures actually produced by the software, not the theoretically
smallest possible sizes with full compression.7

As can be seen in Table 3, TESLA is several magnitudes faster and sizes are
smaller than the only other lattice-based signature scheme that is also proven
tightly secure in the quantum random oracle model for the same (classical)
security of 96 bits. However, the signature generation and verification algorithms
of TESLA-0 are much slower than the implementation of [47] for the same level
of security. This is due to the large difference of the parameters chosen, e.g., the
matrix dimension m in TESLA-0 is 3156, while m = 840 in the parameter set
DEG+ proposed by Dagdelen et al. [47]. Note that the parameter set TESLA-0
is chosen according to our security reduction, while the set DEG+ is not chosen
according to the (non-tight) security reduction given in [6].
7 We make an exception for BLISS. The authors of the software obviously did not
spend any effort on reducing the size of signatures and keys; we report sizes with
“trivial” compression through choosing native data types of appropriate sizes.

16



In the (as of yet quite small) realm of signatures that offer 128 bits of post-
quantum security, TESLA-2 offers an alternative to SPHINCS. Public and secret
keys of TESLA-2 are much larger than SPHINCS keys, but signatures are sev-
eral magnitudes smaller. The post-quantum multivariate-based signature scheme
Rainbow5640 [19,21] performs best among all listed schemes but unfortunately,
comes with no security reduction to its underlying problem.
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c
T
he

security
of

SP
H
IN

C
S
is

reduced
tightly

from
the

hardness
of

finding
hash

collisions
and

non-tightly
from

the
hardness

of
finding

2nd
preim

ages
in

the
standard

m
odel.H

ence
the

reduction
also

holds
in

the
R
O
M

and
Q
R
O
M
.

d
B
enchm

ark
on

H
asw

ellC
P
U

from
[14].

e
T
he

security
of

R
ainbow

5640
is

based
on

the
M
ultivariate

Q
uadratic

polynom
ial(M

Q
)
and

the
E
xtended

Isom
orphism

of
P
olynom

ials
(E

IP
)
problem

,but
no

security
reduction

has
been

given
yet.
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