Executable Assertionsfor Detecting Data Errorsin Embedded Control Systems

Martin Hiller
Department of Computer Engineering
Chalmers University of Technology
SE-412 96, Goteborg, SWEDEN
hiller@ce.chalmers.se

Abstract

In order to be able to tolerate the effects of faults, we
must first detect the symptoms of faults, i.e. the errors.
This paper evaluates the error detection properties of an
error detection scheme based on the concept of
executable assertions aiming to detect data errors in
internal signals. The mechanisms are evaluated using
error injection experiments in an embedded control
system. The results show that using the mechanisms
allows one to obtain a fairly high detection probability
for errorsin the areas monitored by the mechanisms. The
overall detection probability for errors injected to the
monitored signals was 74%, and if only errors causing
failure are taken into account we have a detection
probability of over 99%. When subjecting the target
system to random error injections in the memory areas of
the application, i.e., not only the monitored signals, the
detection probability for errors that cause failure was
81%.

Keywords: signal classification scheme, executable
assertions, error detection, software implemented fault
tolerance, fault injection

1. Introduction

Fault-tolerance is no longer required only in high-end
systems such as aircraft, nuclear power plants or
spacecraft. Consumer products, such as automobiles, are
increasingly dependent on electronics and software and
require low-cost techniques for achieving fault-tolerance.
Low-cost in this sense means that these techniques are
inexpensive to develop and that the product is (relatively)
inexpensive to produce.

The first step in tolerating the effects of faults is to

detect the symptoms of faults, i.e. the errors. Severa
techniques and methods have been proposed for error
detection. An NVP-style approach to error detection is
achieved by running several versions or variants of the
systemin parallel and then compare their results [1]. If the
results differ, an error must have occurred in at least one
of the versions. This approach is very effective but tends
to be also very expensive. A more inexpensive way of
error detection is to explicitly check for errors in the
system-state. Severa techniques for such self-tests have
been proposed (e.g. [2][3][4]), but in many cases little is
known about their effectiveness.

Most self-tests are based on the concept of executable
assertions [5][6]. Executable assertions are commonly
statements, which can be made about the variables in a
program. These statements are executed in on-line tests to
see if they hold true. If they do not, an error has occurred
and processes for assessment and recovery may be
invoked. In addition to on-line error detection, executable
assertions may be used during the development of a
system for testing purposes [7] and to assess the
vulnerability of the system.

Self-tests, as for instance executable assertions, also
play major roles in software fault tolerance structures such
as Recovery Blocks (RB) [8] and its variants (e.g.
Consensus RB [9] and Distributed RB [10]), and other
structures (e.g. N Self-Checking Components [11], N
Copy Programming or Retry Blocks [12]).

The effectiveness of executable assertions is highly
application dependant. In order to develop tests with high
error detection coverage, the devel opers require extensive
knowledge of the system. Introducing rigorous ways of
defining the statements used for executable assertions, or
even better, providing generic mechanisms that can be
instantiated by parameters alone, reduce the importance of
this drawback.

This paper evaluates the detection capabilities of error

" This research was supported by Volvo and by the National Board for Industrial and Technical Development (NUTEK), Sweden, under

contract 1P21-97-4745.

detection mechanisms based on the executable assertion
concept, that work on a signal-basis, meaning that only
one signal/variable istested in each individual test routine.
The paper aso proposes a defined process for
incorporating the mechanisms into a system.

In order to evaluate the error detection capabilities of
the proposed mechanisms we performed a case study
using error injection experiments on an embedded system
used for arresting aircraft on a runway. The aim of this
study was to investigate the probability of detecting
erroneous states induced by internal data errors. We aso
measured the detection latency as being the time from the
first injection of an error to the first detection. Even
though the error detection mechanisms may detect errors
induced by software faults as well as hardware faults, the
case study concentrates on errors induced by hardware
faults.

The results show that given that an error is present in a
monitored signal, and that this error leads to system
failure, the detection probability is over 99%. For error
injections into random locations in the memory areas of
the target system, the errors that caused system failure
were detected with a probability of over 81%. The
presented technique is therefore a viable candidate for
error detection with reasonably high detection coverage if
costs have to be kept low.

Section 2 contains a description of the error detection
scheme used for this evauation. Section 3 describes the
case study and the results of the experiments are shown in
section 4. Section 5 consists of a discussion of the
obtained results and section 6 summarises the study.

2. Executable assertions

Error detection in the form of executable assertions can
potentially detect any error in internal data caused by
either software faults or hardware faults [13]. When input
data arrive at a functiona block (e.g. a function or
procedure), they are subjected to executable assertions
determining whether they are acceptable. Output data
from calculations may also be tested to see if the results
seem acceptable. Should an error be detected, measures
can be taken to recover from the error, and the signal can
be returned to avalid state.

2.1. Signal classification

One of the main drawbacks of executable assertions,
and indeed of all kinds of acceptance tests, is that they are
very application specific. One way of |essening the impact
of this specificity isto devise arigorous way of classifying
the data that are to be tested. A classification scheme will

help when determining the valid domain for the signals.
The classification scheme used in this investigation is
shown in Figure 1. Below is a description of the
classification scheme.

The two main categories in the classification scheme
are continuous and discrete signals. These categories have
subcategories that further classify the signal. For every
signal class we can set up a specific set of constraints,
such as boundary values and rate limitations, which are
then used in the executable assertions. In order to enable a
signal to have different behaviours during different modes
of operation in the system, a signal may have one set of
constraints for each such mode. Which constraints are to
be used is defined by the current mode of the signal.

Static
Monotonic —[
Continuous —I: Dynamic

Random

Signals Linear
Sequential —I:
Discrete —[Non-linear

Random

Figure 1. Signal classification scheme.

Error detection is performed as atest of the constraints.
A violation of a constraint is interpreted as the detection
of an error.

Continuous signals. The continuous signals are often
used to model signals in the environment that are of
continuous nature. Such signas are typically
representations of physical signals such as temperatures,
pressures or velocities.

The continuous signals can be divided into monotonic
and random continuous signals. Monotonic signals must
either increase or decrease their value monotonically and
cannot, for example, increase between the first and the
second test and then decrease between the second and the
third test. However, they may be alowed to remain
unchanged between tests. The monotonic signals can have
either a static rate or a dynamic rate. A signal with static
rate must either increase or decrease its value with a given
constant rate. A signal with dynamic rate, however, can
change at any rate that is within the specified range. The
random continuous signals may decrease or increase (or
remain unchanged) between tests (that is, they may
randomly increase or decrease between tests).

Also, a signal may be allowed to wrap around, i.e.
when it has reached its maximum or minimum value, it

may continue “on the other side”. This is visualised in
Figure 2, which shows examples of the three types of

continuous signals.

(@)

Figure 2. Continuous signals: (a) random,
(b) static monotonic (with wrap-around), (c)
dynamic monotonic

For the proposed error detection and recovery
mechanisms, we assign to each continuous signal a set
Peont containing seven different parameters. Sy
(maximum value), Syn (Minimum value), Fyininer
(minimum increase rate), Mmaxiner (Maximum increase rate),
Fminder (MINIMUM decrease rate), rmaxdeer (Maximum
decrease rate), and w (wrap-around allowed/not allowed).
Each of these signal classes imposes certain constraints on
the parameters, as shownin Table 1.

Table 1. Parameter constraints for
continuous signal classes.
Signal class Parameters

All Smax > Smin, W = adlowed/not allowed

Static (Fmainer = Fininer = O, T decr = Mminecr > 0) OF

monotonic (Fmaxdecr = Fmingeer = 0, Fmainer = Fnininer > 0)

Dynamic. (Fmaxiner = Fininer = O, Fmexdecr > Fmingecr 2 0) OF

monotonic (Fmaxdecr = Fmindecr = O, Fmeiner > Fmininer 2 0)

Random Fmeiner 2 Fimininer 2 0, Fimadecr 2 Fmindeer 2 0

For statically increasing monotonic signals the change
rate limits for decrease are set to zero (i.€. Imindesr =
INmaxgecr = 0) @nd the change rate limits for increase are set
to the same value (i.e. rminjner = Fmaxiner > 0). FoOr a
statically decreasing signal, instead the increase rate limits
are set to zero and the increase rates are both set to the
same value. For random continuous signals we have
different values for the change rate limits (i.e. rminjiner #
Fmaxiner @NA/OF Trindeer # Fmaxdecr). 1HESE parameters are
static, but dynamic constraints asin [4] and [14] may also
be considered.

Discrete signals. Discrete signals are alowed to take on a
set of discrete values. They often contain information on
the settings on an operator panel or the operation mode of
the system. Actually, al signals containing some kind of
state information internal or externa to the system may be
classified as discrete signals. For instance, execution
sequences that must be followed in a certain order, or state
machines with a number of states and a number of
transitions between the states, may be modelled as
discrete signals. The discrete signals are divided into
sequential and random signals.

A sequential signal has constraints on how it may
change its value from any given other value, i.e. the order
of change is restricted. They are divided into linear and
non-linear signals. Linear signals must traverse their valid
domain in a fixed predefined order, one vaue &fter

another. For instance, the execution sequence mentioned
above could be modelled as a linear signal. Non-linear
signals traverse their valid domain in predefined ways.
The random signals are allowed to make any transition
from one value to another within the valid domain of the
signal.

For the proposed error detection mechanisms we assign
to each signa a set Pgyy containing the following
parameters: D (the set of valid values) and T(d) (the set of
valid transitions from element d in D; there is one set for
each element in D).

A typical example of a discrete signal is a state
variable. From any given state, the variable may be set to
a (fixed) number of other states. Consider for example the
state diagram shown in Figure 3. There are five states (v1
through v5) and a number of transitions between these
states. The valid domain is therefore D = {v1, v2, v3, v4,
v5} and the transition sets are T(vl) = {v2, v4}, T(v2) =
{v3, va}, T(v3) ={v4}, T(v4) = {v5}, and T(v5) = {v1}.

Figure 3. Example state diagram for a non-
linear sequential discrete signal.

Signal modes. The behaviour of a signal may differ
between different phases of operation of the system.
Therefore, a signal can have different modes. A specific
set of congtraints is generated for each such mode, i.e. a
signal with several modes has one parameter set Py Or
Paisc fOr each mode. The set used in a certain mode m is
Peont(mM) or Pgs(M). Mode variables (min this case) can be
classified as discrete signals in themselves, so that error
detection may be implemented for them as well.

Modes may also be used to model certain dependencies
between signals. That is, if the behaviour of signal A is
limited due to the operational mode of signal B, these two
signals can be grouped by means of signal modes
representing this dependency. Furthermore, using different
modes may increase the possibility of detecting errors.

2.2. Error detection

Error detection is performed using the configuration
parameters of the signals to build executable assertions.
An error in a signal is detected as soon as the signal
violates the congtraints given by the configuration
parameters. The executable assertions for continuous and
discrete signals are shown in Tables 2 and 3, respectively.
In these tables, s is the current signal value and s is the
previous signal value.

Table 2. Executable assertions for

continuous signals

Signal Test . .
satus No. Assertion Description
1 S< Snax Maximum value
2 S Syin Minimum value
2 S—S < Iaginer U Within increase
S—S 2 I'minjner parameters
s>s w = allowedO Wrap-around is allowed
4a (S —Smin) + (Smax —9) < Fmax.decr U and within decrease
(8 = Sin) * (S =9) 2 Mringes parameters
b S —S< Mmaxdecr U Within decrease
S =S Iminderr parameters
s<s w = allowedO Wrap-around is allowed
4ab (Smax —S) + (S—Smin) < F'maxiner J and within increase
(St =S) + (5= Sue) 2 Mg parameters
—— Monotonically
ac mmner oo decreasing signal and
e iner = within decrease
Tmindecr = 0 parameters
Imindecr = 001 Monotonically increasing
s=s 4c madecr = 000 signal and within
Frinin = 0 increase parameters
- (r =00r, =0)0
s Erm‘"'”e” P rmax'de”_ 0))D Random signal and
mininer = max,iner ~ within parameters
(fmininer = 0 O Fmineer = 0)

For continuous signals, there are different validity
constraints depending on the relationship between sand s,
as indicated by the Signal status column. Each set of tests
is performed in the order given by the Test No. column.
The Assertion column contains the assertions that the
signals must pass. In the Description column is a short
description of the implications of passing a particular test.

Each time a signal is tested, it is subjected to at most
five assertions. The first two tests, Test No. 1 and 2, are
always used, regardless of the signal status, whereas the
remaining tests are chosen depending on the relationship
between the previous signal value and the current signal
value. If either of the first two tests fails, the entire test
fails. However, if the first two tests are passed, only one
of the remaining assertions must be fulfilled.

Table 3. Executable assertions for discrete
signals

Signal class Assertion Comment
Random sOD
Sequential sOD

This property actually
implies that s O D,
but both tests are used
nonetheless.

For discrete signals, the assertions are always executed.
If a constraint is violated, the corresponding recovery
mechanism is used and the test is terminated.

Since the mechanisms for error detection are general
algorithms that are instantiated with parameters, it is
possible to formaly verify the agorithms, which can
totally eliminate the probability of faults in them, although
faulty parameters may still be a problem. However, the
parameters may be caibrated using fault injection
experiments.

sOT(S)

2.3. Location and parameters

A number of different methods may be used to
determine which signals should be monitored and where
the executable assertions should be placed. From system
design, the software should already be divided into
functional blocks. In safety-critical systems, FMECA
(Failure Mode Effect and Criticality Analysis) is widely
used as a method for identifying the safety critical parts of
the system and assessing the consequences of failures in
these parts.

Parameter information may be obtained by the
characteristics of the system itself. For instance, sensors
naturally have a time constant dictating the maximum rate
of change for the data provided by that sensor. Properties
of the physical surroundings of the systems are also a
source of parameter values. For discrete signals, typical
sources of information are allowed settings on user panels,
or internal state machines.

The process of gathering information for parameter
values for executable assertions forces developers to
review the system they have developed. This may assist in
identifying contradicting specifications and/or parts that
have not yet been properly analysed. The following is our
proposed process for equipping a system with error
detection mechanisms as described in this paper:

1. Identify theinput and output signals of the system.

2. ldentify the signal pathways from each input signal
through the system and to one or more output signals.

3. ldentify internally generated signals that have a direct
influence on intermediate and output signals.

4. Determine which of the identified signals are the most
crucial for flawless operation of the system and
should therefore be monitored by error detection
mechanisms, e.g. by using FMECA.

5. Classify each signal found in (4) according to the
scheme described above.

6. Determine values for the characterising parameters of

the signals. Remember that a signa may behave

differently for different modes of operation in the
system.

Decide on locations for the mechanisms.

8. Incorporate the mechanismsin the system.

~

2.4. Error detection coverage

The detection coverage that may be obtained with these
mechanisms is very dependent on the characteristics of the
errors that may occur. If we, given that an error has
occurred, define the probabilities P.,, = Pr{error location
isin amonitored signa}, Pe, = Pr{error location is not in
amonitored signal} = 1 - Pem, Parop = Pr{ error propagates
to a monitored signal}, and Py = Pr{an error is detected
given that the error is located in a monitored signal}. The

total probability of detecting an error that is present can
than be written as Pyeect = (PenPprop + Pem)Pas: FOr @ given
system, the probability Py can be assessed separately from
the other probabilities and is independent of the
probability distributions for error occurrence and error
location. A common way of performing such an
assessment is by conducting error injection experiments.
We have performed a case study to assess Pygeqt and Pys
for agiven target system (see the following sections).

3. Casestudy

As an assessment of the effectiveness of the error
detection mechanisms when employed in an embedded
control system, we conducted an evaluation using error
injection.

3.1. Target system

The target system is an aircraft-arresting system
resembling those found on runways and aircraft carriers.
The purpose of this system isto assist incoming aircraft in
reducing their velocity to a complete hat. The
specifications of the system are based on specifications
found in [15]. Our experiments were performed on an
actual implementation of this system, i.e. no simulations
(other than environment simulations) were used.

Tape drum Tape drum
(Master) Cable (Slave)

Rotation
sensor

Pressure
sensor sensor

Figure 4. The experiment target: an aircraft
arresting system.

Pressure
valve

Pressure Pressure

valve

System overview. The system consists of a cable strapped
between two tape drums, one on each side of the runway
(see Figure 4). Two computer nodes control the drums:
one master node and one slave node. An incoming aircraft
catches the cable by means of a hook, and a rotation
sensor on the master drum periodically tells the master
node the length of the pulled out cable. The master node
calculates the set point pressure to be applied to the drums
by means of hydraulic pressure valves. The pressure ows
the rotation of the drums and brings the aircraft to a halt.
The dave node receives its set point pressure value from
the master node and applies this to its drum. Pressure
sensors on the valves give feedback to their respective
nodes about the pressure that is actually being applied so
that a software-implemented PID-regulator can keep the
actual pressure as close to the set point as possible.

Softwar e overview. The software of the master node of
the system consists of a number of periodic processes and
one main background process. An overview of the basic
software architecture can be seen in Figure 5.

ms_slot_nbr

cLOCK msent

-

CALC

Setvalue

,,,,,,, PRES.S } Isvalue >{ V_REG }omvalue >{ PRESA Presmu

Figure 5. The basic software architecture.

CLOCK provides a clock, mscnt, with one millisecond
resolution. The signa ms slot nbr tells the module
scheduler (which is a part of the CLOCK module) which
the current dot is. The system operates in seven 1-ms-
dots. In each dot, one or more of the other modules
(except for CALC) are invoked.

DIST_S monitors the rotation sensor and provides a
total count of the pulses, pulscnt, generated during the
arrestment. The rotation sensor reads the number of pulses
generated by atooth wheel on the tape drum.

CALC (which is the main background process) uses the
signals mscnt and pulscnt to calculate a set point value for
the pressure valves, SetValue, a six predefined
checkpoints along the runway. The distance between these
checkpoints is constant, and they are detected by
comparing the current pulscnt with internaly stored
pulscnt-values corresponding to the various checkpoints.
The number of the current checkpoint is stored in the
checkpoint counter, i.

PRES S monitors the pressure sensor measuring the
pressure that is actually being applied by the pressure
valves. Thisvalueis provided in the signal IsValue.

V_REG uses the signas SetValue and IsValue to
control OutValue, the output value to the pressure valve.
OutValue is based on SetValue and then modified to
compensate for the difference between SetValue and
IsValue. This module contains the software implemented
PID-regulator.

PRES A uses the OutValue signal to set the pressure
valve,

All modules are periodic except for CALC, which runs
when the other modules are dormant, i.e, it runs in the
background. CLOCK and DIST_S both have a period of 1
ms and the other modules have periods of 7 ms.

The software of the dave node is dlightly different
from that of the master node. No calculations of set point
values for the applied pressure are performed. The dave
node simply receives a set point value from the master
node, which it then applies to its tape drum. The modules
existing also in the dave node are PRES S, V_REG,
CLOCK, and PRES A. The modules DIST_S and CALC
are not present.

Failure classification. The specifications from which the
system isimplemented [15] clearly dictate certain physical
constraints, which the system must honour. These
constraints are that the retardation must not exceed a
certain limit in order to not affect either the plane or the
pilot in a negative way, and that the force applied to the
aircraft by the cable must not exceed certain limits in
order to not endangering the aircraft. Also, the length of
the runway is limited. However, this constraint may vary
from instalment to instalment. The constraints are as
follows:

1. Retardation (r). The retardation of the aircraft shall
not have a negative effect on the pilot. Constraint: r <
2.89

2. Retardation force (F,¢). The retarding force shall not
exceed the structural limitations of the aircraft.
Congtraint: F,¢ < Frux. The maximum allowed forces
(Frex) are defined for several aircraft masses and
engaging velocities in [15]. Force constraints for
combinations of masses and velocities other than
those given in [15] are obtained using interpolation
and extrapolation.

3. Stopping distance (d). The braking distance of the
aircraft shall not exceed the length of the runway.
Congtraint: d <335 m

A violation of one or more of these constraints is
defined as a failure. This is a pessimistic failure
classification, in the sense that not all arrestments which
according to this classification were failures would have
turned out to be critical in reality. For instance, in most
cases a retardation of up to 3g will not significantly

damage the aircraft or injure the pilot. The duration of a

typical, failure-free, arrestment ranges from about 5

seconds (low Kinetic energy) up to about 15 seconds (high

kinetic energy).

3.2. Softwar einstrumentation

Using the process described in section 2.3, we
identified 7 signals (of atotal of 24 signals) in the target
system that are service critical, i.e. essential for providing
proper service. The signals are shown in Figure 5. The
classifications of the signals are seen in Table 4.

Table 4. Classification of the signals.

Signal Producer Consumer Test location Class
SetVaue CALC V_REG V_REG Co/Ra
IsValue PRES S V_REG V_REG Co/Ra
i CALC CALC CALC Co/Mo/Dy
pulscnt DIST_S CALC DIST_S Co/Mo/Dy
ms_dlot_nbr CLOCK CLOCK CLOCK Di/Se/Li
mscnt CLOCK CALC CLOCK Co/Mo/St
OutValue V_REG PRES A PRES A Co/Ra

In Table 4, the Producer is the originating module of a
signal, the Consumer is the receiving module, and the Test

Location is where the executable assertions were placed.
The Class is how the signa was classified (Co =
continuous, Ra = random, Mo = monotonic, St = static
rate, Dy = dynamic rate, Di = discrete, Se = sequential, Li
= linear).

ms_slot_nbr

‘
cLock msent
M

Setvalue

Pressure T Pressure

ssnsar, PRES_S} ‘SVE'“Eﬂ V_REG }O“‘Va‘“y\j PRES_A | _valve
Figure 6. The locations of the executable
assertions

Using these classifications, we constructed executable
assertions as described in section 2. The locations of these
assertions are shown in Figure 6 above (the small boxes
with T’s inside).

3.3. Fault injection environment

As seen in Figure 7, the target system was hooked up to
the fault injection experiment system BIEault Injection
Campaign Control Computer, see [16] for details).

Environment simulator

3 Test case
FIC > Tape drum Tape drum
(Master) (Slave)

Readouts [ang

sssss

JER I l, —
Error \ &
| injection
------------------- gl e

Figure 7. The FIC3 and the target system.

‘,,/,(,,l

The FIC is capable of injecting errors into the target
system by means of SWIFI (SoftWare Implemented Fault
Injection). Specifically, before initiating an experiment
run, the FIC downloads error parameters to an injection
interrupt routine in the target system, which is then, during
the experiment run, triggered by the EMghen the actual
injection is to be performed. The error detection
mechanisms report detection by setting a digital output pin
on the target processor high. This is detected by th& FIC
which records and time-stamps the event. The injected
errors consist of modifications of the memory areas where
variables and signal values are stored. Previous studies
have shown that injecting bit-flips into a system using
SWIFI closely resembles the behaviour of hardware
failures [17]. The downloaded injection parameters for
this type of error are the address and bit position.

An environment simulator acts as the barrier (i.e. cable
and tape drums) and as the incoming aircraft. This
simulator is initialised using test case data (mass and
incoming velocity). The FIE triggers the simulator to

start ssimulating an incoming aircraft. The simulator then
feeds the system with sensory data (rotation sensor and
pressure sensor) and receives actuator data (pressure
value) from the system used for calculating new sensory
data. All input to and output from the environment
simulator is stored as experiment readouts and is
subsequently analysed for system failure.

3.4. Experimental set-up

The experimental set-up calls for two error sets for
evaluation purposes. In order to assess the probability Pgs,
as defined in section 2.4, an error set E; containing 112
errors was created. Each error in E; is configured as a hit-
flip in the monitored signals. Bit-flips can be used to
model intermittent hardware faults, and it may be argued
that using bit-flips in variables only may also model other
faults inducing data errors in variables. Since single-bit
errors are uniformly probable in all bit positions we chose
to inject errors in each bit position of each signal in order
to get a good estimate of the detection probability. Each
signal is 16 bits long, hence, we have 7-16 = 112 errors in
the error set. The distribution of errors in the error set is
shown in Table 6.

Table 6. The distribution of errors in the
error set E,.

. Executable Error #injections

Signal assertion #errors(ng numbers (glsrzs)
SetValue EAl 16 S1-S16 400
IsValue EA2 16 S17-S32 400
i EA3 16 S33-48 400
pulscnt EA4 16 $49-S64 400
ms_slot_nbr EA5 16 S65-S80 400
mscnt EAB 16 S81-S96 400
OutValue EA7 16 S97-S112 400
Total - 112 - 2800

The other error set, E,, contains 200 errors configured
as bit-flips in random bit positions in random locations
(addresses) in application RAM (417 bytes) and stack
(1008 bytes) areas, and is used to assess the total detection
probability Pygect 8s described in section 2.4. These errors
were selected from a uniform distribution (both location
and bit-position), and the sampling was performed with
replacement. Of the 200 errors, 150 were located in
application RAM areas and 50 in the stack area.

All errors were injected in the master node. For each
error in the error set, the system was subjected to 25 test
cases, i.e. incoming aircraft, with velocity ranging
uniformly from 40 m/s to 70 m/s, and mass ranging
uniformly from 8000 kg to 20000 kg. For E; we have
112-25 = 2800 different combinations [, v, e(Jof mass,
velocity and error and for E, we have 200-25 = 5000
combinations. All test cases are such that if they are run
on the target system without error injection, none of the
error detection mechanisms report detection.

For E;, eight different versions of the system were

tested — one for each of the seven individual executable
assertions and one in which all seven executable
assertions were active simultaneously. For each system
every combination of mass, velocity and error was
exercised, giving us a total of 2886~ 22400 experiment

runs with error injections foE;. The error sets, was
used only on the version containing all seven executable
assertions. Therefore we have 5000 experiment runs with
error injections foi&,.

The error injections were time triggered and were
injected with a period of 20 ms (recall that most modules
in the target system have a period of 7 ms). Thus, errors
may have been injected during the execution of the
executable assertions.

We say that we have successful error detection if an
error is detected at least once during the entire observation
period (40 seconds). The detection probability is then the
probability of detecting an error at least once during the
observation period. The detection latency is the time from
the first injection of an error to the first reported detection.

4. Reaults

In Table 7, we can see the estimates of the detection
probabilities per signal, per executable assertions and
totals, as obtained using error $8t The measures are
calculated according to the formulas for coverage
estimation in [18]. The measure P(dnh#n. (whereny is
the number of runs in which errors were detectedmansl
the number of runs in which errors were injected) is an
estimate of the probability that the error is detected during
the observation time, P(d|fail)rgi/Ness1 (Where we only
take into account those runs in which the system failed) is
an estimate of the probability that the error is detected
given that a failure occurred, and P(d|no fail)ng,
tal/Neno 11 (Where we only take into account those runs in
which the system did not fail) is an estimate of the
detection probability given that no failure occurred. The
relation n = ng + Ny 1 holds for both errors and
detections. For the individual signals we haye= 400
and for the totals we hawe, = 2800. TheAll column
contains the results obtained when using the version of the
software, which had all seven executable assertions
activated simultaneously. The table also contains the 95%
confidence intervals for the estimates of the detection
probabilities. We can use the measure P(d) as an estimate
of Py in the expression of the total detection probability
for the entire system (see section 2.4). If a cell is empty in
the table, this means that no detection was registered for
that combination of signal and executable assertion.

The values shown in boldface are those that correspond
to the "correct" signal-mechanism pair. For instance, the
signal SetValue is directly monitored by mechanism EAL,
and the signdlsValue is directly monitored by EA2

Table 7. Error detection probabilities (%) with confidence intervals at 95%.
No confidence interval can be estimated for measured detection probabili-

ties of 100.0%.

injection of an error
until the first
registered detection,
and it is measured in

Signal M easure EA1 | EA2 | EA3 | EA4 EA5 | EA6 | EA7 All milliseconds. The
P(d) 55.5¢4.1 31.3:3.8 4.0+16 443+4.1 59.524.0 .
Satvalue P(dlfail) 9026:37 724164 15617 87.9t47 | 97.1#24 table contains the
P(d]no fail) 36.6+4.9 10.5+3.1 5.3+2.3 22.8+4.2 309.745.0 minimum, average and
P(d) 525+4.1 47.0¢4.1 54.424.1 ;
IsValue P(dlfail) 80.6¢7.3 033462 1000 maximum values .for
P(djno fail) 47.4+4.4 41143 | 472444 the detection latencies.
) P(d) _ 26.8+3.6 29.8+3.8 100.0 1.5+1.0 1.0:0.8 0.5+0.6 47.8+4.1 100.0 Agai n, the boldface
i P(dffail) 33.7+7.8 55.4+8.2 100.0 2.0£2.3 2.3+2.1 1.1+1.8 78.0:6.8 100.0
P(dno fail) 24.4+41 211+39 100.0 13+11 0.4+0.6 0305 37.7+46 100.0 values correspond to
P(d) 50.3+4.1 42.8+4.1 0.3t0.4 12.8+2.7 0.3t0.4 100.0 the primary signal-
pulscnt P(dlfail) 38.1¢5.3 34,5+4.8 0.3+0.5 0.0 0.741.2 100.0 : .
P(djno fail) 66.9+6.0 58.3£6.9 0.0 16.63.5 0.0 100.0 m.eChanlsm pai I’S.. In
P 20033 100.0 6.8:2.1 1000 this table we consider
ms_slot_nbr P(dffail) _ 34.6£5.7 100.0 11.6+3.9 100.0 al detected errors,
P(dJno fail) 7.1+2.9 100.0 27418 100.0 .
() 83:23 123+27 1000 175:31 100.0 those leading to
mscnt P(dfail) 20.0+134 18.2+13.8 1000 13.0+11.8 100.0 failure as well as those
P(d]no fail) 7.5£2.2 11.9+2.7 100.0 17.8+3.2 100.0 : ;
P(d) 1.0£0.8 11.3+2.6 4.0£1.6 not | eadi ng to failure.
Outvaue P(dlfail) 33.3:34.7 85.7+235 1000 The results from
E((g;no fail) 0.5+0.6 9.9+25 33415 the experiments with
20.1#1.2 27.1#1.4 14.941.1 2.040.4 14.4#1.1 14.441.1 25013 74.0£1.4
Total P(dfail) 35029 47.0430 122419 0.30.4 21.742.3 32410 427433 | 99.6203 grror set E, are shown
P(d]no fail) 14.9#1.3 19.741.4 16.0£1.4 2.540.5 111412 19.0£1.5 19.9#1.4 60.6+1.9 in Table 9. The table
Table 8. Error detection latencies for all errors (milliseconds). contains detection coverage with 95%
Signal Latency EA1L | EA2 | EA3 | EA4 EA5 EA6 | EA7 All Confld_ence interval S' and, Fjetectlon
Min 160 570 50) 20 latencies measured in milliseconds.
Satvalue Average 6% s 1l 812 %24 Aswith the measures for error set E,
Max 6259 5588 6099 5297 6490 . -
Min 10 10 20 we used the formulas described in
Isvalue perage o Poadl B [18] to derive the probab'iliit.i% shown
Min 311 270 80 2584 2686 3495 151 100 in the table. The probabilities shown
i Average 2125 2100 210 4381 5538 3891 1900 228 ; ;
Max 11397 8272 401 5798 7601 4286 6499 21 in Table 9 are estl'n?a}t% of Pdae?“
Min 30 182 1563 20 230 20 whereas the probabilities shown in
pulscnt Average 1371 1379 1563 239 230 272 ;
o o o o o o oo Table 7 are estimates qf .P.ds (for more
Min 172 20 1703 20 information on the definition of these
ms_slot_nbr Average 3654 32 3462 32 it H
o s o sy - probabilities, see section 2.4).
Min 1112 1352 10 1091 20
mscnt Average 2050 1741 25 1673 23 . .
Max 4196 3525 60 3415 61 5. Discussion
Min 440 20 2413
OutValue Average 1344 1604 3379 . . .
Max 2704 6179 7781 The results obtained in this
Min 160 1o 50 20 20 10 1o 20 evaluation are specific for the target
Total Average 1286 1725 248 727 126 163 1314 511
Max 11379 8912 6099 5798 7601 4286 6499 7781 system, the error model and the test

Table 9. Results for error set E,

Area Detection probability Detection latency Detection latency
(%, 95% conf. int.) (ms, totals) (ms, failures)
P(d) 12.8:0.9 | Min 20 || Min 20
RAM P(dffail) 81.1+6.8 | Average 1359 || Average 1203
P(dno fail) 11.1+0.9 | Max 5608 || Max 5608
P(d) 42+09 || Min 20 || Min 20
Stack P(dfail) 13.7+4.7 | Average 250 || Average 2077
P(dno fail) 2.9+0.8 | Max 2684 || Max 6449
P(d) 10.6:0.7 | Min 20 | Min 20
Total P(dffail) 39.4+5.2 | Average 1086 | Average 1298
P(d|no fail) 9.2+0.7 Max 5608 Max 6449

In Table 8 are the detection latencies measured during
our experiments. The value is the time from the first

cases we have chosen. For other
systems, error models, and/or test cases the results may
vary. Having said that, we can now start our discussion of
the results shown in the previous section.

5.1. Error detection probability, Pys

This section discusses the results obtained with error
set E;. The results are the estimated values for the
probability Py, i.€. the probability that an error is detected
given that an error is present in one of the monitored
signals and therefore can be detected by the mechanisms.

The overall detection probability was 74%, and if we

consider the errors that lead to falure, as defined in
section 3, the detection probability was over 99%.
Roughly, 60% of the errors that did not lead to failure
were detected. If we examine the individual executable
assertions, we have detection probabilities ranging from
just over 11% up to 100%.

The assertions that achieved a 100% detection
probability monitored signals that were all essentially
counters by nature; they were periodically incremented by
some limited (small) amount. This makes errors easy to
detect since the freedom of change was very small in these
signals. We must remember that it is possible, even
probable, that we do not achieve a 100% detection
probability for other error models or test cases. However,
the results suggest that these mechanisms may be very
effective in detecting errors.

The assertions monitoring signals representing
continuous values in the environment have a lower
detection probability. This can be explained by the fact
that these signals have more liberal constraints than the
counter signals mentioned above. The liberal constraints
let those errors pass which in the value domain constitute
a small change in the signal, i.e. the errors most likely to
remain undetected are those affecting the least significant
bits of the signal. In fact, for continuous signals, errorsin
the least significant bits may be indistinguishable from
noise in the sampling process.

The detection probability for EA7 in the signa
OutValue was roughly 11%, whereas for all mechanisms it
was 4%. Thisis mainly due to the fact that the behaviour
of the target system is not entirely deterministic.

The results of the experiment shows that by using a
number of error detection mechanisms covering different
parts of the system, a fairly high total coverage may be
obtained.

5.2. Total error detection probability, Pyeec

As shown in section 2.4, the probability of detection
given that an error is present in a monitored signal is part
of alarger expression for total error detection probability
for the entire system: Pggect = (PenPorop + Pem)Pas. The
value obtained for Py for the target system in our
evaluation was 74%. To obtain Pygeq = 74% would mean
that all the occurring errors, directly or after propagation,
are uniformly distributed over the monitored signals. This
is most likely not the case since there probably are some
signals that are more dependent on other parts of the
system than the remaining signals. If, for example, errors
in our target system with a high probability propagate to
the SetValue signal, Pgget Would be closer to the detection
probability for that signal, which in this case is roughly
59%.

From the experiments performed with error set E,, we

can see that the overall detection coverage for all errorsis
about 10%. For errors that lead to failures, we obtained
detection coverage of 39%. The values differ alot for the
two areas in which we injected errors. Generally, errors
injected into the RAM area of the application were
detected with a higher probability than were those injected
into the stack area. An explanation for this may be that
errors in the stack area more often lead to control flow
errors. The evauated mechanisms are not aimed at
detecting such errors.

For the errors injected into the RAM area that
eventually caused the system to fail, the detection
coverage was over 81%, whereas the total detection
coverage was just under 13%. We can see that if an error
were of such nature that it would cause system failure we
can detect it with a fairly high probability using the
presented mechanisms.

5.3. Error detection latency

We can see in the results for E; that the assertions
which monitor signals that are essentially counters in
nature have the shortest average detection latency. The
three mechanisms that showed a 100% detection
probability were also the top three mechanisms when
examining the error detection latency.

Looking at the individua mechanisms shows us that
the detection latencies are rather short. Most of the
mechanisms had average latencies of well below one
second, only mechanism EA7 had an average exceeding
one second (1.604 seconds). The average of the error
detection latency for al mechanisms was 511
milliseconds.

The latencies for errors in E, are longer than the
latencies for errors in E;. This, however, is not very
surprising since most of the errors in E, were not located
in the monitored signals and therefore had to propagate to
the monitored signal's before the mechanisms could have a
chance of detecting them. This propagation process
increases the total time from injection to detection.

6. Summary

In this paper we investigate the properties of error
detection mechanisms based on a classification scheme for
signals in software. The mechanisms are generic test
algorithms that are instantiated with parameters for each
individual signal that is to be monitored. We have also
derived an expression for the total error detection
probability in a system. Two experiments were performed
using error injection experiments. In the first experiment
bit-flips were exercised in all bit positions of the
monitored signals and in the second experiment we

injected hit-flip errors in random bit positions in random
memory and stack locations. The first experiment
investigated the probability of detecting errors given that
the errors are located in the monitored signals, as well as
detection latencies. The second experiment investigated
the total system detection coverage and detection latencies
obtained with the mechanisms.

The detection probability was defined to be the
probability of an error being detected at |east once during
the observation period. The detection latency was defined
to be the latency between the first injected error and the
first reported detection.

In the first experiment, we achieved an overall
detection probability for errors in the monitored signal's of
74%, and if we only take into account those errors that
lead to failure we had a detection probability of over 99%.
The average error detection when all mechanisms were
activated simultaneously was 511 milliseconds.

The second experiment showed that for errors in the
memory areas of the application we detected over 81% of
all errors that caused system failure. Errors in the stack
that caused system failure were detected with a probability
of 13%. The low detection probability for stack errors is
likely due to the fact that errors in the stack often cause
control-flow errors, and the evaluated mechanisms are not
aimed at detecting such errors. The detection latencies
were longer than those obtained in the first experiment.
This, however, is not surprising since most injected errors
must propagate to the monitored signals in order to be
detected. This propagation process increases the detection
latency.

The presented mechanisms are good candidates for
software-implemented error detection in low-cost
embedded systems. They are intuitive and easy to
implement and have the potential of providing high
detection coverage for data errors in software signals.

Acknowledgement

Assertions and Timed Traces for On-Line Software Error
Detection”, Proceedings 26™ International Symposium on
Fault-Tolerant Computing, pp.138-147, 1996

[4] Stroph R., Clarke T., “Dynamic dceptance Tests for
Complex Controllers”, Proceedings 24" Euromicro
Conference, pp.411-417, 1998

[5] Hecht H., “Fault-Tolerant Software for Real-Time
Applications”, ACM Computing Surveys, Vol.8, No. 4, pp.
391-407, 2cemberl 976

[6] Saib S.H., “Executable Assertions — An Aid To Reliable
Software”,Conf. rec. 11" Asilomar Conference on Circuits
Systems and Computers, pp. 277-281, 1978

[71 Andrews D.M., “Using Executable Assertions for Testing
and Fault Tolerance” Proceedings 9" International
Symposium on Fault-Tolerant Computing, pp. 102-105,
1979

[8] Randell B., Xu J., “The evolution of the recovery block
concept”, Software Fault Tolerance, Lyu M.R. (ed.),
Chapter 1, Willey, 1995

[9] Scott R.K., Gault J.W., McAllister D.F., “The Consensus
Recovery Block”, Proceedings of the Total System
Reliability Symposium, pp. 74-85, 1983

[10] Kim K.H., Welch H.O., “The Distributed Execution of
Recovery Blocks: An Approach to Uniform Treatment of
Hardware and Software Faults in Real-Time Applications”,
IEEE Transactions on Computers, Vol. C-38, No. 5,pp.
626-636, 1989

[11] Laprie J.C., et al.,, “Hardware- and Software-Fault-
Tolerance: Definition and Analysis of Architectural
Solutions”, Proceedings of the 17" International
Symposium on Fault-Tolerant Computing, pp. 116-121,
1987

[12] Ammann P.E., Knight J.C., “Data Diversity: An Approach
To Software Fault Tolerance’|EEE Transactions on
Computers, Vol. C-37, No. 4, pp. 418-425, 1988

[13] Leveson N.G., Cha S.S., Knight J.C., Shimeall T.J., “The
Use of Self Checks and Voting in Software Error
Detection: An Empirical Study”JEEE Transactions on
Software Engineering, Vol. 16, No. 4, pp. 432-443, 1990

[14] Clegg M., Marzullo K., “Predicting Physical Processes in
the Presence of Faulty Sensor ReadinBsdgeedings 271"
International Symposium on Fault-Tolerant Computing,

We would like to thank Dr. Jérgen Christmansson and
Dr. Marcus Rimén for their comments on earlier versions pp.373-378, 1996
of this paper. We are also grateful for the comments of the [15] US Air Force — 99, *Military specification: Aircraft
anonymous reviewers, which helped to increase the Arresting System BAK-12A/E32A; Portable, Rotary

quality of this paper.

References

[1] Avizienis A., “The N-Version Approach to Software Fault-

Tolerance”,IEEE Transactions on Software Engineering,
Vol. 11, No 12, pp. 1491-1501, 1985

[2] Mahmood A., Andrews D.M., McCluskey E.J.,

“Executable Assertions and Flight Softwar@oceedings

6" Digital Avionics Systems Conference, pp. 346-351,

Baltimore (MD), USA, AIAA/IEEE, 1984

[3] Rabéjac C., Blanquart J.-P., Queille J.-P., “Executable

Friction”, MIL-A-38202C, Notice 1, US Department of
Defence, September 2, 1986

[16] Christmansson J., Hiller M., Rimén M., “An Experimental
Comparison of Fault and Error InjectiorPyoceedings oth
International Symposium on Software Reiability
Engineering, pp. 369-378, 1998

[17] Rimén M., Ohlsson J., Torin J., “On Microprocessor Error
Behavior Modelling”, Proceedings 24" International
Symposium on Fault-Tolerant Computing, pp.76-85, 1994

[18] Powell D., Martins E., Arlat J., Crouzet Y., “Estimators for
Fault Tolerance Coverage EvaluatiohEEE Transactions
on Computers, Vol. 44, No. 2, pp. 261-274, 1995

