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Abstract. Classical learning algorithms from the fields of artificial neu-
ral networks and machine learning, typically, do not take any costs into
account or allow only costs depending on the classes of the examples that
are used for learning. As an extension of class dependent costs, we con-
sider costs that are example, i.e. feature and class dependent. We present
a natural cost-sensitive extension of the support vector machine (SVM)
and discuss its relation to the Bayes rule. We also derive an approach
for including example dependent costs into an arbitrary cost-insensitive
learning algorithm by sampling according to modified probability distri-
butions.

1 Introduction

The consideration of cost-sensitive learning has received growing attention in
the past years ([9, 4, 5, 8]). As it is stated in the Technological Roadmap of the
MLnetII project (European Network of Excellence in Machine Learning, [10]),
the inclusion of costs into learning and classification is one of the most relevant
topics of future machine learning research.

The aim of the inductive construction of classifiers from training sets is to find
a hypothesis that minimizes the mean predictive error. If costs are considered,
each example not correctly classified by the learned hypothesis may contribute
differently to the error function. One way to incorporate such costs is the use
of a cost matrix, which specifies the misclassification costs in a class dependent
manner (e.g. [9, 4]). Using a cost matrix implies that the misclassification costs
are the same for each example of the respective class.

The idea we discuss in this paper is to let the cost depend on the single
example and not only on the class of the example. This leads to the notion of
example dependent costs, which was to our knowledge first formulated in [6].
Besides costs for misclassification, we consider costs for correct classification
(gains are expressed as negative costs).

One application for example dependent costs is the classification of credit
applicants to a bank as either being a “good customer” (the person will pay
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back the credit) or a “bad customer” (the person will not pay back parts of the
credit loan).

The gain or the loss in a single case forms the (mis-) classification cost for that
example in a natural way. For a good customer the cost for correct classification is
the negative gain of the bank. I.e. the cost for correct classification is not the same
for all customers but depends on the amount of money borrowed. Generally there
are no costs to be expected (or a small loss related to the handling expenses),
if the customer is rejected, since he or she is incorrectly classified as a bad
customer. For a bad customer, the cost for misclassification corresponds to the
actual loss that has been occured. The gain of correct classification is zero (or
small positive, if one considers handling expenses of the bank).

As opposed to the construction of a cost matrix, we claim that using the
example costs directly is more natural and will lead to the production of more
accurate classifiers. If the real costs are example dependent as in the credit risk
problem, learning with a cost matrix means that in general only an approxima-
tion of the real costs is used. When using the classifier based on the cost matrix
e.g. in the real bank, the real costs as given by the example dependent costs
will occur and not the costs specified by the cost matrix. Therefore using exam-
ple dependent costs is better than using a cost matrix for theoretical reasons,
provided that the learning algorithm used is able to use the example dependent
costs in an appropriate manner.

In this paper, we consider the extension of support vector machines (SVMs,
[11, 2, 3]) by example dependent costs, and discuss its relationship to the cost-
sensitive Bayes rule. In addition we provide an approach for including example-
dependent costs into an arbitrary learning algorithm by using modified example
distributions.

This article is structured as follows. In section 2 the Bayes rule in the case
of example dependent costs is discussed. In section 3, the cost-sensitive SVM for
non-separable classes is described. Experiments on some artificial domains can
be found in section 5. In section 4, we discuss the inclusion of costs by resampling
the dataset. The conclusion is presented in Section 6.

2 Example Dependent Costs

In the following we consider binary classification problems with classes −1 (neg-
ative class) and +1 (positive class). For an example x ∈ Rd of class +1, let

– c+1(x) denote the cost of misclassifying x
– and g+1(x) the cost of classifying x correctly.

The functions c−1 and g−1 are equivalently given for examples of class −1. In
our framework, gains are expressed as negative costs. I.e. gy(x) < 0, if there is a
gain for classifying x correctly into class y. R denotes the set of real numbers. d

is the dimension of the input vector.
Let r : Rd −→ {+1,−1} be a classifier (decision rule) that assigns x to a class.

According to [11] the risk of r with respect to the distribution function P of (x, y)



is given by

R(r) =

∫

Q(x, y, r)dP (x, y) . (1)

The loss function Q is defined by

Q(x, y, r) =

{

gy(x) if y = r(x)
cy(x) else.

(2)

We assume that the density p(x, y) exists. Let Xy = {x | r(x) = y} the region of
decision for class y. Then the risk can be rewritten with p(x, y) = p(x|y)P (y) as

R(r) =

∫

X+1

g+1(x)p(x|+1)P (+1)dx +

∫

X+1

c−1(x)p(x|−1)P (−1)dx (3)

+

∫

X
−1

g−1(x)p(x|−1)P (−1)dx +

∫

X
−1

c+1(x)p(x|+1)P (+1)dx.

P (y) is the prior probability of class y, and p(x|y) is the class conditional prob-
ability density of class y. The first and the third integral express the costs for
correct classification, whereas the second and the fourth integral express the
costs for misclassification. We assume, that the integrals defining R exist. This
is the case, if the cost functions are integrable and bounded.

The risk R(r) is minimized, if x is assigned to class +1, if

g+1(x)p(x|+1)P (+1) + c−1(x)p(x|−1)P (−1)

≤ g−1(x)p(x|−1)P (−1) + c+1(x)p(x|+1)P (+1)

holds, and to class −1 otherwise. From this, the following proposition is derived.

Proposition 1 (Bayes Classifier). The function

r∗(x) = sign[(c+1(x) − g+1(x))p(x|+1)P (+1) (4)

−(c−1(x) − g−1(x))p(x|−1)P (−1)]

minimizes R.

r∗ is called the Bayes classifier (see e.g. [1]). As usual, we define sign(0) = +1.
We assume cy(x)− gy(x) > 0 for every example x, i.e. there is a real benefit for
classifying x correctly.

From (4) it follows that the classification of examples depends on the dif-
ference of the costs for misclassification and correct classification, not on their
actual values. Therefore we will assume gy(x) = 0 and cy(x) > 0 without loss of
generality.

Given a training sample (x(1), y(1), c(1)), . . . , (x(l), y(l), c(l)) with c(i) =
cy(i)(x(i)), the empirical risk is defined by

Remp(r) =
1

l

∑

Q(x(i), y(i), r).

It holds Q(x(i), y(i), r) = c(i), if the example is misclassified and Q(x(i), y(i), r) =
0 otherwise. In our case, Remp corresponds to the mean misclassification costs
defined using the example dependent costs.



Proposition 2 ([11]). If both cost functions are bounded by a constant B, then
it holds with a probability of at least 1 − η

R(r) ≤ Remp(r) + B

√

h(ln 2l
h

+1) − ln η
4

l
,

where h is the VC-dimension of the hypothesis space of r.

Vapnik’s result from [11] (p. 80) holds in our case, since the only assumption he
made on the loss function is its non-negativity and boundedness.

Let c̄+1 and c̄−1 be the mean misclassification costs for the given distributions.
Let r+ be the Bayes optimal decision rule with respect to these class dependent
costs. Then it is easy to see that R(r∗) ≤ R(r+), where R(r∗) (see above) and
R(r+) are evaluated with respect to the example dependent costs. I.e. because
the example dependent costs can be considered to be the real costs occuring,
their usage can lead to decreased misclassification costs. Of course this is only
possible if the learning algorithm is able to incorporate example dependent costs.

In the following, we will discuss the cost-sensitive construction of an r using
the SVM approach. In the presentation we assume that the reader is familiar
with SVM learning.

3 Support Vector Machines

If the class distributions have no overlap there is a decision rule r∗ with zero error.
It holds R(r∗) = 0, independent of the cost model used. Since the cost model
does not influence the optimal hypothesis, we will not consider hard margin
SVMs in this paper. For soft margin SVMs the learning problem can be stated
as follows.

Let S = {(x(i), y(i))|i = 1, . . . , l} ⊂ Rd × {+1,−1} be a training sample and
cy(i)(x(i)) = c(i) the misclassification costs defined above. For learning from a
finite sample, only the sampled values of the cost functions need to be known,
not their definition. We divide S into subsets S±1 which contain the indices of
all positive and negative examples respectively. By means of φ : Rd → H we
map the input data into a feature space H and denote the corresponding kernel
by K(·, ·). The optimization problem can now be formulated as

min
w,b,ξ

1
2‖w‖2

H
+ C

∑

i∈S+1

c+1(x
(i)) ξk

i

+C
∑

i∈S
−1

c−1(x
(i)) ξk

i

(5)

s.t. y(i)
(

w · φ(x(i)) + b
)

≥ 1 − ξi (6)

ξi ≥ 0, (7)

where the regularization constant C > 0 determines the trade-off between the
weighted empirical risk and the complexity term.



w is the weight vector that together with the threshold b defines the classi-
fication function f(x) = sign(h(x) + b) with h(x) = w · φ(x). The slack variable
ξi is zero for objects, that have a functional margin of more than 1. For objects
with a margin of less than 1, ξi expresses how much the object fails to have the
required margin, and is weighted with the cost value of the respective example.
ξ is the margin slack vector containing all ξi. ‖w‖H can be interpreted as the
norm of h.

With k = 1, 2 we obtain the soft margin algorithms including individual
costs (1-norm SVM and 2-norm SVM). Both cases can be extended to example
dependent costs.

1-Norm SVM Introducing non-negative Lagrange multipliers αi, µi ≥ 0, i =
1, . . . , l, we can rewrite the optimization problem with k = 1 and resolve the
following primal Lagrangian

LP (w, b, ξ, α, µ) =
1

2
‖w‖2

H

+C
∑

i∈S+1

c+1(x
(i))ξi + C

∑

i∈S
−1

c−1(x
(i))ξi

−
l

∑

i=1

αi

[

y(i)
(

w · φ(x(i)) + b
)

−1 + ξi

]

−
l

∑

i=1

µi ξi.

Taking the derivative with respect to w, b and ξ leads to

∂LP

∂w
= w −

l
∑

i=1

αi y(i)φ(x(i)) = 0 (8)

∂LP

∂b
= −

l
∑

i=1

αiy
(i) = 0 (9)

∂LP

∂ξi

= C c+1(x
(i)) − αi − µi = 0 , ∀i ∈ S+1 (10)

∂LP

∂ξi

= C c−1(x
(i)) − αi − µi = 0 , ∀i ∈ S−1 (11)

Substituting (8)-(11) into the primal, we obtain the dual Lagragian that has to
be maximized with respect to the αi

LD(α) =

l
∑

i=1

αi −
1

2

l
∑

i,j=1

αi αj y(i)y(j)K(x(i),x(j)). (12)

Equation (12) is called the 1-norm soft margin SVM. Note that the values of the
cost function cy do not occur in LD.

The Karush-Kuhn-Tucker conditions hold, and the corresponding comple-
mentary conditions are

ξi (C c+1(x
(i)) − αi) = 0, ∀i ∈ S+1 (13)

ξi (C c−1(x
(i)) − αi) = 0, ∀i ∈ S−1. (14)



Thus the αi are bounded within the so called box constraints

0 ≤ αi ≤ C c+1(x
(i)), ∀i ∈ S+1 (15)

0 ≤ αi ≤ C c−1(x
(i)), ∀i ∈ S−1. (16)

I.e. in the case of example dependent costs, the box constraints depend on the
cost value for the respective example.

2-Norm SVM The optimization problem in (7) leads with k = 2 to the mini-
mization of the primal Lagrangian

LP (w, b, ξ, α) =
1

2
‖w‖2

H

+
C

2

∑

i∈S+1

c+1(x
(i)) ξ2

i +
C

2

∑

i∈S
−1

c−1(x
(i)) ξ2

i

−
l

∑

i=1

αi

[

y(i)
(

w · φ(x(i)) + b
)

−1 + ξi

]

.

Analogous to the 1-norm case, the minimization of the primal is equivalent to
maximizing the dual Lagrangian given by

LD(α) =

l
∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyj K(x(i),x(j))

−
1

2

∑

i∈S+1

α2
i

C c+1(x(i))
−

1

2

∑

i∈S
−1

α2
i

C c−1(x(i))
.

In contrast to the 1-norm SVM, LD depends on the values of the costs functions
cy. The quadratic optimization problem can be solved with slightly modified
standard techniques, e.g. [3].

3.1 Convergence to the Bayes Rule

In [7] the cost free SVM learning problem is treated as a regularization problem
in a reproducing kernel Hilbert space (RKHS) HK

min
h,b,ξ

1

l

l
∑

i=1

ξk
i + λ‖h‖2

HK
, (17)

with f(x) = h(x) + b subject to (6),(7). Lin showed in [7] that the solution to
(17) approximates the Bayes rule for large training sets, if λ = 1

2lC
is chosen in

an optimal manner, and the kernel is rich enough (e.g. spline kernels).
Analogous to Lin we can rewrite the optimization problem in (5) to get

min
h,b,ξ

1

l

l
∑

i=1

cy(i)(x(i)) ξk
i + λ‖h‖2

HK
, (18)



subject to (6),(7), where (6),(7) can be rewritten to

1 − y(i)f(x(i)) ≤ ξi (19)

ξi ≥ 0. (20)

We define the function (z)+ = 0, if z < 0, and (z)+ = z, else. Then (19) and
(20) can be integrated into the single inequality

(1 − y(i)f(x(i)))+ ≤ ξi. (21)

With this inequality, the minimization problem can be rewritten to

min
h,b,ξ

1

l

l
∑

i=1

cy(i)(x(i))((1 − y(i)f(x(i)))+)k + λ‖h‖2
HK

. (22)

For l → ∞, the data driven term converges to

EX,Y [cY (X)((1 − Y f(X))+)k] (23)

with random variables Y and X. Equation (23) is equivalent to

EX[EY [cY (X)((1 − Y f(X))+)k|X]]. (24)

(24) can be minimized, by minimizing EY [.] for every fixed X = x giving the
expression to be minimized

c−1(x)((1 + f(x))+)k(1 − p(x)) + c+1(x)((1 − f(x))+)kp(x), (25)

where p(x) := p(+1|x).
According to the proof in [7] it can be shown that the function f that mini-

mizes (25) minimizes the modified expression

g = c−1(x)(1 + f(x))k(1 − p(x)) + c+1(x)(1 − f(x))kp(x). (26)

By setting z := f(x) and solving ∂g
∂z

= 0, we derive the decision function

f∗(x) =
[c+1(x)p(x)]

1
k−1 − [c−1(x)(1 − p(x))]

1
k−1

[c+1(x)p(x)]
1

k−1 + [c−1(x)(1 − p(x))]
1

k−1

.

A random pattern is assigned to class +1 if f∗(x) ≥ 0 and to class −1 otherwise.
The above proves the following proposition.

Proposition 3. In the case k = 2, sign(f∗(x)) is a minimizer of R, and it
minimizes (23). It holds

sign(f∗(x)) = r∗(x).

sign(f∗(x)) can be shown to be equivalent to (4) in the case k = 2 by using the
definition of the conditional density and by simple algebraic transformations.

It can be conjectured from proposition 3 that SVM learning approximates
the Bayes rule for large training sets. For k = 1 the corresponding cannot be
shown.



4 Re-Sampling

Example dependent costs can be included into a cost-insensitive learning algo-
rithm by re-sampling the given training set. First we define the mean costs for
each class by

By =

∫

Rd

cy(x)p(x|y)dx . (27)

We define the global mean cost b = B+1P (+1) + B−1P (−1). From the cost-
sensitive definition of the risk in (3) it follows that

R(r)

b
=

∫

X+1

c−1(x)p(x|−1)

B−1

B−1P (−1)

b
dx +

∫

X
−1

c+1(x)p(x|+1)

B+1

B+1P (+1)

b
dx.

I.e. we now consider the new class conditional densities

p′(x|y) =
1

By

cy(x)p(x|y)

and new priors

P ′(y) = P (y)
By

B+1P (+1) + B−1P (−1)
.

It is easy to see that
∫

p′(x|y)dx = 1 holds, as well as P ′(+1) + P ′(−1) = 1.
Because b is a constant, minimizing the cost-sensitive risk R(r) is equivalent

to minimizing the cost-free risk

R(r)

b
= R′(r) =

∫

X+1

p′(x|−1)P ′(−1)dx +

∫

X
−1

p′(x|+1)P ′(+1)dx.

The following proposition holds.

Proposition 4. A decision rule r minimizes R′ if it minimizes R.

The proposition follows from R(r) = bR′(r).
In order to minimize R′, we have to draw a new training sample from

the given training sample. Assume that a training sample (x(1), y(1), c(1)), . . . ,

(x(l), y(l), c(l)) of size l is given. Let Cy the total cost for class y in the sam-
ple. Based on the given sample, we form a second sample of size lN by random
sampling from the given training set, where N > 0 is a fixed real number.

It holds for the compound density

p′(x, y) = p′(x|y)P ′(y) =
cy(x)

b
p(x, y). (28)

Therefore, in each of the ⌊Nl⌋ independent sampling steps, the probability of
including example i in this step into the new sample should be determined by

c(i)

C+1 + C−1



i.e. an example is chosen according to its contribution to the total cost of the
fixed training set. Note that C+1+C

−1

l
≈ b holds. Because of R(r) = bR′(r), it

holds Remp(r) ≈ b · R′
emp(r), where Remp(r) is evaluated with respect to the

given sample, and R′
emp(r) is evaluated with respect to the generated cost-free

sample. I.e. a learning algorithm that tries to minimize the expected cost-free
risk by minimizing the mean cost-free risk will minimize the expected cost for
the original problem. From the new training set, a classifier for the cost-sensitive
problem can be learned with a cost-insensitive learning algorithm.

Re-Sampling from a fixed sample is only sensible, if the original sample is
large enough. Especially a multiple inclusion of the same example into the new
training set can cause problems, e.g. when estimating the accuracy using cross
validation, where the example may occur in one of the training sets and in the
respective test set. We assume that the re-sampling method is inferior to using
the example dependent costs directly. Thorough experiments on this point have
to be conducted in the future.

5 Experiments

We have shown in section 2 that the usage of example dependent costs will in
general lead to decreased costs for classifier application. In section 3 we showed
that the inclusion of example dependent costs into the SVM is possible and
sound. To demonstrate the effects of the example dependent costs and the con-
vergence to the Bayes classifier, we have conducted experiments on two artificial
domains. The two classes of the first data set where defined by Gaussian distri-
butions having means µ±1 = (0,±1)T and equal covariance matrices Σ±1 = 1
respectively. The cost functions c±1 are defined as follows

cy(x) =
2

1 + exp(−yx1)
, y ∈ {+1,−1}, (29)

see figure 1.a. We used radial basis function kernels for learning. The result of
learning is also displayed in fig. 1.b-d for different number of training examples
(l = 128, 256, 512).

For the given distributions, and the given cost functions, the expected risk
is given by

R =
1

2

∫

X
−1

2

2π(1 + e−x1)
e−

1
2 (x2

1+(x2−1)2)dx

+
1

2

∫

X+1

2

2π(1 + ex1)
e−

1
2 (x2

1+(x2+1)2)dx.

The decision boundary is determined by the equality of the two integrands. After
simple transformations it can be seen that the class boundary is defined by the
hyperplane x1 + 2x2 = 0 and the optimal Bayes classifier decides in favour of
class +1 if x1 + 2x2 ≥ 0 and −1 otherwise. Figure 1 shows the approximation
of the Bayes classifier for data sets containing 128, 256 and 512 examples with
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Fig. 1. Cost functions and approximation of the Bayes optimal classifier (drawn
through and dashed line) with l = 128, 256, 512. The projections of the points on
the dotted lines lie on the margin hyperplanes.

individual costs given in (29). The optimal parameter settings were determined
by cross validation. We do not present the parameter settings, because they are
not interesting for the purpose of this article.

The Bayes classifier without costs is defined by the line x2 = 0. Using class
dependent instead of example dependent costs results in lines x2 = − 1

2 ln( c̄+1

c̄
−1

),

where c̄±1 denote the costs for positive and negative examples respectively. In
contrast to example dependent costs, a rotation of the line is not possible for
class dependent costs.

The decision based on class dependent costs is suboptimal for points between
the lines x1 + 2x2 ≥ 0 and x2 = − 1

2 ln( c̄+1

c̄
−1

). For the cost functions in (29), the

theoretical mean costs are given by c̄+1 = c̄−1 = 1.0. I.e. the decision based on
class dependent costs is suboptimal with respect to the example dependent costs
for points between the lines x1 + 2x2 ≥ 0 and x2 = 0.

An example for using class dependent costs computed as mean costs is shown
in fig. 2.a. Here the individual costs in (29) were averaged for both classes and the
resulting means interpreted as class dependent costs c̄+1 = 0.989 and c̄−1 = 0.984
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Fig. 2. a) Using class dependent, i.e. mean costs (left figure). b) Result for separable
dataset with the example costs in (29) (right figure).

respectively. The learned classifier therefore coincides approximately with the
cost-free Bayes classifier, see fig. 2.a. I.e. the information about the costs is lost
by using class dependent costs.

An example of a separable data set with example dependent costs given in
(29) is shown in fig. 2.b. As expected the resulting classifier is not influenced by
using the cost functions (29). Note that due to prop. 1 the Bayes classifier r∗ in
(4) is defined by the class boundary x2 = −0.5. Since we defined sign(0) = +1 and
decide in favour of class +1 if r∗ ≥ 0, all points within the tube −0.5 ≤ x2 ≤ 0.5
are assigned to class +1 by r∗. Allowing an arbitrary choice of the class, if the
argument of sign in (4) equals to zero, yields a whole set of Bayes decision rules.
From this set, the SVM has constructed one with maximum margin.

6 Conclusion

In this article, we discussed a natural cost-sensitive extension of SVMs by ex-
ample dependent classification and misclassification costs. The cost-insensitive
SVM can be obtained as a special case of the SVM with example dependent
costs.

We showed, that the Bayes rule only depends on differences between costs
for correct classification and for misclassification. This allows us to define a
simplified learning problem where the costs for correct classification are assumed
to be zero. For the simplified problem, we stated a bound for the cost-sensitive
risk. A bound for the original problem with costs for correct classification can
be obtained in a similar manner.

We have stated the optimization problems for the soft margin support vector
machine with example dependent costs and derived the dual Lagrangians. For
the case k = 2, we discussed the approximation of the Bayes rule using SVM
learning. However a formal proof of convergence is still missing.



We suspect that the inclusion of example dependent costs may be sensible in
the hard margin case too, i.e. for separable classes (fig. 2). It may lead to more
robust classifiers and will perhaps allow the derivation of better error bounds.

Independently from the SVM framework, we have discussed the inclusion of
example dependent costs into a cost-insensitive learning algorithm by resam-
pling the original examples in the training set according to their costs. This way
example dependent costs can be incorporated into an arbitrary cost-insensitive
learning algorithm.

The usage of example dependent costs instead of class dependent costs will
lead to a decreased misclassification cost in practical applications, e.g. credit risk
assignment.
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