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Abstract—Mobile data traffic, particularly mobile video,
grows at an unprecedented pace. Despite recent advances at the
physical layer, today’s wireless network infrastructure cannot
keep up with this growth. This is partially due to the missing
flexibility to adapt the physical layer continuously to best support
both application level as well as network requirements. In this
paper we show how to harness the flexibility of advanced physical
layers in practice. We designed and implemented a research
platform that provides a flexible application-centric physical layer
for Android smartphones using software-defined radios (SDRs) as
radio interfaces. Our solution allows applications to define flows
and apply per-flow settings that are mapped into distinct physical
layer settings. As a proof-of-concept and for testbed evaluation,
we implemented our system together with a mobile video stream-
ing application. The latter uses a Motion-JPEG based lightweight
scalable video codec (SVC) to generate incremental data flows. We
show that our system maximizes video quality at the receiver’s
side, while keeping the energy consumption at the transmitter
at a minimum. Our solution demonstrates that jointly optimizing
network traffic and application quality is feasible in practice using
a flexible physical layer processing approach.

I. INTRODUCTION

Today’s Internet traffic is being shaped by the rise of
digital video transmission. This growth is forecasted to be
accelerated in mobile networks: video data is expected to
grow 14-fold between 2013 and 2018—outpacing the general
data traffic growth—and amounting to close to 70 % of all
mobile data traffic in 2018 [6]. This growth cannot be handled
by advances in wireless network technology such as Long-
Term Evolution (LTE) or LTE-Advanced alone. Especially in
crowded regions with a high density of wireless devices, the
gap between desired and available bandwidth is huge and
it tends to increase. Reasons are for instance that wireless
resources, such as frequency spectrum, are limited, while the
number of devices, users and applications continues to grow.

While LTE allows to differentiate between different traffic
classes such as conversational voice and video, real-time gam-
ing, video (buffered streaming), etc., these settings are hardly
accessible by mobile applications. Moreover, state-of-the-art
video codecs, especially SVCs, require more than simple per
application parameterization of network, data link and physical
layer settings to offer sufficient flexibility. Other wireless
technologies, such as Wi-Fi, offer less and incompatible
quality of service (QoS) control features. As a result, video
streaming applications, such as cloud-rendered games or video
conferencing systems, are using whatever best-effort service
the network offers. We argue that this one-size-fits-all approach
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is ill suited for mobile (video) applications. We propose to
design future network protocols such that they acknowledge
the special requirements of these applications and capitalize on
the flexibility offered by modern physical layer technologies,
thus jointly optimizing network traffic and application quality.

Flexible research platforms to practically study cross-layer
optimization in mobile wireless networks are scarce. On the
one hand, building on integrated circuit designs for existing
wireless technologies such as Wi-Fi, Bluetooth or LTE gives
little room to researchers to explore physical layer settings
outside the envelopes set by standards. This limits the design
space for new wireless systems that allow to adapt the physical
layer to the needs of an application. On the other hand, uti-
lizing flexible SDR platforms complicates research with ‘real’
applications that exist in the smartphone ecosystems. SDR-
based solutions often operate on synthetic traffic assumptions,
which might only poorly match the constantly changing traffic
requirements of applications deployed in the wild. To the
best of our knowledge, there is currently no research and
development platform combining the flexibility of SDRs and
mobile application platforms with all their applications. In this
work, we close this gap.

Our target application platform is Android, which is the
mobile operating system for smartphones, tablets and wear-
ables with the most widespread deployment [2], [8]. Its open
source nature allows for extensions even to core operating
system features. The hardware support as well as the software
ecosystem of Android allows the recording, streaming and
playback of high definition video, amongst other applica-
tions. In this work, we connect Android smartphones with
SDRs—specifically the Wireless Open-Access Research Plat-
form (WARP) [1]—to overcome the limitations of the wireless
interfaces offered by off-the-shelf devices. While our solution
requires to tether WARP nodes to Android smartphones, our
implementation enables basic mobility of the phone by feeding
back the wireless signals to an antenna system attached to
the phone. As a result, we obtain a research platform that
provides us with access to all Android features in combination
with a highly flexible physical layer. Our proof-of-concept
implementation further consists of an Android SVC-based
streaming system supporting layered video.

This work contains the following contributions:

e We designed and implemented a real-time capable
Android to WARP interface to allow mobile devices
direct access to physical layer parameters.
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e We designed and implemented a flow-based packet
processor to enable applications to change physical
layer communication mechanisms on a per flow basis.

e  We evaluated how well our system performs in realis-
tic video streaming scenarios based on our lightweight
Motion-JPEG-based SVC.

In Section II, we describe our system and detail our design
decisions. In Section III, we introduce our lightweight SVC. In
Section IV, we discuss implementation details of our system
and describe the extensive performance evaluation using our
proof-of-concept application. This is followed by a discussion
of the results and future work in Section V, related work in
Section VI as well as the conclusion in Section VII.

II. SYSTEM OVERVIEW

In this section, we present a detailed overview on our sys-
tem and the important design decisions for its implementation.

Regarding hardware, our system consists of two main com-
ponents: Android smartphones and WARP software-defined
radios. The smartphones represent mobile end-devices run-
ning applications. The WARPs offer flexible physical layer
implementations that run in real-time on field programmable
gate arrays (FPGAs). In our system, we bring both devices
together to allow applications the setup of physical transmis-
sion requirements on a flow basis. This level of flexibility is
not provided by off-the-shelf wireless chipsets that implement
standard-compliant communication mechanisms, leaving little
room for research outside the bounds of the standards. A
flexible physical layer implementation can be controllable by
applications that intend to optimize their data transmissions.
However, full control is infeasible when multiple applications
require access to the physical layer. Additionally, each applica-
tion would need separate optimization strategies for different
physical layers. To abstract from the details of the physical
layer, we introduce an abstraction layer that takes control
over setting physical parameters according to the applications’
needs (see Figure 1).

To handle different connections, we take advantage of the
concept of flows. Flows can, for example, be differentiated
according to TCP or UDP ports. Applications can then define
abstract properties per flow such as robust packet delivery
or high throughput. Our intermediary service translates these
requirements to physical layer properties such as modulation
scheme, transmit power or transmission priority. This way, we
can handle multiple applications and abstract from lower layer
details. In the following, we describe our system in more detail.

The proposed system consists of four components: (1) an
SVC-based video streaming application as a practical example
application, (2) the WARP “VPN” Service that allows to create
tunneling devices (TUN) under Android to tap and inject IP
packets without root privileges, (3) an Ethernet connection to
the WARP to tunnel packets to the lower layers, and (4) the
physical and data link layer implementations in the WARP. In
the following, we describe the four components in detail.

Motivating example for our application-centric physical
layer is the increasing demand for reliable, network-efficient
video streaming. Due to requirements for flexibility and op-
portunistic delivery coming from the heterogeneity of video

Transmitter Receiver

Application
e.g. Video Streaming

Application
e.g. Video Streaming

Network Stack and
Physical Layer Logging
and Flow Table Control

Network Stack and
Physical Layer Control
according to Flow Tables

WARP SDR with
Physical Layer Implementation
and Flow Tables

WARP SDR with
Physical Layer Implementation YY

Fig. 1. Abstract System Overview

formats, playback devices and network throughput variations,
we focus on scalable video coding. Compared to other data
streams, video streams do not rely on error free transmission
and can cope with a certain number of bit errors and packet
loss. The latter might lead to degradation of the image quality,
but it still meets real-time requirements. SVC additionally
offers to encode video streams into multiple quality layers. The
base layer is always required to playback the video. Higher
layers, that lead to better image quality, resolution or frame
rate, are optional. If the physical layer can differentiate, which
data streams are more important for the application than others,
it can allocate the appropriate amount of resources to fulfill the
application’s requirements. For example, by using more robust
modulation schemes and different transmit powers, the system
can save energy at the transmitter, while maximizing quality
at the receivers.

In Figure 2, we present our complete system. At the left
side is the transmitter that encodes a video stream and uses
our system to transmit it to the receiver on the right, who
decodes and plays back the video stream. The encoder splits
the video stream into three different quality layers. On the
right side you see how the videos would play back if only
the base, the base and the first layer or the base and both
extra layers were received. To transmit the data streams of
each layer, the application could generate headers for all layers
up to the application layer on its own and could tunnel the
resulting frames over Ethernet to the WARP (at the bottom of
the figure). Even though this gives an application full control
over the network stack and allows frame-wise settings for the
physical transmissions, it also complicates the access control to
the physical layer, especially if multiple services need access
to it at the same time. Also system wide services such as name
and address resolution would be application depended.

To avoid these complications, we decided to use the exist-
ing Linux kernel to handle transport and network layers. This
gives all IP-based applications access to our implementation
and it allows to use existing transport layer protocol imple-
mentations such as UDP and TCP. To get access to IP packets
on Android devices without root privileges, we instantiate a
virtual private network (VPN) service to get a file descriptor
on a TUN device. This VPN setup has the side effect that we
can define IP subnetworks that are handled by our application-
centric physical layer. All other packets are handled by the
existing network interfaces.
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Fig. 2. System overview that shows the components of our transmitter and receiver. At the top, we illustrate our example application—a scalable video codec.
It uses regular UDP over IP communication offered by the Linux kernel. Below is the WARP “VPN” Service to handle IP packets and setup physical layer
requirements according to application-controlled flow tables. At the bottom are the WARPs that we use as wireless interfaces for our smartphones.

On the transmitter side, this WARP “VPN” Service takes all
IP packets coming from the TUN device and attaches physical
and data link layer headers to them. To decide which physical
layer features are required by an application, we use flow
tables. These tables contain filters that match bits in packet
headers and they contain physical layer settings that should be
passed to the WARP. In our example the different SVC layers
are transmitted using different UDP ports. Each of the three
streams is considered a flow and can have unique requirements
on the physical layer.

To interface with the WARP, we considered multiple inter-
faces. To avoid interference during our wireless experiments,
we decided against wireless interfaces. Secure Digital Input
Output (SDIO) is not available on all smartphones. Directly
interfacing the WARP using USB On-The-Go is not possible
due to the lack of a USB interface at the WARP. However, we
can use USB-to-Ethernet adapters to connect to the WARP’s

1 Gbps Ethernet ports. Over the Ethernet link, we tunnel our
physical layer frames to the WARP for transmission.

To gain maximum flexibility at the receivers and to be able
to implement non-standard wireless communication schemes
or extensions to existing ones such as 802.11, we also use
WARRPs as receive interfaces. On the one hand, they are part of
the flow handling and can filter packets that should be tunneled
to the Android smartphone. On the other hand, they can attach
measurements that are not available on unmodified off-the-
shelf wireless chipsets, such as channel state information (CSI)
measurements. After reception, selected frames are tunneled to
the WARP “VPN” Service, that extracts the payload passes IP
packets on to the Linux kernel. The additional measurement
information gets logged and can be used to enhance future
transmissions, for example, by feeding it back to the transmit-
ter who can optimize its transmit filters on the physical layer.



III. ROBUST SCALABLE VIDEO TRANSMISSION

As a use case for our application-centric physical layer,
we choose video streaming. Videos have the advantage, that
their information can be encoded and compressed in various
qualities and decoders can cope with packet loss and bit errors,
which lead to image quality degradation that users may tolerate
in real-time applications and while being mobile. To meet the
requirements of heterogeneous end-devices as well as varying
network speeds, scalable video coding offers to encode video
material into different layers. A low quality base layer is
required by every user. To improve video playback users can
request additional layers. This principle is often illustrated by
the SVC cube shown in Figure 3.

Currently, SVC extensions for existing video codecs such
as H.264/AVC and H.265 [19] exist in the form of H.264/SVC
[18] and scalable high-efficient video coding (SHVC) [9].
However, those codecs have a high complexity, as they com-
bine the idea of SVC with very efficient video compression.
To give researchers a smooth entrance into the world of
scalable video coding, we present a lightweight scalable video
codec that is based on the idea of Motion JPEG, where each
video frame is encoded separately using JPEG images. JPEG
compression relies on the fact that high frequency components
in a picture are less important for the human visual system than
low frequency components. Our video codec uses this idea
and only packs the lowest frequency components into the base
layer, which is required by all receivers. Additional frequency
components come with the first and second layer and are used
to increase video quality. The result is illustrated in the upper
right corner of Figure 2.

To get the frequency components, the video encoder applies
the discrete cosine transform (DCT) to each 8 x 8 block in each
video frame on each of the three YCbCr color components.
The receiver of the layered video stream converts the frequency
components back to the spatial domain using the inverse
discrete cosine transform (IDCT). The layers are required in
the order base, first and second layer. If parts of a layer are
missing, e. g. due to frame loss on the physical layer, missing
parts are replaced by parts from proceeding frames.
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Fig. 3. The H.264/SVC cube model.

IV. IMPLEMENTATION AND EVALUATION

We implemented the system described above on Nexus 5
Android smartphones running stock firmware (version 4.4.2
(Android KitKat)) with a custom kernel to support the
AX88179 based USB-to-Ethernet adapters. As SDRs we used
WARP nodes running version 0.95 of the 802.11 reference
design with an Ad-Hoc implementation from the developers’
repository. We extended this design to handle our UDP-based
tunneling protocol that can set physical layer parameters on
a per-frame basis. To ease experimentation, we developed a
simple control protocol to trigger video transmissions and
setup flow tables over Ethernet.

A. Experimental Setup

To evaluate the feasibility of our solution, we set up a
testbed in our office environment as illustrated in Figure 4. We
used five smartphones that are equipped with WARP SDRs, as
illustrated in Figure 5. To reduce interference by other Wi-Fi
users, we performed experiments at night and selected channel
14 in the 2.4 GHz band with 20 MHz bandwidth.

During our experiments, we used Node 1 as the transmitter
that generated a layered SVC video stream. We transmitted
each of the three layers on a separate UDP port resulting in
three different flows. Depending on the experiment, we varied
the used modulation scheme, the amount of forward error
correction (FEC) and the transmit power for each flow. The
transmitter fragmented all video frames into 5 (base layer), 23
(first layer) or 41 (second layer) Wi-Fi frames (with 1348 byte
payload) that we broadcasted in Wi-Fi Ad-Hoc mode without
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Fig. 4. Experimental setup in our office environment. All phones are hanging
on movable hat stands in a height of roughly 170 cm. Positions look random
as the devices are placed around the tables in our offices.
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Fig. 5. To each Android node we attach a USB-to-Ethernet adapter with
a 5m long cable to the WARP and a power supply. Using a low-loss CS29
cable, we feed back the WARP’s RF output to a PCB antenna (3 dBi gain)
that is fixed to the smartphone.



TABLE 1.

802.11G DATA RATES ACHIEVABLE ON WARP

Gross Rate  Achievable Rate ~ Modulation FEC  Payload Air Time

6 Mbps 5.3 Mbps BPSK 12 1.979 ms

9 Mbps 7.6 Mbps BPSK 3/4 1.198 ms

12 Mbps 9.8 Mbps QPSK 12 0.899 ms

18 Mbps 13.6 Mbps QPSK 3/4 0.599 ms

24 Mbps 17.0 Mbps 16-QAM 172 0.449 ms

36 Mbps 22.2 Mbps 16-QAM 3/4 0.300 ms

48 Mbps 26.4 Mbps 64-QAM 2/3 0.225 ms

54 Mbps 28.1 Mbps 64-QAM 3/4 0.200 ms
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Fig. 6. Wi-Fi frame reception rates of base layer frames transmitted at

different gross data rates at 10 dBm transmit power.

retransmissions. Nodes 2 to 5 were receivers, on which we
measured the number of received Wi-Fi frames and the quality
of the video playback in terms of the peak signal-to-noise ratio
(PSNR) and the structural similarity index (SSIM).

B. Experiment Definition

Each of our experiments lasted 20 seconds (480 video
frames at 24 frames per second). We measured video qualities
on a per-frame basis and frame reception rates per second
and plotted the average including 99 % confidence intervals.
The selection of the performed experiments was based on
the fact that each video layer had minimum requirements
on throughput. As we do not focus on video compression,
the bit rates per frame are comparably high. However, this
allows us to test our system under load requirements for high-
definition videos. For our frame size of 800 x 480 pixels and
8 x 8 pixel block size, we required 17.280 Mbps for all three
grayscale video layers (1.152 Mbps for the base, 5.760 Mbps
for the first and 10.368 Mbps for the second layer). According
to [3] and considering 1348 payload bytes per Wi-Fi frame,
the achievable data rates lie below the gross data rates (see
Table I). Hence, we needed to choose a data rate of 36 Mbps to
have sufficient throughput for our 17.280 Mbps video stream.
This 36 Mbps setting acts also as the baseline for further
experiments. To analyze the video quality as well as energy
efficiency, we defined two sets of experiments: (1) We used a
transmit power of 10 dBm and kept the first and second layer’s
bit rate fixed at 36 Mbps and changed the rates of the base layer
to all rates given in Table 1. (2) We fixed the rates of the base,
first and second layers to 6, 24 and 48 Mbps and changed the
transmit power between —12dBm to 18 dBm in steps of 3 dB.

C. Evaluation of Transmit Rate Variations

In the following, we present our results. In Figure 6, we
show the rates of successfully received Wi-Fi frames, i.e.,
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Fig. 7. Video qualities when the transmit power is fixed at 10 dBm and the

transmit rate of the base layer changes while keeping the first and second
layer fixed at 36 Mbps.

with correct frame check sum (FCS), for each receiving node.
With the given transmit power, Nodes 2 and 3 have almost no
packet loss, while Node 4 only receives packets up to a rate of
36 Mbps. Node 5 is the most distant node from the transmitter
and receives well at rates of 6, 12 and 24 Mbps. Higher rates
result in almost no reception, while rates of 9 and 18 Mbps
endure higher frame loss than their neighboring higher rates.
This effect is most likely due to the fact that at 9 and 18 Mbps
each three data bits are protected by one FEC bit, while at 6,
12 and 24 Mbps, each data bit is protected by one FEC bit.
We conclude that gaining throughput by increasing modulation
orders is more efficient than reducing FEC.

Regarding video quality (see Figure 7), we observe that
Nodes 2, 3 and 4 have PSNR values around 40 dB and SSIM
values close to one, which means that they have very good
video quality. Compared to Node 5, they receive the first and
second layers in addition to the base layer as they have low
frame loss rates at 36 Mbps (at which the higher video layers
are transmitted). Node 5 does not receive the higher layers,
therefore, it only achieves an acceptable video quality around
25dB (PSNR) or 0.7 (SSIM). As soon as we increase the base
layer’s transmit rate above the point of low frame loss rates,
we encounter very bad video qualities below 10dB (PSNR)
or 0.2 (SSIM), even though the higher layers might still be
receivable. We conclude that video quality is highly correlated
with frame loss rates and that it is essential to ensure a good
reception of the base layer which which alone gives acceptable
video quality.

D. Evaluation of Transmit Power Variations

In our second set of experiments we analyzed the influence
of transmit power on video reception. We selected a robust



transmit rate of 6 Mbps for the base layer and less robust
rates of 24 Mbps and 48 Mbps for the first and second layers.
Figure 8 illustrates that the higher the transmit rate, the higher
the transmit power requirements to successfully receive the
Wi-Fi frames. However, if the transmit power gets too high,
transmission at high transmit rates becomes impossible, which
is most likely due to the errors introduced by high and
therefore non-linear amplification. The effect is observable in
Figure 8 (c) at a transmit power of 18 dBm. We also observe
that nodes closer to the transmitter are able to receive at
lower powers than nodes that are further away. Only at low
transmit powers Node 3 has a better reception than Node 2.
This is either due to different WARP boards whose receiver
sensitivities can vary from board to board, or it is due to
the direction the smartphones are facing in the room. As the
antenna of Node 2 faces away from the transmitter it might
receive noisier signals than Node 3.

Video qualities illustrated in Figure 9 reflect the obser-
vations of the frame reception rates. At low transmit powers
Nodes 2 and 3 already get medium video quality that increases
to very good quality as soon as transmit powers reach 6 dBm so
that the second layer is receivable. Video reception at Nodes 4
and 5 start at —3, respectively —6 dBm with acceptable quality.

E. Optimizing Energy Consumption

We analyze the energy consumption at the transmitter,
while meeting the requirement that the video quality at all
nodes stays between 25dB and 40 dB. To this end, we define
a PSNR per consumed energy metric ) (in dB/mWs), where
energy is transmit power P (in mW) times the air time ¢(R)
(in s) of a 1348 byte payload frame at transmit rate 12 (see
Table I). For each video frame, we need 5 of these Wi-Fi
frames for the base, 23 for the first and 41 for the second
layer (ignoring that the last frame is not full). The metric is
defined as follows (for powers in linear scale):

0dB if ¢ < 25dB

7(q) ={ 40dB if ¢ > 40dB
q else
Q _ [T(qNode 2) + 7_(qNode 3) + T(qNode 4) + T(QNode 5)]/4

5 t(Rpase) Poase +23 - t(Ryx) Pps + 41 - t(Ryna) Pone

Our baseline is 36 Mbps and 10 dBm for all layers leading
to @ = 29.4dB/0.207mWs = 142dB/mWs according to
values from Figure 7 (a). Considering the results in Figures 8
and 9, we see that the base layer frame reception rate should
not fall below 60% for a minimum of 25dB (PSNR). To
reach at least 40dB, the first and second layers should be
received with a frame reception rate higher than 90 %. To
achieve 25 dB at all nodes, the base layer has to be transmitted
with 6 Mbps and 6dBm. If we do not transmit the other
layers, we get @ = 25.0dB/0.039mWs = 641dB/mWs,
which is more than four times more efficient than the baseline
transmission. To increase video quality, we have to activate
the first and second layers. Setting the first layer to —3 dBm
and 24 Mbps and the second one to 6dBm and 48 Mbps
allows to maximize video qualities at Nodes 2 and 3, while
giving minimum qualities to Nodes 4 and 5. This leads to
Q = 32.5dB/0.087mWs = 374 dB/mWs, which is almost
three times more efficient than the baseline, and results in a
3 dB higher average video quality.
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Fig. 8. Wi-Fi frame reception rates when keeping the base, first and second
layer transmit rates fixed at 6, 24 and 48 Mbps, while varying the transmit
powers.
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V. DISCUSSION AND FUTURE WORK

Our experiments show that our solution to allow applica-
tions to change physical layer parameters by using flow tables
in a VPN service on Android smartphones is practical. Using
a VPN service to implement an abstraction layer has multiple
benefits. First, existing IP-based applications can profit from
physical layer optimizations which are transparent to them.
Second, the service abstracts from complex physical layer
parameters by translating application requirements to physical
layer settings that can vary between wireless technologies.
Third, the flow-based approach avoids an over-optimization
on a per-frame basis. Instead, applications need to set require-
ments only once per flow and our service is responsible to
choose and adapt physical layer settings over time.

In our evaluation, we demonstrate that our solution is
suitable to implement and optimize application-centric phys-
ical layers that are aware of application requirements. For
video streaming, our results show that adjusting transmit
power and transmit rates already allows optimizations that
help to meet video quality requirements at receivers while
saving energy at the transmitter. Even though the variation
of the parameters mentioned above could be implemented
on off-the-shelf hardware with special drivers or firmware
modifications, our solution is capable to be extended to adjust
more physical layer parameters or even exchange complete
physical layer implementations on the SDRs, depending on
application requirements. In future work, we plan to extend
our implementation with advanced schemes that are currently
being researched in theory and might end up in future fifth
generation wireless networks. Additionally, we intend to sup-
port standardized SVC solutions and additional applications in
the areas of gaming and emergency communication.

VI. RELATED WORK

Our work is related to three main areas, including (1) the
access to lower communication layers on customer off-the-
shelf (COTS) hardware, SDRs and specialized experimental
platforms, (2) flow based networking approaches with focus on
the wireless domain, and (3) scalable video coding schemes.

The highest flexibility to evaluate physical layer schemes is
offered by SDRs such as the Wireless Open-Access Research
Platform (WARP) [1], the Universal Software Radio Peripheral
(USRP) or AirBlue [16]. All platforms are build around FPGAs
that allow real-time capable implementations of wireless com-
munication schemes. For the WARP, there even exists an IEEE
802.11g compatible reference design usable as starting point
for research applications. Nevertheless, SDR platforms are
often bulky and limit mobility. Therefore, solutions that unlock
lower layer modifications on COTS hardware are desirable.
Examples are the bcmon project [10] that activates monitor
mode and packet injection on Android smartphones or the
Wireless MAC processor [20] respectively MAClIets [5] that
allow the implementation of state machines or exchangeable
building blocks to control time critical tasks in Wi-Fi chipsets.
Some Wi-Fi drivers also support the manual setting of trans-
mit rates and transmit powers. As these implementations are
chipset specific and often not available on smartphones, we
decided to build our framework with SDRs, which allows us
to also support future applications that exceed the capabilities
of current wireless chipsets.

To bundle and manage network frames that logically belong
together, we rely on the concept of flows, an idea introduced
in the 1960s [7]. Flows can either be extracted from header
information, for example ports and addresses, or they can be
explicitly defined by using flow labels as in IPv6 [17]. Open-
Flow [15] is a project implementing flows in network hardware
to allow controllers direct access to flow tables, for example, in
switches to control how data is forwarded. This implements the
concept of software-defined networking (SDN). OpenRoads
or OpenFlow Wireless [21] is the corresponding project for
wireless systems. A major application is to allow handovers be-
tween wireless technologies and to manage wireless networks.
OpenRadio [4] is a more application-centric solution that aims
at developing a platform that supports multiple physical layers
that can be adjusted to the needs of an application. However,
it misses a complete implementation and extensive evaluation
of this approach.

Video streaming is already evaluated in various works. The
authors of [11] focus on flow-based control for video streaming
services and significantly enhance the quality of experience
(QoE) of video on demand (VoD) services like YouTube.
Therefore, they rely on deep packet inspection (DPI) and ap-
plication metrics. There are also works like [12] that focus on
optimizing physical layer transmission for video applications
in multi-antenna systems. The physical layer knows which bits
are more important for a successful video transmission and can
adjust according to channel conditions. Last but not least, SVC
is another solution to cope with fluctuating network throughput
by encoding video into multiple quality layers that have to
arrive at receivers with different priorities. This makes SVC
streams ideal applications for SDN. In [13], the authors create
flow based routing protocols to cope with varying network
conditions as well as playback device properties. In practise,
SVC extensions exist for the H.264 and H.265 codecs [9],
[18]. However, the support for mobile playback devices is still
very limited. The authors of [14] offer at least a software-
based player for Android devices. In this work, we neither
intend to reinvent scalable video codecs, nor do we want to
compete against existing solutions. Our intention is to have
a lightweight video codec based on a simple implementation
that runs smoothly on mobile devices and is easily extensible
so that we can combine it with the concept of flows as well
as physical layer optimizations.

VII. CONCLUSION

In this work, we present a solution that allows mobile
applications to take advantage of physical layer properties
when transmitting data. Our framework relies on the concept
of flows to avoid over optimizing the physical layer on a
per frame basis. For each flow, an application can define
requirements on the physical transmission such as the use of
robust modulation schemes and high power transmissions if a
flow should be received by as many receivers as possible, or the
combination of high throughput and low transmit power to only
serve nodes in close proximity. To abstract from the complexity
of the physical layer and to support multiple applications
per device, we introduce an intermediary layer that handles
application requirements and sets corresponding physical layer
parameters according to flow tables. By implementing our
solution as VPN service on Android, it becomes transparent
to existing applications that rely on IP based communication.



As an example application to evaluate our solution’s per-
formance, we chose scalable video coding on Android smart-
phones. We designed and implemented a lightweight scalable
video codec that focuses only on offering multiple quality
layers that can be transmitted over separate flows. To be able
to change physical layer parameters on smartphones and to
have flexibility for future research, we use software-defined
radios that currently implement the 802.11g standard in an
easily extendable way. Attaching the SDR’s antenna to the
smartphones allows to still support mobility around the SDR.

In our evaluation, we analyze the effect of choosing
different modulation schemes and transmit powers on frame
reception rates and video quality. Thereby, we show that
video transmissions can be optimized for both maximum video
qualities and minimal energy consumption, which is especially
important for mobile devices.
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