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Abstract. The fusion of trust relevant information provided by multiple
sources is one of the major challenges of trust establishment, which in
turn is a key research topic in the growing field of cloud computing. We
present a novel fusion operator for combining information from different
sources, representing propositions under uncertainty. The operator espe-
cially extend the state-of-the-art by explicitly considering weights and
the handling of conflicting dependent opinions. We provide a use case
that demonstrates the applicability of our approach and shows the capa-
bility of the novel operator to a more reliable and transparent assessment
of the trustworthiness of cloud providers.

1 Introduction

Trust establishment is considered to be a major enabler for unfolding the po-
tential of cloud computing. Currently, potential users (e.g., enterprises, govern-
ments, individuals) of cloud services often feel that they lose the control of their
data and they are not sure whether they can trust the providers. A recent sur-
vey [1] shows the growing concerns of the users about cloud providers regarding
their outsourced data. These concerns of the users represent considerable obsta-
cles for the acceptance and market success of cloud services.

Cloud providers provide assurances about the services and security measures
in terms of service level agreements (SLAs). SLAs, written with legal jargon, are
meant to protect the providers and not the cloud users [2]. In a recent survey [3],
46.6% of cloud users quote the legal contents of the SLAs as unclear, while only
29.3% users quote the opposite. Although cloud providers are using SLAs to
advertise their competence and capabilities, potential customers still hesitate to
consider them a basis for identifying dependable and trustworthy providers.

To overcome this lack of trust, a couple of initiatives have been launched,
for example, (i) CloudCommons provides a marketplace where users provide
detailed information on the competencies of the cloud providers and (i) the
Consensus Assessment Initiative (CAI) questionnaire [4] by the Cloud Security
Alliance (CSA) asks the cloud providers for a detailed self-assessment of their
security controls.



Finally, there are other possible ways to assess the trustworthiness of cloud
providers, e.g., (i) using property-based attestation to assess the trustworthiness
of subsystems and components underlying the offered services, (4i) taking users’
feedback into account to assess the overall reputation of a cloud provider, and
(#1i) asking for expert assessments.

We conclude that when assessing trustworthiness of a cloud provider, the
customers are supported best, if they can consider multiple attributes (e.g., se-
curity, availability, and functionality depending on their requirements) and take
into account information related to attributes from multiple sources. To this
end, a metric is required and in particular, operators that provide means for
the fusion of the available information. The operators should hold even under
uncertainty (in the sense of incomplete or unreliable information) and conflict
(in the sense of contradictory information).

In recent publications [5, 6], the authors have already provided a formal ap-
proach for modelling and assessing the trustworthiness of complex systems. The
formal approach is applicable for combining opinions — from now onwards, we
refer to the information provided by a source as an opinion — that are considered
to be independent (like on the availability of the service and on the quality of the
customer support). In this paper, we extend the approach with operators pro-
viding a way for aggregating dependent opinions. Dependent opinions are based
on observations of identical events by multiple sources. These observations re-
gard a specific attribute of a cloud service, or a combination of attributes in
the form of logical propositions. In particular, we extend the state-of-the-art by
providing means for taking into account (i) the preferences of the customers re-
garding which opinions should be given a higher weight as well as (i4) modelling
and expressing the degree of conflict of a set of opinions. Finally, we discuss the
applicability and capabilities of the fusion operators in the use case of assessing
the trustworthiness of cloud providers. However, the operators themselves are
not restricted to this field by any means.

The rest of the paper is organized as follows: Section 2 presents the related
work, Section 3 discusses modelling trustworthiness in cloud computing with a
cloud marketplace use case, Section 4 presents the definitions of the fusion op-
erators, Section 5 provides the rationale behind the definitions of the operators,
Section 6 exemplify the impact of the operators on opinions. Finally, we evaluate
the use case in Section 7 and draw our conclusion in Section 8.

2 Related Work

There are several approaches and trends for establishing trust on service providers
in cloud computing marketplaces (or service marketplaces in general). We discuss
these approaches in two subsequent sections: 1) Applied trends and 2) Research
trends. The applied trends especially shows that there are plenty of sources which
should be considered when evaluating the trustworthiness of a cloud provider.



Applied Trends

SLAs: In practice, one way to establish trust for cloud providers is the fulfilment
of SLAs. SLA validation [7] and monitoring [8] schemes are used to quantify what
exactly a cloud provider is offering and which assurances are actually met. These
schemes are complimentary when SLAs are considered as one of the sources of
trust information for establishing trust on cloud providers.

Awudits: Cloud providers use different audit standards (e.g., SAS 70 II,
FISMA, ISO 27001) to assure users about their offered services and platforms.
These audit standards are used as one of the trust indicators by the cloud
providers to ensure consumers about security and privacy measures.

Ratings € Measurements: There are numerous commercial portals with
integrated trust and reputation systems (e.g., eBay, Epinions, RateMDs) that
provide means for identifying reliable and trustworthy products and services.
Most of these systems rely on user feedback and recommendations to evaluate a
particular entity and do not consider technical details or the composition of the
service. Recently, a cloud marketplace (CloudCommons)! was launched to sup-
port the users in identifying reliable cloud providers. Here, cloud providers are
rated based on a questionnaire that needs to be filled in by current cloud users. In
the future, CloudCommons aims to combine user feedback with technical mea-
surements for assessing and comparing the trustworthiness of cloud providers.
Hence, measurement tools and recommendation platforms are important sources
for extracting trust information about the cloud providers.

Self-assessment Questionnaire: The Cloud Security Alliance (CSA) pro-
posed a detailed questionnaire for providing security control transparency —
called the Consensus Assessment Initiative (CAI) questionnaire [4]. This ques-
tionnaire provides means for assessing the capabilities and competencies of cloud
providers in terms of different attributes (e.g., compliance, information security,
governance). One can extract trust information by assessing the completed ques-
tionnaire and consider that information for evaluating trustworthiness of cloud
providers.

Research Trends

Commercial platform providers become more and more aware that trust estab-
lishment is an important issue. They are also aware that trust is not only related
to the technical enforcement for security mechanisms but also involves taking
into account user ratings and providing transparency. The scientific research
community is already a big step ahead, especially with regard to formal models
and metrics of trust.

Trust Models and Uncertainty: In the field of trust modelling, there are
a number of approaches modelling trust and especially the (un-)certainty of a
trust value, well-known approaches are given in [9, 10, 10-16]. However, these
approaches do not tackle the issue of deriving the trustworthiness of a service
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provider based on the different attributes of a service. Instead, the challenge of
these approaches is to find good models for deriving trust from direct experience
of a user, recommendations from third parties, and also additional information,
e.g., social relationships. Especially, those models aim on providing robustness
to attacks, e.g., misleading recommendations, re-entry, Sybil attacks, etc. For
these tasks, they usually provide operators for combining evidences from different
sources about the same target (also called consensus or aggregation) and for
weighing recommendations based on the trustworthiness of the source (also called
discounting or concatenation). However, the goal of these existing approaches
is not to provide operators for the evaluation of propositions associated with
opinions.

Trust Operators for Evaluating Propositions: In the field of trust, there
are researchers who proposed operators for combining different properties (or
more precisely opinions on different propositions) under (un-)certainty [6,14,17].
They proposed a set of operators (i.e., AND, OR, NOT) for evaluating propo-
sitions associated with opinions. These operators are only able to evaluate and
combine opinions on independent propositions. Moreover, subjective logic pro-
vides a set of operators [18,19] that are able to aggregate dependent opinions;
particularly, the averaging fusion operator and the consensus operator for de-
pendent opinions. These kind of operators are commonly used as an aggregation
function for group decision making (e.g., group of n experts provide n opinions)
for constructing a final score (e.g., trust score) [20]. Both of those operators,
proposed in [18,19], have the limitation that it is not possible to address conflict
among opinions (which leads to a high degree of ambiguity after aggregation).

To overcome the limitations, we introduce the operator for conflict-aware
fusion based on a previously established representation of trust, named Cer-
tainTrust [14]. In [14], it has been shown that there exists a bijective mapping
between the CertainTrust’s representation of an opinion and subjective logic’s
representation of a binomial opinion; thus, we say the representations are equiv-
alent. Both models provide three degrees of freedom related to an initial expec-
tation, the quality of past observations and the associated (un-)certainty. We
choose CertainTrust, as this representation is built on independent parameters
reflecting the (relative) quality of past observations (average rating) and the
associated (un-)certainty; in particular those parameters can be independently
assessed and interpreted?. Furthermore, CertainTrust provides a simple graphi-
cal representation (i.e., HTT). The parameters of binomial opinions in subjective
logic (belief b, disbelief d, and uncertainty u) are interrelated by b+ d 4+ u = 1.
This has as a consequence that the range of possible values for each parameter
depends on the actual values of the other parameters, e.g., from v = 0.8 it fol-
lows b (or d) can only be chosen in the range of [0,0.2]. Furthermore, binomial
opinions can also be visualized in a quantitative way using the opinion triangle.

In this paper, we benefit from the equivalence between the both representa-
tions as it provides the mathematical foundation for the average fusion operator,
that we choose as a starting point..

2Only in the case of ¢ = 0, we defined ¢ = 0.5 (cf. [14])



3 Assessing the Trustworthiness in Cloud Computing

Assessing the trustworthiness of a cloud provider requires statements on the
expected behaviour of the offered services or systems. The expectation of a cus-
tomer can be stated in the form of different attributes a service should have.
On an abstract level, those attributes can come, for instance, from the fields
of security, privacy, performance, customer support, and so on. More precisely,
examples for attributes can be stated as follows:

— Latency: “System A to respond within 100ms.”

— Security: “Service provider B ensures that my data is kept confidential.”
Availability: “Cloud A provides 99.99% uptime in a year.”

— Customer support: “Cloud B’s customer support is competent”.

When modelling the trustworthiness of a cloud-based service, one can logically
model the relevant attributes in the form of propositions and combine them
using propositional logic. More specifically, the opinions on the fulfilment of
those propositions are combined. As long as the propositions are considered
to be independent, the operators for AND (A) and OR (V) are sufficient (see
[6,21]). However, when the independence cannot be assumed (i.e., dependent
propositions) those operators are no longer sufficient. For instance, this is the
case when one has to combine two opinions based on the same observation made
by different sources regarding a cloud provider’s attributes.

The dependency among propositions as well as opinions needs further discus-
sion. For example, if a cloud consumer wants to know whether a cloud provider
is trustworthy with respect to the above mentioned attributes, the consumer
can derive opinions from different sources. If these sources (e.g., providers, con-
sumers, accreditators, experts) observe the same attributes using similar meth-
ods and their estimates are equal, it is enough to take only one of the estimates
into account. However, the sources may have missed or misinterpreted certain
events of the same observation processes, which can produce varying resulting
opinions. Thus, while the individual opinions about the propositions (i.e., at-
tributes) vary from source to source, they are still dependent.

In the following, we provide a use case that shows why the consideration
of different sources is important for trust assessment. The use case is a cloud
marketplace where cloud providers act as sellers and cloud users act as buyers.

3.1 Use Case — Cloud Marketplace

In our use case (cf. Figure 1), the main objective of cloud marketplace is to offer
cloud services to the users as well as to support them in selecting trustworthy
cloud providers. The cloud marketplace aims to identify the trustworthy cloud
providers by using a reliable and transparent mechanism for assessing their trust-
worthiness (e.g., of Cloud A). To keep the scenario simple, we will deal with one
cloud provider (Cloud A), the cloud users, and four sources of opinions.

When joining the marketplace, Cloud A has to fill in a questionnaire on
its competencies (i.e., CAIQ), as designed, verified and published by CSA in
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Fig. 1. Cloud Marketplace — Trust Assessment with Multiple Sources

STARS?, to be able to act as a seller in the cloud marketplace. Cloud A also
publishes service level agreements (SLAs) as a part of its “provider statements”.
To ensure a reliable assessment of trustworthiness of the cloud provider (Cloud
A), the users incorporate opinions from multiple sources, e.g., collecting expert
assessments (F'A), and feedback and recommendations by other users (FR) in
addition to the provider statements (P.S) and the questionnaire Q.

We assume that all these opinions about Cloud A’s overall trustworthiness
(modelled as propositions) are extracted from different parties. The propositions
are modelled in terms of the previously introduced attributes: quality of the
customer support (cs), security (s) and privacy (p) measures, performance (P),
compliance (co) and functionality (f). Alternatively, they can also be given as
an overall statement on the trustworthiness of the cloud provider (ol).

In our example, the opinions (derived from expert assessment, provider state-
ments and questionnaire) on the fulfilment of those propositions are combined
using CertainLogic AND operator (i.e., (s ApAcoAcs A P)). Users’ opinions on
the above mentioned attributes can be an overall rating (ol) or individual feed-
back on each of the attributes. A number of users feedback on different attributes
are assumed to be combined using consensus operator [14] and we denote the
construction as (ol, s, p, co, cs, P, f) in Figure 1.

Finally, when combining the opinions (on the fulfilment of the propositions)
from those different sources, the users may prefer one source over the other. In
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our use case, we assume that users put higher weights on FR, FFR and @ than
PSS based on their preferences.

The aggregation (in the following called fusion) of opinions from different
sources is especially challenging, as those opinions from the different sources
may be conflicting, it may based on incomplete information or unreliable sources,
and thus, it is subject to uncertainty. Therefore, the evaluation mechanism (i.e.,
fusion operation) should reflect the preferences, degree of conflict (DoC') and the
uncertainty when combining multiple opinions (on propositions) to calculate the
overall trustworthiness of Cloud A.

4 A New Model for the Fusion of Opinions

When modelling trust we consider that the trust-relevant information is sub-
ject to uncertainty. Therefore, we model trust as a subjective probability, which
goes along with the definition of trust provided in [22]. Particularly, we use
the representation that has been proposed with CertainTrust [23] and Cer-
tainLogic [6]. In these models, the truth of a proposition is expressed by a
construct called an opinion®. An opinion o is defined as a triple of values,
o = (t,e, f) € {[0,1] x [0,1] x [0,1]}, where t denotes the average rating, c
the certainty associated with the average rating, and f denotes the initial expec-
tation assigned to the truth of the statement®. As shown in [5,23], the assessment
of the parameters can be based on evidence from past experience, based on ex-
pert assessments, derived from opinions in subjective logic [17], or derived from
a Bayesian probability distribution.

Each opinion o = (t,¢, f) is also associated with a expectation value, i.e., a
point estimate, taking into account the initial expectation f, the average rating
t, and the certainty c as follows:

E(t,e,f)=txc+(1—c)*f (1)

Thus, the expectation value shifts from the initial expectation value f to the
average rating ¢t with increasing certainty c.

Beyond providing means for explicitly modelling uncertainty, the metric also
provides a graphical representation (named the Human Trust Interface (HTT)),
which supports an intuitive access for users (see Section 6).

In the following, we define the novel operators for the fusion of dependent
opinions.

4.1 Definition of the Fusion Operators

We provide three types of fusion operators, i.e., operators that are suitable for
aggregating dependent opinions on a single proposition. At first, we introduce

4Thus, the informal notion of an opinion is similar to the way the term opinion was
used before.
®For a detailed introduction of this representation please have a look at [5,23].



Table 1. Definition of the Average Fusion Operator
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the average fusion operator. This operator is equivalent® to the averaging fu-
sion operator [18] and consensus operator for dependent opinions [19] defined in
Jgsang’s subjective logic. The equivalence serves as an argument for the math-
ematical validity of our average fusion operator that we use as a starting point
for introducing a novel fusion operator. This operator (i.e., conflict-aware fusion)
is capable of dealing with conflict as well as preferences (as weights). Note that
the weighted fusion” operator is an intermediate step towards defining the novel
conflict-aware fusion operator.

Definition 4.1 (A.FUSION)

Let A be a proposition and let o4, = (ta,,cay, fa,), 04, = (tay,Cayy fay), «oos
o4, = (ta,,ca,, fa,) ben opinions associated to A. The average fusion is de-
noted as 0z, a, . a,) = (&4, 45, 4,)1 CB(A1, s, A0 TB(A1 A5, 4,,)) WheTe
UB (A, As, ) CB(AL, g, An)s T8 (AL A, A, OT€ defined in Table 1. We use the
symbol (@) to designate the operator A.FUSION and we define OF(Ay Ag,. Ay) =

@((0A1)7 (oAz)a ) (OAn))'

Definition 4.2 (W.FUSION)

Let A be a proposition and let 04, = (ta,,cay, fay), 04, = (tay, Casy fAs)s o)
oa, = (ta,,ca,,fa,) be n opinions associated to A. Furthermore, the weights
W1, W, ..., Wy (With wy,wa, ..., w, € RS‘ and wi +ws+ ... +w, # 0) are assigned
to the opinions oa,, 0a,, ..., 04, , respectively. The weighted fusion is de-

noted as 0% . (A1, Az, Ap) = (t@w(Al’A%m,An)aC@w(Al,AQW,An)’féw(Al,Amm,An))

SA sketch of the proof is given in Appendix I. The proof is based on the bijective
mapping between the both representations; note that [18] only defines binary operators.
"This weighted fusion differs from the fusion operator that was recently proposed
in [24], as they consider two weights in their definition: one weight from the agent who
provide the opinion and other weight from the agent who fuse the weighted opinions.



Table 2. Definition of the Weighted Fusion Operator
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where téw(Al,Az,..v,An)A’ C& (A1, Az, An)? f®w(A1,A2,...,An) are defined in Table 2.
We use the symbol (®,,) to designate the operator W.FUSION and we define
0% (A1, Az,..,Ap) = Duw((04,,w1), (04,, w2), ..., (04, wn)).

Definition 4.3 (C.FUSION)

Let A be a proposition and let 04, = (ta,,cay, fay), 04, = (tay, Casy fas), o
o4, = (ta,,ca,,fa,) be n opinions associated to A. Furthermore, the weights
W1, Wa, ..., Wy (With wy,wa, ..., w, € RS‘ and wi+wg+...+w, # 0) are assigned
to the opinions oa,, 04a,, ..., 0A, , respectively. The conflict-aware fusion is
denoted as

08, (A, s An) = (8 ,(A1 A5, A,) €O (AL As ALY T8 (A1 A, 0,))s DOC)

where 18, (A1, As, An)r CB(Ar, g, Ar)? féc(AlaA21~»-7An)’ the degree of conflict
DoC' are defined in Table 3. We use the symbol @C) to designate the operator
C.FUSION and we defineog (4, a, . a,) = De((0a,,w1), (04,5, w2), .., (04,,wn))-

s An

In Table 1, 2 and 3, for all opinions if it holds ¢4, = 0 (complete uncertainty),
the expectation values (cf. 1) depends only on f. However, for soundness we
define t4, = 0.5 in this case.

5 Properties and Rationale for the Operators

The goal of this paper is to extend the functionality of the consensus opera-
tor for dependent opinions and averaging fusion operators presented in [18,19]
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Table 3. Definition of the Conflict-aware Fusion Operator
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with regard to preferential weighting and conflict awareness. Furthermore, the
operators are designed to be compatible with CertainTrust [14] representation.

At first, we outline the necessary and desirable mathematical properties re-
garding our designed operators. Afterwards, we provide the rationale behind the
definition of the conflict-aware fusion operator. Note that this operator can also
handle preferential weights.

5.1 Properties of the Operators

We characterize the desirable properties in two groups: i) Fusion-specific and
ii) Weight-specific. The Fusion-specific properties are the ones which are shown
desirable and necessary for the state-of-the-art fusion operators [18,19]. The
Weight-specific properties are useful to show the relationship among the average,
weighted and conflict-aware fusion, that also extend to easier computation of the
expectation value E (cf. equation 1) of fused opinions. Moreover, these properties
are aligned with the desirable properties for arithmetic mean-based averaging
operations [20]. As fusion operation belongs to the family of arithmetic mean-
based averaging operations [20], those particular properties are also desirable for
our extended fusion operators.The properties that hold for our defined operators
are outlined as follows:
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1. Fusion-specific Properties: Idempotency, Commutativity & Permutability be-
long to this group.

2. Weight-specific Properties: Weight Partitioning, Invariance to Weight Scal-
ing and three properties regarding Weighted average of expectation value for
common weight and/or certainty belong to this particular group.

The formal theorems regarding the properties are discussed in the following. The
proofs for the theorems are provided in Appendix A—H.

Fusion-specific Properties

Idempotence: When aggregating the same opinion twice, no additional informa-
tion is gained for the resulting fused opinion. This should be reflected in the
fusion operation by designing it to be idempotent. Formally, the following the-
orem 5.1 thus represents a desirable property of the fusion operator that holds
for average, weighted and conflict-aware fusion.

Theorem 5.1 (Idempotence)
It holds ©(04,,04,, ++,04,) = 04, and Duw(0(Ay w1)s O(Arwa)s " 5 O(Aswn)) =
04, and Dc(0(ay wy)r O(Ay,ws)r "+ O(Ay,wn)) = OA, -

Commutativity and Permutability: In averaging operations, the order of the
operands should not affect the final outcome of the calculation. Therefore, the
extended fusion operators are designed to be commutative as well as indifferent
to a permutation of the operands. This makes them compliant with the following
two theorems 5.2 and 5.3.

Theorem 5.2 (Commutativity)

For two opinions, it holds

@(OAl ’ OAQ) = é(oz% 0A1)

E:\éw((OAl ) wl)» (OAz ’ wQ)) :E/Bw((oz‘lz ) w2)7 (OAI ’ wl))
@C((Oz‘h ) w1)7 (OAz ) w2)) = @C((Oz‘bv w2)7 (0141 ) wl))

Theorem 5.3 (Permutability of n opinions)

Let w:[1,...,n] = [1,...,n] denote a permutation such that oa, = oa,, then
it holds

@w(oAl,...,oA") = E/éw(OA,r(l)y "'aOA,.,(n))

@C(OA“...,OA") = éc(OAwu)’ ""OA'rr(n))

In this regard, one can argue that the associativity property is also desirable.
But, it is not desirable as the defined operations for the fusion operators belong
to the family of arithmetic mean based averaging operation. Note that for gen-
eral arithmetic mean based averaging operations, associativity is not a desirable
property [20].
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5.2 Weight-specific Properties

The fusion operators fulfil a number of useful properties regarding the relation-
ship between average and weighted fusion, that also extend to easier computation
of the expectation value E (cf. equation 1) of fused opinions. In the following,
we consider primarily weighted fusion with weight w; € Rar , 0 < i < n, where
i,n € Nand Y ;" w; #0.

Weighted Fusion Partitioning to Average Fusion: For rational weights, the weighted
fusion operator (W.FUSION) and (C.FUSION) is isomorphic to the average
fusion operator (A.FUSION).

Theorem 5.4 (Weight Partitioning)

For wy 2%,w2:%,~-- ,wn:‘g—: € Qf it holds
1. éjw((oAl,wl),(oAQ,wg),-~- ,(04,,w,)) =
Guw((0a,,1), -, (0a,,1),(04,,1), -+, (04,,1), -+, (04,,1), -+, (04,,1)) =
ay- 1, b times az-T1, . b; times an-Tl;u, by times
D04y, 04, 5 OAyy " y04y sy OA,, " 04, )
ay- Tl b times az-T],,b; times Tl by times
2. Q:aC((OAuwl)’(OAwa)v'” (04, w,)) =
690((014171)7"' 7(014171)7(0142’1)7"' 7(0142’1)7"' 7(0An71)7"' 7(0An71)) =
ar-T1, 4, by times as-T1, 4o by times an-T1, 40 b times
D04y, 04, 5 OAyy " 04y s OA, =" ,04, )
ar-T1, 41 by times as-T1, o b; times an-T1, 4 bj times

Invariance to Weight Scaling: As a weighted aggregation function, the weighted
fusion operation (W.FUSION) and conflict-aware fusion operation (C.FUSION)
is invariant to scaling of its weight terms by a constant.

Theorem 5.5 (Invariance to Weight Scaling)
Yk # 0 it holds

1. éw((oz“uwl*k)v (OszwTkk)? Tt (OAn’ wn*k)) = é;w((oAuwl)? (OA27w2)7 N (OAn7wn))

2. é\90((01417'11}1>‘<]€)7 (0A27w2*k)7 Tt (OA'n,7 wn*k)) = é\BC((OAle)a (OA27w2)7 N (OAn7wn))

Weighted average of expectation value for common weight or common certainty:
The primary decision criterion in CertainTrust [14] is the expected trust value
E(t,c, f) = txc+(1—c)xf (cf. equation 1)associated with an opinion o = (¢, ¢, f).
Thus, in many cases, the computation of this expectation value is the final ob-
jective subsequent to applying the fusion operators. As F € Rar, averaging op-
erations conducted on the expectation values using arithmetic operations, as
opposed to the opinions using fusion, are computationally preferable. The fol-
lowing theorems 5.6, 5.7, 5.8 outline under which conditions this is possible.
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Theorem 5.6 (Weighted average of expectation value for common weight w)

For wy = wqg =+ = w, = w it holds
E(@w((04,,w), (045, 0), -+, (04,,0))) = B(@ (04,045, -, 04,)) = =izt 0a).

Theorem 5.7 (Weighted average of expectation value for common certainty c)

Forca, =ca, =---=ca, =c, it holds

B(@u((04,,01), (04,12), -, (04, wn))) = ZRAELA).

Weighted average of expectation value for common certainty and common weights:
When defining the W.FUSION and C.FUSION we made sure that whenever
one uses identical certainty values (i.e., ca, = ca, Or ¢4, = Ca, = -+ = Ca,)
and weights (i.e., wq = ws or w; = wy = -+ = wy, ), the result is the same as the
result of the average fusion (cf. Thm. 5.6).

Theorem 5.8 (Weighted average of expectation value for common ¢ and w)

Forw; =ws =+ =w, =w and ca, =ca, = -+ =ca, = ¢, it holds

n B X ~
1. 2= 200 5@, ((0a,,w), (04, w), -+ , (04, w)))

2. M = E(éc((OAl,UI), (Oszw)7 Tty (OAn7w)))

5.3 Rationale for the Conflict-aware Fusion Operator

The rationale behind the definition of the conflict-aware fusion needs extensive
discussion. The basic concept of this operator is as follows: the operator extends
the weighted fusion by calculating the degree of conflict (DoC) between two
input opinions. Then, the value of (1 — DoC) is multiplied with the certainty (c)
that would be calculated by the weighted fusion (the parameters for ¢ and f are
the same as in the weighted fusion).

Now, we discuss the calculation of the DoC' for two opinions. For the param-
eter, it holds DoC € [0, 1]. This parameter depends on the average ratings (¢),
the certainty values (c), and the weights (w). The weights are assumed to be
selected by the users and the purpose of the weights is to model the preferences
of the user when aggregating opinions from different sources. We assume that
the compliance of their preferences are ensured under a policy negotiation phase.
For example, users might have given three choices: High (2), Low (1) and No
preference (0) (opinion from a particular source is not considered), to express
their preference on the sources from which the opinions are extracted. Note that
the weights are not introduced to model the reliability of sources. In this case,
it would be appropriate to use the discounting operator [14,17] to explicitly
consider reliability of sources and apply the fusion operator on the results to
influence users’ preferences. The values of DoC' can be interpreted as follows:
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— No conflict (DoC = 0): For DoC = 0, it holds that there is no conflict
between the two opinions. This is true if both opinions agree on the average
rating, i.e., ta, = ta, or in case that at least one opinion has a certainty
¢ = 0 (for completeness we have to state that it is also true if one of the
weights is equal to 0, which means the opinion is not considered).

— Total conflict (DoC = 1): For DoC = 1, it holds that the two opinions
are weighted equally (w; = ws) and contradicts each other to a maximum.
This means, that both opinions have a maximum certainty (ca, = ca, = 1)
and maximum divergence in the average ratings, i.e., t4, = 0 and t4, =1
(orta, =1 and ta, =0).

— Conflict (DoC €]0,1]): For DoC €]0, 1], it holds that there are two opinions
contradict each other to a certain degree. This means that the both opinions
does not agree on the average ratings, i.e., t4, # ta,, having certainty values
other than 0 and 1. The weights can be any real number other than O.

Next, we argue for integrating the degree of conflict (DoC) into the resulting
opinion by multiplying the certainty with (1 — DoC'). The argument is, in case
that there are two (equally weighted) conflicting opinions, then this indicates
that the information which these opinions are based on is not representative
for the outcome of the assessment or experiment. Thus, for the sake of repre-
sentativeness, in case of total conflict (i.e., DoC' = 1), we reduce the certainty
(c(OA1 ,wl)é(o,qz,wz)) of the resulting opinion by a multiplicative factor, (1 — DoC)
(i.e., the certainty is 0).

For n opinions, degree of conflict (i.e., DoCa, 4,) in Table 3 is calculated
for each opinion pairs. The challenge is how to calculate the DoC among n
opinions to adjust the certainty (cz (4, a,,.a,)) Parameter of the resulting
opinion. There are three possible ways that we have considered when calculating
the DoC'. These are as follows:

— One of the ways is to calculate the average of all possible DoCy, a; values
of all pairs. For instance, if there are n opinions there can be at most "(”27_1)

pairs and degree of conflict is calculated for each of those pairs individually.

Finally, all the pair-wise DoC' values are averaged (i.e., averaging %
pairs of DoCx, a;) to adjust the certainty (i.e., C@C(A17A27.“7An)) parameter
of the resulting opinion (cf. Table 3).

— Another way is to calculate the degree of conflict (DoC) for each pair of
opinions and adjust the certainty (cz_ (4, 4. 4,)) "(nT_l) times if there

are n opinions. In this case, we get w certainty values which are then

averaged to calculate the final certainty value.

— The other way is to calculate the degree of conflict (DoC') pair-wise and
multiply all pair-wise values at once with the certainty (céc( Ay As..., A”)) of
the resulting opinion. This approach has two drawbacks: i) it suffers from a
multiplicative effect which means that the certainty is affected heavily with
the increasing number of opinions, ii) it also heavily affect the certainty in

case a single opinion radically conflict with others.
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The first two approaches are equally capable of detecting conflicting opinions
as the conflict analysis is done pair-wise. Either of these approaches performs
better (in detecting conflicting information) than the third approach, especially
in a complex setting where a large collection of sources are available and only one
of the sources radically conflicts with the other sources when providing opinions.
In this case, either of the first two approaches shifts half of the uncertainty on
the outlier and others receive only WIL—U of the extra uncertainty. Moreover,
the first two approaches do not suffer from the multiplicative effect alike the
third approach.

Finally, we see that the connection between the DoC and the certainty
(¢3.(Ay, As,....A,)) 18 linear. One can argue that this connection should be han-
dled probabilistically rather than linearly. We choose the linear approach as it is
simple, does not lead to unforeseen effects and allow good integration of weights,
which is important for our cloud marketplace scenario. Moreover, due to linear-
ity, specific Weight-specific properties (i.e., Weight Partitioning, Invariance to
Weight Scaling and Weighted average of expectation value for common weight
and certainty) hold for conflict-aware fusion operator as well. The discussion
of the fusion operators is also supported by numerical and graphical (i.e., HTT)
examples in the next section.

6 Examples of the Fusion Operators

In the following, we present some examples showing the impact of the newly
defined operators on opinions modelled with the representation used in Certain-
Logic and CertainTrust.

In the left part of Table 4, all the examples show the effect of the weighted
fusion (W.FUSION) operator in different cases. The right part of the Table 4
shows the effect of average fusion (example 1) and conflict-aware fusion (example
2 & 3). The goal is to compare the advantages and disadvantages of the operators
with an intuitive graphical representation (HTI) of opinions.

In the graphical representation, the color-gradient indicates the expectation
value of each point in the figure. Therefore, the color of each point in the figure
is calculated as a linear combination of the RGB-vectors of red (E = 0), yellow
(E =0.5), and green (E = 1)3.

Example 1: The first example in Table 4 illustrates a comparison between
the W.FUSION and A.FUSION operators.

While for the A.FUSION operator it holds that both opinions have the
same impact on the results (which is equivalent to wq = wsy in the weighted
fusion), the W.FUSTON operator supports the customization of the weights (in
the example we use, w; = 1 and ws = 2 for the weighted fusion).

In the resulting opinions, one can observe the influence of the weights. In
the AL FUSION (right), the resulting opinion ((0.4,0.75,0.5)) is biased to 04,

8We have developed a Java application for the visualization of opinions (also calcu-
lating the color-gradient of the background) and for demonstrating the fusion operators.
The examples are screen shots from this application.
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because of the high certainty (0.833) associated with the opinion oy4,. However,
using the W.FUSION (left) and giving a higher weight (wy = 2) to 04, the
resulting opinion ((0.4717,0.6996,0.5)) shows a shifted bias towards 04,. This
example shows how the weighted fusion enables the customization.

Example 2: The second example in Table 4 provides an interesting com-
parison between the weighted fusion (on the left) and the conflict-aware fusion
on the right. Both cases we combine two opinions with maximum certainty but
with conflicting average ratings, i.e., 04, = (0,1,0.5) (strong negative opinion)
and 04, = (1,1,0.5) (strong positive opinion). When apply the weighted fusion
the resulting opinion (o, for short) is o, = (0.5,1,0.5). For this opinion we
have to note that the expectation value of the opinion is E(o,) = 0.5, due to
the average rating (¢, = 0.5), as the certainty value of this opinion is ¢,, = 1,
which means that the average rating is representative for future outcomes®. This
in turn means, that in a repeated series of experiments we can expect a simi-
lar number of positive outcomes as negative outcomes (given a sufficiently high
number of runs).

On the other hand, we have the resulting opinion (o. for short) is o. =
(0.5,0,0.5) and the DoC = 1 (maximum) of the conflict-aware fusion. For this
opinion, we have to note that the expectation value of the opinion is E(o.) =
0.5, too. However, this is due to the fact that the initial expectation value is
fe = 0.5. Furthermore, we see that the certainty value of this opinion is ¢, = 0,
which means that the average rating (¢. = 0.5) is not necessarily representative
for future outcomes, i.e., it can easily change when new information becomes
available.

Now, we can ask ourselves which of the resulting opinions reflects the sit-
uation better. The expectation value that the proposition under consideration
is true, e.g., that the cloud provider has a competent customer service is 0.5 in
both cases. In fact, if we think what would be the outcome of first request to the
customer support, the information that we have collected propose that there is a
probability of 0.5 for a positive experience and of 0.5 for a negative experience.

However, if we consider the case that we repeatedly run the experiment,
e.g., repeated and subsequent interaction with the customer support, we should
expect that the result of the second, third, ... request is as satisfying (or unsat-
isfying) as the first one. Therefore, we conclude that this line of argumentation
leads to the statement that the conflict-aware fusion produces a better result
than the weighted fusion.

Finally, we also have to mention that if one only looks at the result of the
weighted fusion, i.e., 0, = (0.5,1,0.5), this result is highly ambiguous and in
fact, this could result from an infinite amount of opinions, e.g., o4, = (0,1,0.5)
and 04, = (1,1,0.5). With the conflict-aware fusion, we address this problem
by additionally providing the DoC'.

Example 3: The third example in Table 4 provides another comparison be-
tween the weighted and the conflict-aware fusion. Here, the conflict between the
input parameters (on the left) is not as extreme as in example 2 which is re-

9Recall, the expectation value is defined as E =t x ¢+ (1 — ¢) * f.
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Table 4. Examples for the Fusion Operators

Input Opinions Resulting Opinions
°Ay T Ay T CA1 DA,
(tag.cay>fag) (tag-cay>fay)
Example 1
W.FUSION A.FUSION
wy = 1wy =2 wy =l wy =1
(0.3,0.833,0.5) (0.9,0.5,0.5) (0.4717, 0.6996, 0.5) (0.4,0.75,0.5)
E(oa,) = 0.333 B(og,) = 0.7 E(OA1é§wA2) =0.48 E(°A1®A2) = 0.425
Y g Y =
A,
A LA
. \ . \
0 1 o T 0 1 0 T
Example 2
W.FUSION C.FUSION
wy =1lwg =1 wy =l wy =1
(0,1,0.5) (1,1,0.5) (0.5,1,0.5) (0.5,0,0.5)
DoC =1
B(op,) =0 B(op,) =1 E(0A1é“ A2):0A5 E(oA1®rA2):o‘5
e s

! ! : ABA |
1 T 1 0 T
Example 3
W.FUSION C.FUSION
wy = lwg =2 wqy = lwg =2
(0.3,0.833,0.05) (0.9,0.5,0.35) (0.4717, 0.6996, 0.25) (0.4717,0.5831, 0.25)
DoC = 0.166
E(oAl) = 0.2582 E(oAz) = 0.625 E(OAléu)A2> = E(OA1®CA2) = 0.3793
0.4051
< <
™ 1 - 1
- OuA, 5. A,
$ o - o J;

flected by the DoC = 0.166 in the conflict-aware fusion (on the right). In this
example, we also see that the reduction of the certainty (i.e., from c¢,, = 0.6996
to ¢, = 0.5831) in the conflict-aware fusion usually leads to a lower expectation
value (0.3793) than the expectation value (0.4051) in the weighted fusion. We
argue that the lower expectation value in the conflict-aware fusion is justified
in this example, as the average ratings of the input parameters are conflicting
and thus maybe not representative. This effect comes from the reduction of the
certainty (in the conflict-aware fusion) which in turn means that the expecta-
tion value is shifting closer to the initial expectation value (leading to a lower
expectation value in this example).

Finally, we like to highlight the example to show how the choice of the initial
expectation value (f) influence the graphical representation of the HTI.



18

Table 5. Opinions on Cloud Providers’ Trustworthiness and User’s Preferences

(a) Opinions on(b) Opinions on(c)  User’s Preferences
Cloud A’s Trust- Cloud B’s Trust- (Weights) in Different Sce-
worthiness worthiness narios
0pR](0.05,0.85,0.1)] [opg] (0.85,0.9,0.1) | [Opinions[Scenario 1 and 3[Scenario 2|
ogal (0.1,0.9,0.1) 0gal(0.81,0.91,0.1) orn wpp = 2 wpp = 2
og | (0.9,0.99,0.1) og | (0.9,0.86,0.1) oma wpa =2 wpa =2
opg|(0.95,0.95,0.1)| [opg|(0.91,0.81,0.1) g wg = 2 wg = 2
opg wpg =1 wpg =2

7 Evaluation of the Use Case

In this section, we show how the fusion operators can be applied to the cloud
marketplace use case presented in Section 3.1 and how our approach supports
users in selecting cloud providers. In the following, we assume that the propo-
sitions (and propositional logic terms) on the trustworthiness of Cloud A have
already been evaluated (using CertainLogic AN D where applicable, see [6]) as
given in Figure 1. Thus, we are now in the situation where we have to com-
bine the resulting four opinions (@, PS, FR, and EA) on the trustworthiness
of Cloud A, i.e., we have to compute GABC(OQ, 0ops,0FR,0pA). For the evaluation,
we assume the following (the parameters are given in Table 5(a)):

1. Questionnaire (Q) and Provider Statements (PS): The resulting opinion
about Cloud A’s trustworthiness are extracted from the questionnaire CAIQ
(Q) published by CSA in STAR and the provider statements (PS) published
by Cloud A. The extracted opinions from both of the sources are supporting
the trustworthiness of the cloud provider.

2. Feedback & Recommendation (F'R): The resulting opinion is extracted from
the users’ feedback and recommendations. Users’ opinion contradicts to the
cloud provider’s opinions (@) and PS).

3. Expert Assessment (EA): The extracted opinion from the experts’ assess-
ment about the trustworthiness of Cloud A also contradicts to that of the
cloud provider A (@ and PS).

In this example, we assume an initial expectation value (f = fo = fps =
frr = fea = 0.1), which reflects a rather pessimistic initial expectation 1°.

To demonstrate the applicability and capability of different fusion operators,
we consider three scenarios regarding the preferences of the users and considering
conflicts when combining opinions. In scenario 1 and 3, we show that a user has
different preferences on the impact of the different opinions, whereas in scenario
2 the user gives the same weight to all sources when combining the opinions.
Furthermore, for scenario 1 and 2, conflicts between opinions are not considered

10Note that the user could either calculate the initial expectation value based on the
provided opinion or replace this value with his own assumption.
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Table 6. Resulting Opinions for the Different Scenarios

l Scenarios [ Cloud At o5 rp ma o ps) [ Cloud B: og pp pa o ps)

Scenario 1 (0.8062, 0.9723,0.1) (0.8511, 0.8866, 0.1)
(not considering conflict) | B( ) = 0.7866 ) = 07659

°8, (FR.EA.Q.PS Blog , (FR.EAQ.PS

Scenario 2 (0.8165,0.9707,0.1) (0.8553,0.8806, 0.1)
(not considering conflict) E(Ué(FR,EA,Q,PS)) = 0.7955 E(oé(FR,EA,Q,PS)) = 0.7651
Scenario 3 (0.8062,0.5726,0.1) (0.8511,0.8534,0.1)
(considering conflict) DoC = 0.4111 DoC = 0.0374
ECg (rr.Epa,qQ.ps) =004 | ECs (rp pag ps) = 07409

whereas for scenario 3 (weighted fusion), conflicts between the opinions are con-
sidered (conflict-aware fusion). The discussion of the scenarios is given as follows
(for brevity, we focus on discussion about Cloud A only):

Scenario 1: Based on the preferences (modelled by weights) given in Ta-
ble 5(c), we use the weighted fusion to address different weights for scenario 1.
The resulting opinion o = (0.8062,0.9723,0.1) for the trustworthiness of Cloud
A is given in Table 6, indicates that Cloud A is trustworthy with a probability
of 0.7866. Though the weighted fusion operator can consider users’ preferences
when fusing dependent opinions, the operator is not able to deal with conflicts
among opinions.

Scenario 2: This scenario demonstrates the application of the average fusion
operator (which is equivalent to the weighted fusion using equal weights). The
resulting opinion ((0.8165,0.9707,0.1)) calculated in scenario 2 is different than
the one in scenario 1 ((0.8062,0.9723,0.1)). This is because of the influence of
the variable weights in scenario 1. Scenario 1 and 2 show the comparison of the
weighted fusion and average fusion operators in terms of their capabilities.

Scenario 3: In the previous scenarios, only the user’s preferences are taken
into account, but not the conflicts among the opinions. From the given opinions
in Table 5(a), a user can be confused about the trustworthiness of Cloud A by
observing the conflicting opinions (opr and oga in comparison to og and opg).
This is reflected in the result of the novel conflict-aware fusion operator. Us-
ing this operator, the opinion for the trustworthiness of Cloud A calculated as
(0.8062,0.5726,0.1) with a DoC' = 0.4111 (cf. Table 6, Scenario 3). The impact
of the conflict-ware fusion is clearly visible in the certainty value (0.5726) of
this opinion compared to the certainty value (0.9723) in scenario 1 (weighted fu-
sion). The expectation value (E) is also affected when conflict between opinions
are taken into account. Considering the conflict, the final expectation value for
Cloud A is (0.5043), which is clearly lower than in Scenario 1. We conclude that
the conflict-aware fusion operator provides the most representative assessment
of Cloud A’s trustworthiness. Thus, this operator is best suited among the three
operators that we have discussed. Note that the fusion operators in subjective
logic do not consider preferential weights and conflicts when aggregating depen-
dent opinions. Therefore, conflict-aware fusion operator is a better choice than
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the fusion operators in subjective logic when one requires the most representative
trust assessment under conflict and personal preferences.

In a real world setting, we would assume that a user can choose between a
couple of cloud providers. In this case, we propose to sort the available cloud
providers based on their expectation value (using the DoC as a second criteria
if necessary). In our example, having cloud A and cloud B (using the conflict-
aware fusion — scenario 3 — see Tables 5(a), 5(b), 6) this means Cloud B is better
ranked than cloud A. This comes from the fact that the proposition on cloud B
is positive and the opinions (associated with the proposition) from the different
sources are less conflicting. We argue that this again shows the strength of our
conflict-aware fusion, as this order is more desirable than the order (Cloud A
better than Cloud B) which we would get under the weighted fusion in scenario 1
and 2. We also have to note that in addition to the expectation value, especially,
the certainty value is a good indicator to see whether the collected information
is supposed to be representative or whether further analysis might be required.

8 Conclusion

In cloud marketplaces, users still require means for assessing the trustworthiness
of the cloud providers up-front before signing any contract with them. Although
we already see first steps in these directions, like the platforms envisioned by
CloudCommons and multi-faceted Trust Management system for cloud market-
places [25], elaborate metrics for aggregating information (in terms of multiple
attributes) from different sources are still missing. We believe that our contri-
bution presented in this paper is a useful tool to overcome this lack in current
platforms and systems, and thus provides means for a more reliable and trans-
parent assessment of the trustworthiness of cloud providers.

The novel fusion operator (i.e., conflict-aware) proposed in this paper is
specifically designed to cope with dependent opinions under uncertainty and
conflict that are associated with propositions. Hereby, the equivalence between
the CertainTrust average fusion operator and the subjective logic averaging fu-
sion operator as well as the consensus operator for dependent opinions provides
the basis and justification for the validity of the CertainTrust average fusion op-
erator. Finally, we provide the conflict-aware fusion operator — and the weighted
fusion as an intermediate step. The conflict-aware fusion operator extends the
state-of-the-art by considering the weights of different opinions and conflicts
among the opinions. Moreover, the degree of conflict (DoC) is presented explic-
itly together with the resulting opinion and its corresponding expectation value
(E) to support reliable and transparent decision-making in cloud marketplaces.
We also argue that the graphical representation (CertainTrust HTI) of opin-
ions can be especially useful when integrating the proposed approach for trust
assessment in web pages and cloud platforms.
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Appendix
A  Proof: Theorem 5.1

Proof. We prove the theorem component-wise for average fusion (A.FUSION)
operator by verifying the following under different cases:

tGAB(AhAh“' A1) T tas; C(A1,A1,,A41) = CAxs fGAB(AhAlr“ A1) T fay- (2)
At first, we prove t3 Ay, Ay, Ay) = tAd under following three cases:

— Case 1: Ifcaq, =ca, =--=ca, =1.
— Case 2: If cq, =ca, =---=cy, =0
— Case 3: if {ca,,ca,} # 1.

Proof for Case 1:

" o ta, +ta, +ootta
B(A1,A1, A1)

[Using Table 1 and replace all A;’s by A;]

n
n x tAl
on
= tAl
(3)
Proof for Case 2:
t3(4,, 41,4, =05 [Using Table 1 and replace A;’s by A1] = tq, (4)

Proof for Case 3:

n _ (cAltA1(1 - CAI)(l - CAI) e (1 - CA1)) + (CAltAl(]‘ - cAl)(l - cAl) e (1 - CA1))
SlArAr-A) (CAI (1 - CAI)(l - CA1) e (1 - CAI)) et (CAl(l - CAl)(l - CAI) e (1 - CAI))
[Using Table 1 and replace A;’s by A4]
_ n * (tAchl(]‘ - cAl)

n* (CA1(1 - CA1))

:tAl

Next, we prove Ca(A1 Ay, Ay) = CAL under following two cases:

— Case 1: If cq, =ca, =---=ca, =1
— Case 2:if {ca,,ca,} # 1.

Proof for Case 1:

CB(AL A, A = 1 [Using Table 1 and replace A;’s by A1) = ca, (6)
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Proof for Case 2:
o (CAl(l_cAl)(l_CAl)"'(l_cAl))+"'+(CA1(1_CA1)(1 _CAl)"'(l_CAl))

C~ =
B A T T (e )T ea) (1 ea) o+ (0 —ea)(1—ea) (1~ ea,))
[Using Table 1 and replace A;’s by A4]

_ n ok (CAI(]' _CAI))
n#* (1 —ca,)

:CAl

(7)

Finally, we prove f@(Al,A1,~ .

)

A)) — fAl

-~ _fay Ffa, e+ fay
f@(A17A1""7A1) - n

_n*fAl B
=14 g,

[Using Table 1 and replace A;’s by Aj]

(8)

The proof for the W.FUSION and C.FUSION operators of Theorem 5.1
can be carried out analogously.

B Sketch of the Proof: Theorem 5.2

Proof. The proof for ®(04,,04,) = ®(04,,04,) can be carried out component-
wise by verifying B(ta,ta,) = B(tay,ta,), ®lca,,ca,) = ®ca,,ca,) , and
&(fa,, fa,) = B(fa,, fa,). Using Table 1, these can easily be verified.

The proof for Gy, (04,,04,) = Buw(04,,04,) and De(0a,,04,) = D04y, 04,)
can be carried out analogously, using Table 2 and Table 3 respectively.

C Sketch of the Proof: Theorem 5.3

Looking at the definitions of the fusion operators (see Table 1, 2, 3), one sees
that the theorem holds due to the commutativity of the summation.

D Proof: Theorem 5.4

Proof. We prove the theorem component-wise by verifying the following under
different cases:

E/éw(tAlvtA27"'7tAn):E’é( tayy o tas s tagy sty 5o oy ta,, o ta, ),
a1-T1;, b; times as-T], ., b; times an-T1, 4, bj times

@w(CANCAW... 7CA"):€B( CAyy " yCAL 5y CAgy " sCAy 1y CALs o " CA, ),
a1-T1,, by times as-T], ., b; times an-T1, 4, bj times

Bu(far, fas, o fa) =B fays o fay s fase o fas ooy fans o fa, )

al‘]_[j#1 b; times a2~1_[j#2 b; times aWHJ.#n b; times
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Wepl"OVe@w(tANtAg,""tAn):@( tAla"'atAl ) tAg)"'atAz s tA,ﬂ"'atAn )
—_———
alll_[j#l b; times a2~1_[j¢2 b; times a,,,-l_[j¢n b; times

under following three cases:

— Case 1: If cy, =ca, =~ =ca, = 1.
— Case 2: IfCAlchzz...:CAn:O'

— Case 3: if {ca,,ca,;} # 1.

Proof for Case 1:

al-ﬁbj

- JFi
n n a; Z n
> wita S U

i=1

————1a4,

éw(tAutAQv e 7tAn) - t@wAl,Ag,m JAn = % [USlng Table ] =

n ;

[
k=1

ZtA ai - Hb Zn:tAimi .

Hﬁz = izln [Replace a; - H b; with m;;product of integers is an integer]
Solln  Yow
i=1 J#i i=1
L my;
2 ta)
i=1 j=1 ~
= % = ®( tAl?"' ?tAl ) tA27"' atAz [ tAn?"' 7tAn ) [Where m; = a; Hb]]
—_— oy
Zmi a1-[l;., b; times az-J]; ., b; times an[1;., bj times el

(9)
Proof for Case 2:

@w(tAlvtA27 e 7tAn) = t@wAl,Ag,'n An = 05 = téAhAQN” 7An (10)

)
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D

Proof for Case 3:

n n
Yoleatawi J[ (1—ea))
=1 =1, j#i .
(tarstass o ta,) =tz a4y A, = : — = i [Using Table 2]
Yo(eaw JT (1=ca))
i=1 i=1, j#i
n
oy
n @ n Z nJ : (cAitAi H (1 - CAJ))
bi(CAltAl IT =ca) =2 I i=1, j#i
i=1 " i=1, j#i k=1
n a n = n
—Z(CAI H (1_CAj)> N a; Hbj .
=1 =1, #
l o Yo —(ea, I (1=ca))
i=1 H bk i=1, j#t
k=1
n n n
S IJbcata, J[ Q—ea,)
=1 i i=1, j#i
n n n
Z(a,— . Hbj - ca, H (1—ca,;))
=1 i i=1, j#i
n n
do(mi-eata, J] (1-ca)) i
— ek
- n . nl 2 I7 [Replace a; - H b; with m;;product of integers is an integer]
Z(mi'CAi H (1—ca,;)) JFi
i=1 i=1, j#i
n m; n
20O eata J] (e
=1 =1 i=1, j#i
n n
(mi-ca, [] (1—ca)))
i=1 i=1, j#i
nomy
> ta)
i=1 j=1 . ) .
- [Expanding the equation and reducing the common terms]
> m
i=1
n
@( Tay, s stay 5 tAg, oy tay, ooy ta,, i ta, ) [Where mi = a;- Hbj]
—_— by
a1-J];, bj times 0,2-1_[].#2 b; times an-[];,, bj times 7

(11)
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The proof for the following two equations can be carried out analogously
using Table 1 and Table 2:

@w(CAl,CA2,~~ 7CA,,,):é\9( CAly " CAy 5 CAgs " CAy »- "y CALy " s CA, )
11, b; times as-T],_,b; times ams
Buw(fays fase o fa,) =B fays o fay s fage o fas ooy fans fa, )
a1-T1;, b times as-T],_,b; times ams

Finally, the component-wise algebraic verifications implies the verification of the
theorem itself.

The proof of the same theorem for C.FUSION operator can be carried out
analogously using Table 1 and Table 3

E Proof: Theorem 5.5

Proof. We prove the theorem component-wise by verifying the following equa-
tions under different cases:

@w((tA17w1 * k')v (tA27w2 * k)7 Tty (tAna Wy, * k) ((tAlawl)a (tA27w2)7 Tty (tAT,,7wn)
@w«CAl?wl *k)’(CAzaCQ*k)V' : (CAnawn*k) ((CAuwl)a(CAwa)v"' 7(CAn7wn)
EBw((pr/li}l*k)a(fA27w2*k)7 (fA uwn*k) ((fA17£U1)7(fA27w2)7"' a(fAn>wn)

We prove @ ((ta,, w1 * k), (tay, wa x k), -+, (ta,, wn * k) = Su((fa,, w1), (Fag, w2), -+, (ta,, wn))
under following three cases:

— Case 1: If ca, =ca, = =ca, =1
— Case 2: If cq, =ca, =---=ca, =0.
— Case 3:if {ca,,ca,} # 1.

Proof for Case 1:

éw((tAlawl * k)v (tAzawZ * k)7 Tty (tAnvwn * k)
Z k*wita,
= Zzlni [Using Table 2 and replace w; with scaling factor k]

E Wi
=1
n
E k- wita,
_ =1
- n
i=1
n
E wita,
=1
- n
> wi
=1

k-wita, + k- -wata, +--+k-wpta
k-w+k-we+---+k- w,

n

[Multiply with a scaling factor k] =

[Reducing common constant k] = @, ((ta,,w1), (ta,, wa), -, (ta,, wn))

(12)
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The proof for Case 2 and 3 can be carried out analogously using Table 2.
Moreover, the proof for the following two equations can be carried out analo-
gously using Table 2:
@w((cAl,wl x k), (cay,cax k), -, (ca,,w,*xk)= @E((cAl,wl), (cay,wa), -, (ca,,wn)
Do ((fay, w1 k), (fag, w2 x k), (fa,, wn x k) = Ouw((fa,, w1), (faz, w2), -+ (fa,, wn)

Finally, the component-wise algebraic verifications implies the verification of
the theorem itself.

The proof of the same theorem for C.FUSION operator can be carried out
analogously using Table 1 and Table 3.

F Proof: Theorem 5.6

Proof. We prove the theorem and omit detail algebraic simplifications for brevity.
First, we prove E(Dy(04,,w), (04, w), -, (04,,w)) = E(B(04,,04,,..,04,))

E(@w(OAUU)), (OAzaw)a Tty (OAn’ w))
= E(@uw(t(a,w),(4nw)s Bu(Car,w), o, (4nw)s B (farw),(An,0)))
=B (Arw) (Anw) * B (A1) (Anaw)) T (17 B (A1 0)(Anw)) * TB((A1,0), (A0 0))
... [Substitution of {5 ((a,.w), - (Anw)) CBo (Ar,w) (Answ))? J B ((Ar ), (Ar ) [1Sing Table 2]]
... [replace w; by w where ¢ = 1---n and algebraic simplifications]
=15 (A1, A0 ¥ B (AL a0 T (L= CBay 0 a0) * Taar, a0
= E(8(04,,04,,,04,)) [Using the Equation 1]
(13)
2ic1 E(oay)

n

Next, we prove E(B(04,,04,,...,04,)) =

E(®(0A17OA27 "'70An)) = t@(Ah... JAR) * C@(Al,... JAR) + (1 - Cé(Ah... 7An)) * f@(Ah‘.. JAR)

... [Substitution of CB Ay AL CB (Ar,e AL)» féw(Al A under different cases [using Table 1]]

s

... [after several steps of algebraic simplifications and using the Equation 1 for each A,]
_ E(OAI) + E(OAZ) + E(OAn) _ Z?:l E(OAi)

n n

(14)

G Proof: Theorem 5.7

Proof. We prove the theorem and omit detail algebraic simplifications for brevity.
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~

(@w(kowl)a (OA27w2)» R (OAna wn))

E@uw(t(ar,w0), (Anwon))s B (AL w1 (Answn))s Do (F(Ar w0 )seee s (An )
t

=

Bu((Arwn) s (Amswa) * B (Arwn) (Anwn)) T (17 €8 (A1 wn) (Anwon)) * FB ((Ar010), 0 (An )
e [Substltutlon Of téw((Algwl);'“ 7(An’wn))7 CGABH,((A1,1U1),~-- ’(An’wn))7 fé\aw((Alywl)u“' ’(An’wn))[using Table 2]]
...[replace ¢; by ¢ where i = 1---n and algebraic simplifications]

Cwpk (ta, ke (T—c)* fa) +--Fwix(ta, xc+(1—c)* fa,)

Wi + w2 + -+ w;

— Z?:l w7E(0Az) [
D it Wi

Using Equation 1 for each A; and c =cy4, =ca, =+ =ca,]

(15)

H Proof: Theorem 5.8

Proof. We prove the theorem and omit detail algebraic simplifications for brevity.

Z?:l E(OAi) — E(tA17C7fA1) +E(tA27cafA2)+"'+E(tAn7cafAn)
n n
[fe=ca, =ca,=--=ca,]
(ta, xc+ (A —c)xfa,) + (a,xc+ (1 —c)x fa,) + -+ (ta, xc+ (1 — o) * fa,)
n

[Using Equation 1]
(tAl +1a, +"'7Ltz4n)*C‘i»(fz‘h +fAz +~'~+fAn’)>f<(1*C)
n
=13, (A1, A0, A,) ¥ CT feay Az, 4, * (1 =)

[Substitute c4, by ¢ and w; by w where ¢ = 1---n in Table 2]

= E(éw((oz‘hvw)’ (Oszw)v R (OAn7w)))

[Using Equation 1 and Definition 4.2]
(16)

The proof of the same theorem for C.FUSION operator can be carried out
analogously using Table 3.

I Sketch of the Proof: Equivalence with Averaging Fusion
in Subjective Logic

For brevity we just provide a sketch of the proof.

A bijective mapping between an opinion in CertainLogic/CertainTrust given
by its parameters, o = (t, ¢, f) and subjective logic, where the opinion is given as
0 = (b,d, u, a) has been provided in [14]. To prove the equivalence between the
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average fusion proposed in this paper and the averaging fusion and consensus
operator for dependent opinions proposed for subjective logic in [18,19] one can
start with the definition of the average fusion/consensus operator for dependent
opinions in subjective logic and replace the parameters b, d, u, and a by the cor-
responding parameters of CertainLogic following the bijective mapping. Finally,
one applies the bijective mapping another time to convert the resulting equations
which are still calculating the parameters b, d, u and a (a is assumed to be static
for average fusion in [18]) to calculate the parameters of CertainLogic ¢, ¢, and
f. The result will be equivalent to the average fusion defined in this paper.
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