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Abstract. Sensor networks are a prominent representative of ubiqui-
tous computing technologies. The limited resources of sensor nodes and
the low reliability of wireless communication pose special challenges for
message routing in sensor networks. This paper discusses how context
awareness can enhance routing in sensor networks. Further, we analyze
the network properties which influence the benefit of context awareness
in the routing process. The presented simulation results allow assessing
which networks are best suited for such an approach.

1 Introduction

Over the past few years, a range of routing protocols tailored to sensor networks
have been proposed [2]. In a number of protocols, routing paths are chosen
dependent on the importance of a message [6,7,3]. Yet, little work has been done
on the issue of how to determine the importance of a given message.

In this paper, we investigate the utilization of context information for assess-
ing message importance. In section 2 of this paper, we review existing routing
schemes for sensor networks and discuss how message importance can influ-
ence routing decisions. In section 3, we present our approach for using context
awareness to assess message importance in the routing process. In section 4, we
describe experiments that investigate the influence of network parameters on the
benefit that can be achieved by using context aware routing and outline future
work in section 5.

2 Importance Based Routing in Sensor Networks

In many applications, the spatial network size exceeds the communication range
of a sensor node. Thus, messages need to be forwarded in multiple hops from node
to node through the network. Numerous strategies for multi-hop message routing
in sensor networks have been suggested in the last few years. Akkaya and Younis
[1] categorize prominent approaches in data-centric, hierarchical, location-based
as well as network flow and QoS-aware protocols. Several protocols that consider



the network flow and some kind of QoS-parameters have been proposed. These
approaches aim at finding routing graphs to optimize parameters such as overall
network lifetime, message delay, or communication reliability while balancing
those parameters against network resources.

The context aware approach that we present in this paper exploits that re-
source usage can be reduced by sending less important messages along paths
with low communication costs, but probably also low reliability, or by even drop-
ping them. We formalize the decision which path to choose by a payoff function
pA(i) = rA · i − cA with i being the importance of the message, rA being the
reliability of path A and cA the cost of sending a message via A. With this for-
malization we lean on routing metrics as presented in [6]. The communication
costs c are directly proportional to the path length counted in hops from sensor
node to sensor node. The reliability r depends on the spatial distance between
nodes on the path. At each hop, the link reliability is dependent on the distance
between the communicating nodes [8]. As r depends on the spatial distances and
c on the number of hops along a path, the payoff is determined by the geometric
structure of the network. If pA and pB intersect at values for i with i ∈ [0, imax]
(imax being the maximal importance value), a choice between paths A and B is
made, since either A or B is favourable depending on the message importance.
However, if pA and pB intersect outside the interval [0, imax], one path domi-
nates the other for all importance values. This raises the question in which kind
of networks, messages would actually be routed along different paths if message
importance is considered. Another question is which network properties influ-
ence the average cost between the considered paths. We address these questions
in experiments presented in section 4.

3 Using Context to determine Message Importance

To determine the importance of a message to be routed, the sensor network needs
knowledge about the usage of the data and about its semantics. The importance
of a message can depend on a variety of different factors like the priority of
the query, the current context or the importance of the cluster that reported
the message. In this paper we focus only on context-dependent importance. In
this section, we describe how a knowledge base needed for that purpose can be
structured and how the message importance can be determined using context. A
knowledge base is stored on every sensor node, so that the importance computa-
tion can be performed locally. Each node determines the route for the message
or even drops it dependent on the estimated importance of the message.

3.1 Knowledge Base

The structure of the knowledge base leans on the theory of conceptual spaces
coming from cognitive science [5]. Conceptual spaces deal with the problem of
modeling representations and present an alternative to the two approaches cur-
rently dominating this domain: symbolic representations (e.g., used in the Se-



mantic Web) and associationism (basing on artificial neuronal networks). Con-
ceptual spaces are spanned by a number of quality dimensions, so that every
entity belonging to the modeled concept is represented by a point in this space.
For example, colors are represented by their hue, saturation and brightness.

In sensor networks, we most likely deal with linear quality dimensions like
temperature or humidity. Deshpande et al. use correlations between attributes
(which map to quality dimensions in our model) for estimating the selectivity
of predicates in queries [4]. Our approach enables to use such correlations for
estimating message importance. The sensor nodes store refinements of quality
dimensions for the general scale depending on context data. For example, the
global quality region for temperature comprises all possible temperature val-
ues and can contain subspaces depending on further context values like time.
The available refinements depend on the accuracy needed and on the available
memory of a sensor node. We assume, that context characteristics Ci for each
subregion can be sufficiently characterized by stating its maximum and minimum
value and by approximating its density distribution with the normal distribution
specified by its mean and its standard deviation.

3.2 Determining Message Importance

For estimating the importance of a message we need a formalization for the
context values and the message to be routed. We define the current context C
as a set of context-types ci that are associated with a domain Di and a value
xi (C = {(ci, xi)|xi ∈ Di}, e.g., C = {(ctemp, 20◦C)}). A message m consists of
a context-type and the corresponding value (m = (cm, xm) with xm ∈ Dm). We
illustrate the computation of the message importance in the following with an
example: Given a sensor network that can measure temperature and time data.
We want to determine the coldest temperature within the next 10 hours (12:00
to 22:00) using a global median to reduce the influence of outliers.

To specify a query, we have to state

– Result Type cr: specifies the context-type of the query’s result.
– Selection criteria S: Specifies when a sensor value is of interest and refers

to selection predicates in query languages. The selection criteria S are defined
as a set of restrictions on different context-types: S = {(ci, a, b)|a, b ∈ Di ∪
{±∞}} with a, b being the upper and lower bound.

– Importance function imp: maps the content of the message m = (cm, xm)
and the current context C to the importance of m: imp : xm, C 7→ [0, imax].
The user can define a function himself or use a predefined function, e.g.,
MIN, MAX,AV G, RAD CHG (monitoring of radical changes) or DEV AV G
(monitoring of deviation from average).

In our example cr = ctemp, S = {(ctime, 12:00, 22:00)} and imp = impMIN .
The knowledge base KB is defined as a set of functions si. Each si maps a set

of tuples (cj , x, y) to context characteristics Ck (with j 6= k). Tuples passed as
parameters to a function si define a subspace in the conceptual space. Each tuple



(cj , x, y) denotes the interval between x and y along the quality dimension cj . The
corresponding return value Ck is the context characteristics for this subspace. As
stated before, we describe the characteristics of a context ci with its mean, its
standard deviation, its minimum and maximum value: Ck = (aµ, aσ, amin, amax).
However, also any other context description could be used.

Having specified the query and the knowledge base, we have to determine
how to compute the importance of a message m with respect to the current
context. The current context is either sensed by the node itself or it is acquired by
sniffing on forwarded data. If the message or the current context does not match
the selection criteria S or is not of type cr of any query currently processed in
the network, the message is dropped. Otherwise, the importance of the message
is determined by the importance function imp. If the importance is under a
specified threshold, the message is also discarded. We can distinguish three ways
to calculate the message importance:

– Blind: does not consider the content of the message, every message is as-
signed to the same importance (e.g., AV G)

– Global view: considers the expected overall run of the results for the query
(including past and future values) (e.g., MIN , MAX). For that purpose,
the characteristics of the expected result only have to be computed once for
every query. Thus, the overall context defined by the selection criteria S is
considered, but not the current context C of each particular value.

– Local view: rates the importance of the message only depending on the
current values (e.g., DEV AV G, RAD CHG). The expected results have
to be calculated for every rating, considering the current context C.

Within the function imp, the expected characteristics Cr are determined using
the functions stored in the knowledge base KB considering S and C. This may
require to use several characteristic measures because there is no single si that
describes the expected values best. The (simplified) importance function for
impMIN is defined as follows: impMIN (xm, C) = imax − xm−Cr(amin)

Cr(amax)−Cr(amin) for
Cr(amin) ≤ xm ≤ Cr(amax). The importance values calculated with respect to
every considered function si have to be combined using a weighting function.

In our example, we need a global view for calculating the overall minimum.
The selection criterion is limited to the context-type time, so we just consider
s1. The result for s1({(ctime,12:00,22:00)}) is (16◦C, 3, 12◦C, 20◦C). Hence,
if imax = 1, the message m = (ctemp, 18◦C) would be assigned the importance
0.25.

4 Experiments

In this section we describe experiments to investigate the influence of network
characteristics on the utility of context awareness in routing. In particular, we
analyse the relation between the spatial network size, node density and the
potential benefits of evaluating the message importance. This should help to
decide for which networks the context aware routing approach is beneficial. We



measure the benefit as the average cost difference between reasonable routing
paths. That is, each particular node may choose different paths with different
communication costs for communicating messages of different importance to the
sink. As indicator for potential benefits we take the maximal cost difference
between paths from each node to the sink and calculate the average value for
the whole network. Formally that is

P
n∈N C(n,imax)−C(n,0)

|N | where N is the set of
nodes in the sensor network and C(n, i) is the communication cost from node
n to the sink along the path with the best payoff for messages of importance
i. We use this measure because the benefit of respecting message importance is
limited to the maximal cost difference between considerable paths.

For the experiments, we created random networks in a simulation environ-
ment. Nodes of these networks were randomly spread across square virtual
spaces. Connections and link reliabilities between the nodes were established
based on their spatial distance. Therefore, we used a rough approximation of
the measurements presented in [8].

We tested networks with 5 to 200 nodes created on virtual planes with edge
sizes from 75 to 400 units of length. Overall 26000 randomly created networks
were evaluated in the experiments. Figure 1 shows the benefit measures depend-
ing on the number of sensor nodes and the spatial size of the network. The tests
show the average benefit changes dramatically within the analyzed scope. In
general, the benefit increases with the node number and the spatial size of the
network. Yet, it is crucial to consider both parameters in combination.

The right side of figure 1 shows cuts through the parameters space with
a fixed node number (bottom) and fixed spatial size (top). Cuts at different

Fig. 1. Benefit measure depending on network parameters



positions in the parameters space result in curves of similar shapes. Given a
fixed node number the benefit curve ascends rapidly with the spatial size of the
network until a maximum is reached and descends less intense afterwards. For
planning applications this means: the benefit of applications where sensors are
distributed over large areas is easier to estimate. This is due to the fact that
parameter changes have less effect for these networks than for dense networks.
Changing the node number at a fixed network size results in a convex curve
for the benefit measure as well. However, the curve does not show any crucial
parts with dramatic changes in the benefit measure. Thus, confidence in benefit
estimations is mainly dependent on the spatial network size and is generally
higher for large scale networks.

5 Future Work

In our tests we reveal the dependencies of the spatial network size and the number
of sensor nodes on the benefit that can potentially be obtained by context aware
routing strategies. This enables us to identify networks which are suitable for the
context aware routing model we propose. In future tests, we plan to apply our
approach on sample applications with real world data. The tests will target the
difference between the actually gained benefit and the predicted maximal benefit
and will allow benchmarking our context aware routing approach against existing
routing strategies.
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