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Abstract. The Internet of Things (IoT) is an increasingly important
topic, bringing together many different fields of computer science. Nev-
ertheless, beside the advantages IoT has to offer, many challenges exist,
not at least in terms of security and privacy. In addition, the large num-
ber of heterogeneous devices in IoT produces a vast amount of data, and
therefore efficient mechanisms are required that are capable of handling
the data, analyze them and produce meaningful results. In this paper,
we discuss the challenges that have to be addressed, when data analytics
are applied in the context of the IoT. For this, we propose a data ac-
quisition architecture, named CoDA, that focuses on bringing together
heterogeneous things to create distributed global data models. For each
layer of the proposed architecture we discuss the upcoming challenges
from the security perspective.
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1 Introduction

Over the last decade, the Internet of Things (IoT) has emerged as an umbrella
concept for the disruptive application of advances in embedded sensors, low
power wireless networking and distributed computing [26]. Its original defini-
tion envisioned a world where computers would relieve humans of the Sisyphean
burden of data entry by automatically recording, storing and processing, in a
proper manner, all information relevant to human activities [18]. With human
involvement being the exception, Machine-to-Machine (M2M) communication is
understood as a major component of the IoT portfolio of technologies. IoT repre-
sents the prime embodiment of the ongoing convergence between device-oriented
sensor networks and data-oriented applications. Facilitated by the Internet port-
folio of technologies, the latter utilizes data from the physical world captured by
sensors to improve processes of modern life (e.g., in industrial manufacturing,
health care, energy production, etc.). Not surprisingly, key industry players, as
well as prominent market analysts, have repeatedly acknowledged the impor-
tance of IoT and its economic impact [10, 11, 24, 17].
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Recently, multiple interpretations of what the IoT is about have been pro-
posed [8, 19, 25]. The European Commission (EC) defines IoT as “things hav-
ing identities and virtual personalities operating in smart spaces using intelli-
gent interfaces to connect and communicate within social, environmental, and
user contexts” [22]. The use of Web technologies in the IoT to support peer-to-
peer interactions between things is referred to as the Web of Things [20]. The
Telecommunication Standardization Sector of the International Telecommunica-
tion Union (i.e., ITU-T) defines IoT as a global (i.e., distributed) infrastructure
for the information society, enabling advanced services by interconnecting a dis-
parate gamut of (physical and virtual) things based on, existing and evolving,
interoperable information and communication technologies [23]. Not surprisingly,
security and privacy concerns are paramount in this emerging world where things
may autonomously communicate and exchange information with each other in
a way that is transparent to human beings.

Transparent M2M communication is the key aspect of the IoT, enabling
collaboration between devices and, as a result of this collaboration, the creation
of new data. Analyzing this new data becomes of crucial importance as many
hidden variables can be data-mined. The endless possibilities of collaboration
and the communication ubiquity between devices requires a new architectural
model that would enable the processing of large amounts of data in the context
of IoT. Data analytics has to be built, therefore, on top of a new architecture for
accessing and gathering data, which we denominate herein as the Collaborative
Data Acquisition (CoDA) architecture.

In the usual context of data-mining and analytics, CoDA becomes the bottom
layers that represent the storage locations where data is gathered. In the IoT,
centralized locations where all generated data is stored cannot be expected.
With CoDA, it is possible to build typical data analytics tools that acquire all
information through a common layer that encompasses all device communication
capabilities in the IoT.

Herein, we highlight and elaborate upon the challenges associated to the ap-
plication of data analytics (e.g., model learning, data fusion, etc.) in the IoT.
We propose a data acquisition architecture, named CoDA, that enables hetero-
geneous things to be brought together and support the creation of distributed
global data models useful for data-mining. Furthermore, for each layer of the
proposed architecture we discuss major challenges from a security perspective.

The remainder of this paper is organized as follows. In Section 2 we discuss
how a data analytics architecture has to be adapted for the IoT. Subsequently, in
Section 3, we propose a sub-architecture, named CoDA, that addresses specific
IoT challenges in the data acquisition layer, and discuss the respective security
challenges. Finally, Section 5 concludes this paper and discusses future directions.

1.1 Related work

Established in 2012, oneM2M is a partnership among major ICT standards de-
velopment organizations around the world [28, 29]. The founding SDOs include
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the Association of Radio Industries and Businesses (ARIB), the Telecommuni-
cation Technology Committee (TTC) of Japan, the Alliance for Telecommunica-
tions Industry Solutions (ATIS), the Telecommunications Industry Association
(TIA), the China Communications Standards Association (CCSA), the Euro-
pean Telecommunications Standards Institute (ETSI) and the Telecommunica-
tions Technology Association (TTA) of Korea. Currently numbering approxi-
mately 200 members, oneM2M is developing joint specifications and technical
reports for the M2M service layer. oneM2M is also liaised with major industry
alliances (e.g., Open Mobile Alliance, BroadBand Forum) and Internet stan-
dardization bodies (e.g., IETF, IEEE). Candidate Release 1 of the oneM2M
specifications was recently published. These specifications define the functional
architecture in terms of logical elements, their functional capacities and their in-
terfaces. They also define the oneM2M core protocol and its technology bindings
to the HTTP and CoAP protocols, as well as device management enablers that
incorporate the respective standards from the BroadBand Forum (BBF) [16]
and the Open Mobile Alliance (OMA) [27]. Collectively, these form a common
services layer for a wide range IoT applications.

The Routing Over Low power and Lossy networks (ROLL) working group of
IETF is developing a routing architectural framework for the IPv6 protocol tai-
lored to resource-constrained devices (e.g., embedded devices). The IETF Con-
strained RESTful Environments (CORE) working group is developing a frame-
work for resource-oriented applications intended to run over the IP protocol on
resource-constrained networks (e.g., M2M networks based on the IEEE 802.15.4
standard [21]).

Regional standards The European Telecommunication Standards Institute
(ETSI) published Release 1 of its M2M standard on November 2011. These
introduce an M2M platform for M2M service providers where IoT applications
are supported through platform agnostic interfaces [12, 13, 14]. They thus define
a system architecture that enables integration of a diverse range of M2M devices
(e.g., sensors, actuators, gateways, etc.) into an end-to-end platform. The latter
offers to applications a standard interface for accessing data and services made
available over these (typically last mile) devices.

Starting with Release 10, 3GPP has included support for (device terminated
and device originated) Machine Type Communications (MTC). The objective
is to ensure that 3GPP network installations will support M2M applications
deployed on a very large scale [1]. 3GPP2 has assessed the traffic impact of M2M
applications on the cdma2000 network infrastructure (e.g., huge population of
communicating devices, low traffic volume per device, etc.) [2] and amended
its specifications accordingly. M2M work in 3GPP2 is now aligned to the M2M
work in 3GPP and the M2M architecture work done in ETSI as part of an
access-agnostic architecture [2, 3, 4].

In the Telecommunications Industry Association (TIA), Engineering Com-
mittee TR-50 M2M on Smart Device Communications (SDC) has developed an
M2M framework. The latter abstracts the technological details of underlying
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transport networks (wireless, wireline, etc.) and provides a convergence layer for
M2M applications [31].

The ATIS M2M Focus Group (FG) has addressed the M2M, Smart Grid and
Connected Vehicle markets, with M2M understood as an horizontal layer span-
ning across multiple vertical domains (e.g., Smart Grid, Connected Vehicle). The
ATIS M2M work is currently integrated to the 3GPP MTC work program [7]
and further advanced there. ATIS has addressed carrier portability issues (e.g.,
waiving the need for SIM card swapping, remote reconfiguration, etc.), manage-
ment procedures (e.g., provisioning, billing, etc.), transport (e.g., peering) and
security issues of IoT applications.

2 Data Analytics Architecture for the IoT

Fig. 1. High level view of a generic data analytics architecture for the IoT

A generic framework of an IoT data analytics framework needs to deal with a
high degree of heterogeneity, e.g., in terms of storage facilities of the underlying
infrastructure, data types and representation formats, processing modes, and,
analytic algorithms. These concerns are reflected in its stratification which in-
cludes four layers, i.e., Scalable Analytics, Analytics Enabler, Scalable Processing
and Data Acquisition. Figure 1 shows an overview of a generic IoT data analytics
architecture.

2.1 Scalable Analytics

The Scalable Analytics layer encompasses the range of use cases that employ data
analytics in the context of IoT (i.e., the vertical domains of IoT data analytics).
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As seen in Figure 1 these include (but are not limited to) critical infrastruc-
ture monitoring (e.g., dike anomaly detection), industrial IoT (e.g., predictive
equipment maintenance, ICS process compliance monitoring) and Smart City
(e.g., traffic anomaly detection). However, in the rest of this paper we focus on
the subsequent layers, i.e., the specific mechanisms that are required in order to
provide the Scalable Analytics with the necessary capabilities and relevant data.

2.2 Analytics Enabler

The Analytics Enabler layer provides the hosting environment for the deploy-
ment and execution of analytic algorithms, along with their associated model
data. It provides mechanisms to deploy/undeploy a packaged analytic algorithm
in a particular hosting environment, e.g., an Amazon Machine Image, an OSGi
container. To this end, it realizes capability negotiation mechanisms to match
the requirements and constraints of a particular analytic algorithm to those of
the available hosting environments. Provisioning a deployed analytic algorithm
with the necessary model data is also supported by the capability negotiation
mechanism as part of the post-deployment and pre-execution phases. Finally,
it includes a workflow engine for scheduling the execution of compositions of
analytic algorithms and the coordination of their input/output dependencies.

From the perspective of analytics function, the majority of IoT applications,
including security and privacy ones, are based on a combination of the following
capacities:

1. Model Learning, where a formal representation of (some aspects of) the real
world is built from recorded measurements of relevant phenomena in the real
world. For instance, IoT traffic management applications typically feature
the building of a model of observed traffic patterns.

2. Data Fusion, where multiple pieces of data (which may be of different types
and modalities) are combined to render data of better quality, e.g., in terms
of accuracy in data values. For instance, observations from different sensors
that are proximal to each other can be combined to provide a more accurate
observation about a phenomenon in their particular location.

3. Real-Time Anomaly Detection, where (real-time or near real-time) measure-
ments of particular phenomena in the real world are contrasted to values
estimated from a model (e..g, one that has been developed through a model
learning process for those particular phenomena, formulated analytically,
or, a combination of both approaches) and any observed deviations are re-
ported. This is particularly relevant and frequent for administrative levels
tasked with real-time control of critical assets, e.g., Demand/Response con-
trol processes in a Smart Grid environment or traffic management processes
in the context of Smart City.

4. Prediction, where (possibly real-time) measurements of particular phenom-
ena in the real world are applied to a model (that has been developed through
a model learning process for those particular phenomena) to generate a fore-
cast (e.g., forecasted demand for electricity in a particular urban area).
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There are additional analytics capacities involved in other IoT applications,
however, these are either more of an elementary nature (e.g., data clustering),
or, feature in a small niche of IoT applications (e.g., simulation) [6, 15].

2.3 Scalable Processing

The Scalable Processing layer realizes the computational capabilities required
by the Analytics Enabler layer. It provides computational resources, e.g., CPU
cycles, thread pools, to support the execution of each particular analytic algo-
rithm. Different computing modalities are supported, depending on the real-time
profile of the data fed to the analytic algorithm.

– Batch Processing where input data is not subject to a real-time require-
ment, e.g., historical data at rest. Typically this is achieved through the
Map/Reduce paradigm of computing supported by the popular Hadoop
framework that achieves scalability under a bulk mode of computation.

– Stream Processing where input data is subject to a real-time requirement,
e.g., streaming real-time data. Commonly, this regards the treatment of
events (where an event describes the occurrence of a significant situation
in terms of attribute-value pairs) in a so-called Complex Event Processing
(CEP) framework founded on the Event-Condition-Action (ECA) paradigm.
With different levels of significance attached to each event and with unpre-
dictable times of occurrence for each event, this mode of processing fits the
requirements of a process in control of assets of importance, e.g., operational
procedures occurring within a Smart Grid context.

2.4 Data Acquisition

The Data Acquisition layer describes all the processes that are required to pro-
duce meaningful data starting from the heterogeneous layer of things to the
global data models. We argue that, in the context of IoT, this layer is of partic-
ular importance as it has to deal with the shortcomings of generating data from
a large number of diverse and low-resourced devices. Therefore, we extensively
discuss this layer and propose a distinction of four additional sub-layers in the
upcoming Section 3.

3 CoDA: Collaborative Data Acquisition Architecture

In this section we describe our vision of a collaborative data acquisition architec-
ture for the IoT, as well as the respective security challenges. Figure 2 provides
an overview of the so-called CoDA architecture.
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Fig. 2. Different layers of the envisioned Collaborative Data Acquisition architecture

3.1 Data Acquisition Architecture

The IoT is composed of multiple objects, or things, that are capable of generating
data constantly. Each such object analyzes and creates data according to its
particular capabilities. That is to say, each different thing generates data that
concerns only the phenomena it is capable of sensing, i.e., it is equipped with
sensory instruments for. The result heterogeneity of the data complicates matters
when different processes need to access a collection of all the data generated
by things. To enable processes to access heterogeneous data, it is important
to develop an architecture capable of conveying each thing with the ability of
communicating data among itself and requesting processes in a common format.

Once mechanisms for acquiring and collecting data are in place, more ad-
vanced computations (by things) can be performed on top of the data easily.
The IoT promises the availability and generation of vast amounts of data. If this
data is easily accessible following security and user guidelines, services will be
able to leverage things efficiently and produce valuable information. However,
data acquisition is the fundamental and core aspect of any service that could be
conceived and provided in the IoT.

Simple data collection services would already benefit from such a data acqui-
sition architecture; however, services that embody an advanced analytic function,
e.g., machine learning, would benefit the most. The standard flow of operations
of such services (and machine learning algorithms in particular) requires, first
and foremost, access to data.

This architecture proposes a four layer approach at making data available
without requiring a central location to collect all data. The four layers are things;
local data models; model management and distribution; and finally the global data
models. The layer of things is concerned with the actual data generated by each
individual set of things. The second layer of local data models is responsible for
representing data from the lower layer (the things layer) so that it can be easily
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managed (i.e., it provides a convergence layer to enable management procedures).
The third layer is a composition of two components, a component for managing
the generated local data models and another component for distributing the
models. The last layer, the global data layer, encompasses a collection of all
data models that is easily accessible by users or service providers.

As previously stated, this architecture does not require a centralized unit to
collect all data in one single location. Each thing is responsible for generating
local data models that are shared among other things in their vicinity. Neigh-
borhoods of things are created, e.g., by leveraging standard neighbour discovery
protocols such as IPv6, where the same type of information is shared among
themselves. An additional benefit of the local sharing of data is the facilitation
of increased data availability and improved performance in accessing the data
(i.e., as a distributed cache).

When a user queries, for instance, one particular data type, the user is able
to issue such queries to any thing and this thing will be able to redirect the
query to the right owner of the data.

In what follows we describe the components of the CoDA architecture as
well as the security concerns that are entailed in the implementation of this
architecture.

3.2 Introduction to the CoDA Architecture

We present an architecture that enables things to provide platform independent
access to their data while also following security and user requirements. Figure
2 shows the different layers of CoDA.

Things Each component in the IoT is essentially a thing. The bottom most
layer of the architecture encompasses groups of things. Regardless of the things
being exactly the same, this layer groups them by the data they produce. A
group of things is a collection of things that produce the same data types.

Each group of thing is able to generate the same data conforming to spec-
ifications and the specific characteristics of the incorporated sensors. However,
for the resulting communication to be effective, a common ground for the data
generation process is required. This also requires standardized protocols for com-
munication so that convenient data access is possible. These result in a multitude
of things producing different data represented by the same common output for-
mat. In addition, each device in this layer requires a secure and unique identifier,
e.g., a common secret, that enables interactions between owners and other things
to be structured with the appropriate level of security [9, 30]. Simultaneously,
every sensor needs to be able to support more than one consumer for the data
it generates. Lastly, things are able to determine their owner, e.g., through a
common secret. Determining ownership relationships allows things to choose the
data to share.

Local Data Models The second layer of the CoDA architecture is a data
normalization component . The layer consists of models, standards and formats
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which specify the way and form of communication for all things. This is necessary
due to the fact that by default the data produced by things would not necessarily
conform to any particular standard. The normalization component effectively
provides the required data convergence.

Data Management and Model Distribution When each thing is able to
produce meaningful output, the question that arises is how to distribute data
efficiently. Due to the fact that in the IoT a vast amount of devices and sensors
are interconnected, we envision distributed and P2P techniques being utilized
in this level (in contrast to centralized approaches that would not scale). This
can be realized by adopting mechanisms from the P2P and the wireless mesh
networks areas [5], which allows things to create arbitrary communication links
among each other.

Furthermore, in the basis of the existence of a basic communication overlay,
a distribution layer in parallel is of high importance. At this point, the main
challenge that needs to be addressed is determining which things should com-
municate with each other. A combination of the type of things as well as the
knowledge of a common secret can provide an initial way to deal with this.

Global Data Models The global data model layer is based on the fact that
local models can be aggregated via the utilization of the aforementioned layers
to form a mixed model. This has a twofold objective. First, it enables things
to expand their capabilities through collaboration. For instance, a sensor can
make use of data gathered from other sensors to perform complex tasks. Sec-
ond, various services can query this layer to receive mixed information from the
interaction of multiple things.

4 Security Challenges

Due to the unattended environment in which the things operate and the resource
constrained nature of these devices in terms of computational capabilities, mem-
ory size, and available energy, it is not possible to just employ security schemes
coming from regular computers or ad hoc wireless networks domain. Challenges
in securing the IoT go beyond the standard C-I-A model. IoT security must and
be lightweight to run in constrained devices, scalable to billions of devices, sup-
porting heterogeneous devices, work in an unattended manner, and supporting
decentralized solutions.

4.1 Data Acquisition

In order to implement the CoDA architecture in a secure way, many challenges
need to be addressed [30]. The two main problems in the IoT is the absence
of centralized points of service and the existence of numerous low-resource de-
vices with power limitations. As a result, resource intensive mechanisms such as
asymmetric cryptography or centralized architectures, like PKI infrastructures,
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are limited. Nevertheless, as not all things require strong security properties,
more lightweight symmetric cryptographic techniques can be utilized. Moreover,
sophisticated trust models need to be built to enable the deployment of access
control limitations between owners and things.

It is necessary to distinguish in the layer of things who are the owners of a
thing and manage the respective access control list of each. A common shared
secret between the owners and a thing can be utilized along with unique iden-
tifiers. Moreover, the first two layers provide the necessary encryption services
for guarantying the confidentiality and integrity of the generated data.

The model management and distribution layer need to be scalable, and re-
silient against attacks and failures. This means that the overlay has to function
even when a number of sensors might not be working. Regardless of the uti-
lized overlay, the architecture must provide sufficient capabilities to distinguish
trusted things and foreign things. Finally, the global data models must ensure
proper access control enforcement, and authentication for the things and owners.

A high level realization of the security challenges in our proposal can be en-
visioned by the utilization of a complex multi-layer symmetric-based encryption
scheme. Multi-layer in this context refers to the various levels of trust that things
must accommodate for a flexible and secure interaction among themselves and
the owners. For instance, devices can have more than one owner, spanning up
to an entire organization, and also different protocols might be used for their
interaction.

4.2 Privacy and Trust

In general and especially in the IoT, privacy is more than just keeping personal
information confidential. Examples for other privacy aspects that have to be
considered are given in the following. Identity privacy refers to disclosing a user’s
identity if and only if needed and keep it secret otherwise. Query privacy refers
to data retrieval without revealing to the sender (or any other party) which data
was received. Location privacy means hiding a user’s location to the reasonable
extent whenever possible. Footprint privacy aims at minimizing a user’s linkable
(meta) data volume.

Similar to privacy, trust is in general, especially in the context of IoT, more
than just relying on third parties. Four different areas of trust can be distin-
guished. Device trust refers to the user’s confidence to interact with reliable
sensors, as well as assessing the accuracy of the produced data. Sensors that are
not handled according to specifications have the risk of producing inconsistent
or wrong data. Processing trust reflects the need to deal with correct and mean-
ingful data. Connection trust embodies the desire to exchange data only with
the intended partners. System trust refers to the ability of using the interaction
between things to confidently accomplish complex tasks.
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4.3 Attacks

Just as any other network, an IoT network is subject to different types of at-
tacks. Examples for attack categories that have to be considered are given in the
following. Physical attacks on devices, e.g., destroying, analyzing, and/or repro-
gramming them. Service disruption attacks on routing, localization, etc. Data
attacks such as traffic capture, spoofing, and similar. Resource-consumption and
denial-of-service (DoS) attacks on (remote) resources and/or services.

5 Conclusion

The Internet of Things (IoT) is a prevalent concept that aims to permeate com-
mon things with the possibility of offering and consuming services. Each thing
is capable of generating data through its sensors or by consuming services of
other things. To handle the large amount of data that will be generated, a com-
mon architecture needs to be designed that will enable efficient and simplified
communication between things.

We highlighted the challenges brought by the adoption of data analytic appli-
cations in the IoT and proposed the CoDA data acquisition architecture. CoDA
enables heterogeneous things to be brought together efficiently in support of
distributed global data models for data analytic applications. Our presentation
of CoDA focused on security concerns, as these are paramount under a global
data model. We foresee extensions of our work in the refinement of CoDA in
the direction of privacy preserving approaches that are generically applicable to
data analytics applications.
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