
Addressing Pedagogical Requirements in Algorithm
Visualizations

Guido R ößling
Dept. Electr. Eng. & Computer Science

University of Siegen
Hölderlinstr. 3, D-57068 Siegen, Germany

roessling@acm.org

Thomas L. Naps
Department of Computer Science
University of Wisconsin Oshkosh

Oshkosh, WI 54901
naps@uwosh.edu

Abstract

Although algorithm visualizations have become numerous,
they still have not been successfully adapted into mainstream
computer science education. Algorithm visualization sys-
tems need to better address pedagogical requirements for ef-
fective educational use. We discuss the relevance of several
such requirements that are not supported in most systems.
The combination of two existing algorithm visualization sys-
tems implements these requirements and thereby provides a
rich testbed for future studies of effectiveness.

1 Introduction

Algorithm visualization (AV) uses computer graphics to de-
pict the actions of an algorithm. Many AV tools have been
built and are freely available over the World Wide Web. The
reasons for their popularity are threefold. For researchers in
the field of AV, there is the challenge of developing new vi-
sualization techniques. For practitioners, AV can help in the
process of designing and debugging algorithms. For com-
puter science students, AV holds promise to help them un-
derstand algorithms more easily and in greater depth. How-
ever, despite the abundance of algorithm visualization tools
now available, their promise as a pedagogical tool is largely
unfulfilled. According to Baecker [2], “little of the work
(in algorithm visualization) has been adapted by the main-
stream of computer science education and practice.” Stasko
and Lawrence [16] maintain that “algorithm animations used
as passive videos of an algorithm’s operations will have min-
imal impact on learning.”

Why is this and what steps can we take to correct it? Many of

the current AV systems concentrate on graphics rather than
on pedagogy [17]. These systems lack features to encourage
students’ interaction with the AV system. “Too often in the
past, descriptions of visualization systems rarely specified
any particular (pedagogical) task they were intended to
support” [11].

This paper describes how the merging of two systems,ANI-
MAL andJHAVÉ, addresses these issues.ANIMAL [13] is an
algorithm animation engine that handles the graphics display
of the animation.JHAVÉ [9] is an environment for pedagog-
ically staging algorithm animations. Now, by usingJHAVÉ
to host animations depicted byANIMAL, we create a synergy
that directly meets a unique set of pedagogically-driven re-
quirements heretofore never collectively present in a single
AV system.

2 Pedagogical Requirements

Research has shown that, to be an effective learning tool, an
AV system must satisfy an increasingly large set of require-
ments.

Reliably reaching a large target audience.The system’s plat-
form should be chosen to allow the widest possible target
audience. Currently, this means that the system should be
provided as a Java applet or application. The security re-
strictions placed on applets preclude the access to a local
file system or connecting to a different web server during
the execution. Applications do not share these restrictions.
They therefore allow the storage of information to the local
file system, as well as the interaction with multiple anima-
tions in a single session. Finally, applets are at the mercy of
the Java virtual machine as implemented in browsers such as
Netscape and Internet Explorer. As such, they typically can-
not take advantage of new features built into the language.
Instead, when writing applets, one essentially is forced to
write for a “lowest common denominator” of the language.
For these reasons, applications are preferable to applets.

General-purpose systems.Another key issue in designing
an AV system involves the choice between implementing a
general-purpose versus a topic-specific system. Topic-speci-
fic systems may offer highly specialized and optimized op-



erations for the target area. However, they are rarely usable
outside their limited focus. Users thus may have to adapt
to a different system whenever the current topic changes, as
it is bound to do within even a single course. General-pur-
pose systems, on the other hand, offer a common interface
to a multitude of animations. As general-purpose systems
can depict a wide variety of algorithms, instructors are better
able to integrate AV into their entire course. Research [3]
has shown that such integration is vital to students’ becom-
ing comfortable with AV as a learning tool.

Allowing users to provide input to the algorithm.In some
cases, students should be able to provide input to the algo-
rithm being visualized. This becomes particularly critical in
those situations when we want the student to identify best-
and worst-case behavior of algorithms. However, we must
be careful that facilities to input data do not overwhelm the
student. For example, designing strategic input data for a
graph algorithm can be a very time-consuming task. Con-
sequently, data input facilities must be carefully constructed
to allow the student to focus on those issues pertinent to the
type of understanding we are trying to achieve.

Rewind capability. An AV system that strives to be truly
effective for algorithm understanding must present its users
with an interface that makes it possible to rewind the algo-
rithm’s execution [1]. When a student becomes lost or con-
fused in watching a visualization, she must be able to back-
track to the point where she became lost. Moreover, she must
be able to backtrack as far as she needs on a single step ba-
sis. Restricting this navigation to restarting the animation
from the beginning is insufficient.

Just as the ability to backtrack and re-read is absolutely es-
sential in comprehension of written technical material, it is
equally apparent that such abilities are essential to effectively
use AV in achieving any non-trivial level of understanding.
In a study by Stasko and Lawrence [16], the most often cited
negative comment on the part of the participants was the in-
ability to rewind the animation. The participants said that
they “often wanted to look at the heap as it appeared before
the operation.” Despite the importance of a flexible rewind
facility, to our knowledge this feature has been neglected in
all general-purpose AV systems that present their visualiza-
tion via smoothly animated motion instead of as a sequence
of discrete snapshots.

Structural view of algorithm.Gloor [5] stresses the impor-
tance of a structured view of the algorithm’s main parts. The
student should be able to jump directly to selected key points
of the animation by clicking on an element in this view. The
feature requires the capability to jump to a specific animation
state in either direction.

Interactive prediction.The system must support interactive
prediction, that is, interrupting the actual visualization with
stop-and-think questions that pop up at an interesting event
during the algorithm’s execution. Such questions make the

student predict what she will see in the next step of the visu-
alized algorithm. Without such questions, once a student be-
comes confused, continuing to watch a visualization is akin
to watching a movie in which one has lost interest [10]. The
insertion of questions can change this dramatically. When a
confused student answers a question incorrectly, continuing
with the visualization not only provides the student with the
correct answer but also serves to reset her perception of the
algorithm back on the track intended by the instructor.

Integration with database for course management reasons.
A recent study by Jarc et al. [8] brought into doubt the
value of interactive prediction. Students using interactive
prediction did no better than students who were not using the
system at all. Jarc hypothesizes that this ineffectiveness is
because poorer students merely treated the interactive ques-
tions as a guessing game. To correct this shortcoming, we re-
quire that our system not only support stop-and-think ques-
tions, but also allow the student to enter a “quiz-for-real”
mode. In this mode, the student’s responses to questions
are recorded in a database on the server. Apart from pro-
viding valuable feedback for instructors, these results can be
used in evaluating students. Hence they naturally heighten
the student’s level of intensity and attentiveness when using
the system. In a study [6] more recent than Jarc’s, one group
of students “forced” to take such for-real quizzes did bet-
ter in learning Quicksort than those whose answers to stop-
and-think questions were merely used for immediate feed-
back. As educators, we should not be surprised that making
quizzes count in this fashion improves the effectiveness of
AV. Bonwell and Eison [4] note that the recall of informa-
tion eight weeks after the lecture can be doubled by a quiz
following the lecture. This may also apply to AV.

Hypertext explanations of the visual display.The system
should support the integration of explanatory hypertext to
help the student understand the mapping of the algorithm’s
abstractions to the AV system’s display of those abstrac-
tions. In [16] Stasko and Lawrence note that except for
very straightforward mappings, students often cannot trans-
late the AV system’s graphics to the algorithm that is being
depicted. They state: “Time after time we witnessed students
view algorithm animations in a puzzled manner, unable to
decipher the visual mapping. One way to address this prob-
lem is to make sure that the visualization itself is thoroughly
explained.” Uses of accompanying hypertext alluded to by
Stasko and Lawrence include viewing the underlying source
code, pseudocode, or a explanation analogous to what one
would find in a textbook. This documentation may be static
or ideally adaptive to the current state of the algorithm and
dynamically including actual values used in the current exe-
cution of the algorithm [1].

Smooth motion.Several research reports including [1, 15]
hint that smooth motions help users detect the change be-
tween successive steps. However, some students may prefer
the display of discrete snapshots over smooth motions [1].



Additionally, smooth motions become impractical if the data
to be manipulated is too large. The AV system should sup-
port smooth motions, but also offer the option of viewing
the animation in discrete steps. Animation rewinding should
also allow the user to choose either discrete steps or smooth
displays. In the latter case, the operations have to be per-
formed smoothly in reverse direction.

Reports also indicate that animations without a break be-
tween steps may cause problems for students. For example,
[1] quotes a student stating that “the animation doesn’t wait
for you to think”. On the other hand, forcing the user to per-
form a certain action to advance to the next step may become
tedious, especially for longer animations. Therefore, the AV
system should at least allow the person generating the ani-
mation to specify a break between consecutive steps. This
break may require a fixed user action or simply wait for a
specified time before the animation continues. The progress
of the animation must also be pausable.

3 Related Work

Many AV systems are freely available. We therefore select
a few representative systems to outline the typical achieve-
ments and shortcomings regarding our requirements. All
systems are implemented as Java applets or applications and
can therefore reach a large target audience.

JAWAA[12] is a scripting-based AV system implemented in
Java. JAWAA offers general graphic primitives and effects.
Several specialized commands indicate that is not geared as
a general-purpose system. These commands address typi-
cal data structures including arrays, trees, stacks and queues.
The user can view the animation as a slide-show without
breaks between steps or on a single step basis. The animation
author can choose between discrete and smooth animation
effects. However, only the user can adjust the speed of the
smooth animation effects. The author of an animation may
add arbitrary text at any time and place. As components use
absolute coordinates, positioning components next to other
objects requires coordinate calculations. JAWAA does not
support explanations styled as HTML-hypertext. It also does
not support rewinding, reverse playing, a structural view of
the animation or interactive predictions.

JSamba[14] shares the main characteristics of JAWAA. It
is also scripting-based, but does not offer specialized com-
mands for data structures. The author may spread the anima-
tion over several different views.JSamba is a Java-based
simplified front-end for the animation engine employed in
the widely-knownXTango [15] system, which offers an API
for generating animations.

IDSV [8] is an applet-based system that is not general-
purpose. Rather it has a built-in set of algorithms that depict
sorting, binary trees, and a small number of graph problems.
It offers both smooth animation and a discrete-step mode.
When the student watches the animation in IDSV’s “I’ll try”

mode, she is prompted with questions asking her to predict
will happen next. Some recording of the student’s progress
in answering these questions is done by the system to allow
instructor analysis of students’ progress.

ANIMAL [13] offers three distinct ways of generating anima-
tion: by scripting, using a special Java-based API, or within
a GUI. Explanatory text can be easily added at any point to
an animation. Relative object placement allows for easy po-
sitioning without calculating positions.ANIMAL lets the user
step to any point within the animation in either direction. It
originally did not support a structured view of the animation,
accessing external hypertext documentation, or performing
interactive predictions.

GAIGS [9] is a scripting-based visualization system that
portrays an algorithm as a discrete sequence of data structure
snapshots. Unlike many other systems, the scripting syntax
of GAIGS specifies data structures (arrays, matrices, linked
lists, stacks, queues, binary trees, general trees, and graphs)
instead of graphical primitives. GAIGS takes care of render-
ing such structures on the screen. This often makes it easier
to quickly develop a visualization in GAIGS since one may
think in terms of data structures instead of graphics. GAIGS
allows its user to move forward and backward through the
sequence of snapshots. However, GAIGS does not support
smooth motion, and, because it does its own layout of data
structures, it can limit the graphic creativity of the visualiza-
tion developer.

JHAVÉ [9] is not itself an algorithm visualization system but
rather a platform offering built-in pedagogical aids to visu-
alization systems that meet certain requirements. Essentially
these requirements are that the visualization system (1) is
written in Java, (2) uses textual scripting to describe the ani-
mation, and (3) can be adapted toJHAVÉ’s Visualizerinter-
face. This interface consists of areadScriptmethod respon-
sible for parsing an animation script and arunScriptmethod
responsible for rendering the animation. In return for this,
JHAVÉ provides suchVisualizerobjects with a client-server
architecture in which theVisualizerbecomes the client, con-
necting to aJHAVÉ server that:

• delivers hypertext documentation in the form of an HTML
window linked to URLs on the server,

• provides input generators that allow users to provide input
to the algorithm being portrayed by theVisualizer,

• augments the scripting language of theVisualizerto allow
for the insertion of stop-and-think questions during the an-
imation,

• integrates theVisualizerwith server-side course manage-
ment facilities that record the grades and responses of reg-
istered students using the stop-and-think questions as a
“for-real” quiz.

As described in [9],JHAVÉ Visualizers had previously been



developed for the GAIGS and JSamba scripting languages.
Inherent limitations of both of these scripting languages
made JHAVÉ a pedagogic platform looking for a better
scripting language to take fuller advantage of the tools it of-
fered. ANIMAL provides that. With relative ease,ANIMAL

was adapted toJHAVÉ ’s Visualizerinterface. The result is
a system whose advantages are compared to the other sys-
tems in Table 1.

System ge
ne

ra
l

in
pu

t

re
w

in
d

st
ru

ct
ur

e

pr
ed

ic
tio

n

da
ta

ba
se

hy
pe

rt
ex

t

sm
oo

th

JAWAA (✔) - - - - - (✔) (✔)
JSamba ✔ - - - - - (✔) (✔)
IDSV - ✔ - - ✔ (✔) - ✔

GAIGS (✔) - ✔ - - - - -
ANIMAL ✔ - ✔ - - - ✔ ✔

JHAVÉ+
ANIMAL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 1: Requirements addressed in AV systems. (✔) indi-
cates partial support

4 Developed System

Our combined system usesJHAVÉ as the client/server com-
ponent in which the animations to be viewed are selected.
Once a particular animation is chosen,JHAVÉ executes a
program on the server that produces a script for that algo-
rithm. The client then sendsreadScriptandrunScriptmes-
sages to the appropriateVisualizerto parse and render this
script.

Figure 1 shows a Quicksort animation displayed using the
ANIMAL Visualizer. The artifacts are introduced by scaling
the display to fit the paper layout. The top of the window
contains sliders controls for the animation display speed and
magnification. The range of the settings is 0% to 1000% for
speed and 0% to 500% for magnification. Two buttons for
resetting the values to 100% are also provided. The bottom
toolbar contains the animation controls. The animation can
be displayed smoothly or using discrete steps, as well as in
a “slideshow” mode. The latter links subsequent animation
steps with a user-defined delay. All controls work both in
forward and reverse mode. Finally, the user can also jump
to the start or end of the animation and pause the display.
Thus,rewindingandsmooth motionsare fully supported by
the engine.

Figure 2 shows an accompanying window with an example
of a stop-and-think question. If this question is presented as
part of a “for-real” quiz,ANIMAL will freeze the forward-
directed animation controls during a quiz, so that the student
cannot simply step forward to find the answer. A separate
“time line” window offers a structured view of the animation,

Figure 1:ANIMAL animation example, scaled to 41%

as required in Section 2. The animation author can select the
steps she regards as important for this view. A click on an
entry updates the animation to the associated step.

Figure 2: Example stop-and-think question window

Within the course of the cooperation,ANIMAL was also ex-
tended to open external HTML-based documentation from a
URL specified in the script read from the server. Addition-
ally, ANIMAL extensions offer diverse export formats includ-
ing various image formats such asJPG or PNG, as well as
Quicktimevideos. Due to native code implementation em-
ployed in the API, the latter is currently restricted to Win-
dows and MacOS. Finally, the graphical user interface of
ANIMAL can be translated by a single mouse click. If the
animation author has coded the animation according to our
internationalization specification, the text components of the
animation can also be translated on loading, adapting the po-



sition of other animation objects relative to the text.

5 Conclusions

The stage has been set to begin a much different emphasis
in AV. Hundhausen states “howstudents use AV technology
has a much greater impact thanwhat AV technology shows
them” [7]. Bigger and better graphics are not necessarily the
answer to effective learning. More importantly, AV systems
must provide instructors with a collection of tools that make
it relatively painless to incorporate AV into their courses and
then evaluate its effectiveness in an empirical fashion – sim-
ilar to the way we have evaluated textbooks in the past. By
offering a far-reaching set of pedagogical features,ANIMAL

in JHAVÉ represents a first step in this direction.

The JHAVÉ server presently produces GAIGS or JSamba
scripts with accompanying hypertext materials and stop-and-
think questions for twenty-four algorithms covering such di-
verse topics as hashing, sorting, string-searching, graph and
tree algorithms. We are in the process of adding programs
to produce a parallel set ofANIMAL animations. When com-
pleted, this work will provide a rich testbed to compare and
contrast the effectiveness of various types and modes of al-
gorithm visualization.

References

[1] Anderson, J. M., and Naps, T. L. A Context for the As-
sessment of Algorithm Visualization System as Peda-
gogical Tools.First International Program Visualiza-
tion Workshop, Porvoo, Finland. University of Joensuu
Press(July 2001), 121–130.

[2] Baecker, R.Sorting Out Sorting: A Case Study of Soft-
ware Visualization for Teaching Computer Science.
In Software Visualization, J. Stasko, J. Domingue,
M. H. Brown, and B. A. Price, Eds. MIT Press, 1998,
pp. 369–381.

[3] Bazik, J., Tamassia, R., Reiss, S. P., and van Dam, A.
Software Visualization in Teaching at Brown Univer-
sity. In Software Visualization, J. Stasko, J. Domingue,
M. H. Brown, and B. A. Price, Eds. MIT Press, 1998,
ch. 25, pp. 382–398.

[4] Bonwell, C. C., and Eisen, J. A. Active Learning: Cre-
ating Excitement in the Classroom. Tech. rep., George
Washington University, Washington, DC, 1991.

[5] Gloor, P. A. User Interface Issues For Algorithm
Animation. In Software Visualization, J. Stasko,
J. Domingue, M. H. Brown, and B. A. Price, Eds. MIT
Press, 1998, ch. 11, pp. 145–152.

[6] Grissom, S., and Naps, T. Yet Another Experiment Us-
ing Algorithm Visualization to Teach Computer Sci-
ence.Submitted for the7th Annual Conference on Inno-

vation and Technology in Computer Science Education
(ITiCSE 2002),̊Arhus, Denmark(2002).

[7] Hundhausen, C. D. A Meta-Study of Software Visual-
ization Effetiveness. WWW:http://lilt.ics.
hawaii.edu/˜hundhaus/writings/ , 1997.

[8] Jarc, D., Feldman, M. B., and Heller, R. S. Assess-
ing the Benefits of Interactive Prediction Using Web-
based Algorithm Animation Courseware.31st SIGCSE
Technical Symposium on Computer Science Education,
Austin, Texas(Mar. 2000), 377–381.

[9] Naps, T., Eagan, J., and Norton, L. JHAVÉ: An En-
vironment to Actively Engage Students in Web-based
Algorithm Visualizations.31st SIGCSE Technical Sym-
posium on Computer Science Education, Austin, Texas
(Mar. 2000), 109–113.

[10] Naps, T. L. Incorporating Algorithm Visualization into
Educational Theory: A Challenge for the Future.In-
formatik / Informatique Special Issue on Visualization
of Software(Apr. 2001), 17–21.

[11] Petre, M., Blackwell, A., and Green, T. Cognitive
Questions in Software Visualization. InSoftware Vi-
sualization, J. Stasko, J. Domingue, M. H. Brown, and
B. A. Price, Eds. MIT Press, 1998, ch. 30, pp. 453–480.

[12] Pierson, W., and Rodger, S. H. Web-based Animation
of Data Structures Using JAWAA.29th SIGCSE Tech-
nical Symposium on Computer Science Education, At-
lanta, Georgia(1998), 267–271.

[13] Rößling, G., Scḧuler, M., and Freisleben, B. TheAN-
IMAL Algorithm Animation Tool.5th Annual Confer-
ence on Innovation and Technology in Computer Sci-
ence Education (ITiCSE 2000), Helsinki, Finland(July
2000), 37–40.

[14] Stasko, J. Samba Algorithm Animation System,
1998. Available athttp://www.cc.gatech.
edu/gvu/softviz/algoanim/samba.html .

[15] Stasko, J. Smooth Continuous Animation for Portray-
ing Algorithms and Processes. InSoftware Visualiza-
tion, J. Stasko, J. Domingue, M. H. Brown, and B. A.
Price, Eds. MIT Press, 1998, ch. 8, pp. 103–118.

[16] Stasko, J., and Lawrence, A. Empirically Assessing
Algorithm Animations as Learning Aids. InSoftware
Visualization, J. Stasko, J. Domingue, M. H. Brown,
and B. A. Price, Eds. MIT Press, 1998, ch. 28, pp. 419–
438.

[17] Stern, L., Søndergaard, H., and Naish, L. A Strategy for
Managing Content Complexity in Algorithm Anima-
tion. 4th Annual SIGCSE/SIGCUE Conference on In-
novation and Technology in Computer Science Educa-
tion (ITiCSE’99), Cracow, Poland(Sept. 1999), 127–
130.


