
Internal Attacks in Anonymous Publish-Subscribe
P2P Overlays

Jörg Dauberta and Tim Grubea and Max Mühlhäusera and Mathias Fischerb
aTelecooperation Group, Technische Universität Darmstadt / CASED, Germany

{daubert, tim.grube, max}@tk.informatik.tu-darmstadt.de
bNetworking and Security Group, International Computer Science Institute, Berkeley, USA

mfischer@icsi.berkeley.edu

Abstract—Privacy, in particular anonymity, is desirable in
Online Social Networks (OSNs) like Twitter, especially when
considering the threat of political repression and censorship.
P2P-based publish-subscribe is a well suited paradigm for OSN
scenarios as users can publish and follow topics of interest. How-
ever, anonymity in P2P-based publish-subscribe (pub-sub) has
been hardly analyzed so far. Research on add-on anonymization
systems such as Tor mostly focuses on large scale traffic analysis
rather than malicious insiders. Therefore, we analyze colluding
insider attackers in more detail that operate on the basis of timing
information. For that, we model a generic anonymous pub-sub
system, present an attacker model, and discuss timing attacks. We
analyze these attacks by a realistic simulation model and discuss
potential countermeasures. Our findings indicate that even few
malicious insiders are capable to disclose a large number of
participants, while an attacker using large amounts of colluding
nodes achieves only minor additional improvements.

I. INTRODUCTION

Online Social Networks (OSNs) such as Twitter and Face-
book are evidently popular and gain more users every year
[1]. OSNs play a major role in the distribution of news in
areas where classic media is not reliable anymore due to
political repression and censorship [2]. However, OSNs can
also turn out as a powerful spying and persecution tool.
Thus, anonymization tools play a major role not only for
whistleblowers but also ordinary OSN users.

However, anonymization tools such as Tor [3], MIXnets [4],
and Crowds [5] suffer from a variety of drawbacks such as traf-
fic monitoring attacks [6] and bad performance due to abuse
[7]. While current research focuses on traffic analysis, i.e.,
attacks performed by monitoring communication externally,
only minor effort is put into analyzing internal attacks that
actively exploit protocol features. Even so, internal attacks are
very likely when considering compromised devices and key
material. Timing attacks on anonymization system can be used
to fingerprint and recognize devices and communication flows.
Colluding malicious nodes that monitor traffic can be used to
learn message flows in MIXnets [8]. With a more powerful
global attacker, even the topology of the whole anonymization
network can be learned [9].

Another form of anonymous content dissemination is anony-
mous pub-sub [10], [11], [12] that derives techniques from Tor,

MIXnets and Crowds.
Publish-Subscribe (Pub-Sub) is a communication pattern

that connects producers and consumers of information. Op-
posed to other communication patters, pub-sub routes infor-
mation according to content rather than participant identifiers:
a producer (publisher) generates a message (notification) and
forwards it to the pub-sub system. Consumers (subscribers)
express their interests in form of attributes (subscription) to
the pub-sub system. The system then mediates notifications
between publishers and subscribers. For example, Twitter
applies such a pub-sub communication paradigm via hashtags.
Anonymous pub-sub systems disseminate information by pro-
tecting the privacy of their publishers and subscribers. For that,
sensitive messages such as notifications and subscriptions are
encrypted and the anonymity of publishers and subscribers
itself is protected. Thus, it prevents to link publishers and
subscribers on the basis of a certain interest and thus attribute
[13].

The main contribution of this paper is a detailed analysis of
internal attacks on pub-sub anonymization systems. For that,
we introduce a novel attacker model and assume an external
attacker that has successfully deployed multiple malicious
nodes within an anonymous pub-sub system. Hence, malicious
nodes are in possession of all necessary cryptographic material
to participate in the system, so that they are able to gener-
ate valid protocol messages. Malicious nodes are controlled
remotely by the external attacker and collude to break the
anonymity of other participants via timing attacks. We evaluate
such timing attacks extensively within a simulation of an
anonymous pub-sub system that was introduced by us in
former work [12]. Our findings indicate that the introduced
attacker can successfully de-anonymize participants, even with
very few colluding malicious nodes. Finally, as the system
under evaluation shares features with other systems and our
attacker is generic, we believe that gained insights and results
are likewise applicable to similar anonymous pub-sub systems
like [11].

The remainder of this paper is structured as follows: Sec-
tion II describes an internal attacker model for an anonymous
pub-sub system. Section III proposes several internal attacks
according to these models and evaluates the attack formally as
well as via simulation. Section V then briefly proposes counter978-1-4799-5804-7/15/$31.00 c©2015 IEEE

measures to detect and mitigate these attacks and discusses
costs and benefits of these counter measures. Section VI
concludes our findings.

II. INTERNAL ATTACKS ON ANONYMITY IN
PUBLISH-SUBSCRIBE

We introduce anonymous pub-sub as a solution for anony-
mous OSNs, establish a generic system model, and comple-
ment it with a model for an anonymity attacker.

A. Anonymous Publish-Subscribe

A distributed pub-sub system is based upon an overlay that
determines the neighborhood relationship between participants
and that employs forwarding rules for messages on top. There
is a specific overlay for each attribut a ∈ A (interests). The
graph G := (V,E) denotes a basic overlay that comprises
all participants V :=

⋃
a∈A Pa ∪ Sa ∪ Fa, where Fa :=

Va \ (Pa∪Sa). The set Pa denotes the publishers of a, which
are initiating the dissemination of new information for interest
a; the set Sa is the set of subscribers, which are interested
in information about a. The nodes Fa are not interested
in a but rather another attribute a′, and thus contribute by
relaying messages about a. An anonymous pub-sub system
employs its functionality without the requirement of global
identifiers for the nodes. An attribute mesh Ma := (Va, Ea)
describes the overlay network for an attribute a with Va :=⋃
∀p∈Pa

⋃
∀s∈Sa patha(p, s). The function patha(p, s) returns

all nodes that a message traverses from p to s on the shortest
path in Ma. The set N(v) defines the neighbors of node v
within G. Na(v) denotes neighbors in Ma.

A centralized pub-sub system [14] consists of only one
forwarder for all attributes (|

⋃
∀a∈A Fa| = 1) and thus can-

not protect anonymity against this node. P2P-based pub-sub
systems may contain multiple forwarders. Some approaches
[15], [16] require Pa, Fa, or Sa to know each other—either
to establish patha(p, s) or to exchange key material—which
violates publisher or subscriber anonymity. Hence, we focus
on systems like [11], [12] that do not require knowledge about
other participants to avoid coupling between nodes and thus
anonymity violations. However, even with decoupled nodes,
Fa are assumed to be “honest but curious” [17]. Therefore
we analyze the influence of dishonest nodes.

We use our anonymous pub-sub system [12] that distributes
advertisements upfront compared to the system [11] that
distributes subscriptions upfront. The system works as follows:
for the establishment of a pub-sub attribute overlay, a pub-
lisher in Pa distributes routing informations via advertisement
messages mad in G. Subscribers compare those with their
attributes and upon a match join the overlayMa by answering
with a subscription message msu . The advertisements mad are
flooded into G, the subscription messages msu are returned
along the path on which the mad was received. An impor-
tant property of the pub-sub system is the request/response
semantic of the messages, a msu subscription message is a
response to a mad advertisement message, the munad un-

advertisement message and the mnotif notification message
are potential responses on a msu subscription.

Messages in such a pub-sub system have to include some
information to optimize the overlay in the absence of global
topology information and node identifiers, for instance a hop-
counter. Furthermore, since flooding can cause loops, the
system also needs a mechanism to detect loops. For example,
in former work [12] we proposed an anonymous pub-sub
system that uses hash chains for loop prevention and overlay
optimization.

B. Attacker model

An attacker breaks anonymity by identifying publishers and
subscribers given a certain attribute. The attacker constructs a
node set S ′a and tries to assign the nodes of Ma to achieve
S ′a = Sa to break the subscriber anonymity and constructs P ′a
to break the publisher anonymity, respectively. We focus on
subscriber anonymity throughout the remainder of this paper
as publisher anonymity can be attacked analogously.

An attacker can have different views on an attribute mesh.
Either it has a global or local view on the pub-sub system. An
attacker with global view observes all communication that is
taking place but cannot decipher encrypted messages, while
a local view attacker deploys malicious nodes in the system
that can decipher their incoming messages. The view of this
attacker is composed of all local views of these nodes. We
denote Ca as the set of malicious nodes that an attacker has
successfully deployed within a mesh for attribute a.

Furthermore, the attacker can be either passive or active.
An active attacker can interact with the system with the
capabilities of a valid participant and is in possession of the
necessary cryptographic material for overlayMa. Thus, it can
delay, alter, replay, drop, and insert new, valid messages. In
this paper, we focus on an attacker that is capable to deploy
malicious publishers in the system, so that Ca ∪ Pa 6= ∅.
We use an attacker that only deploys publishing nodes, since
these capabilities exceed subscribing nodes for the task of
identifying subscribers.

Within the context of this paper, we focus on an active
attacker with global topology knowledge that successfully
deployed several malicious nodes in the system.

C. Information Gain as Metric

The attacker gains information on Sa during his attack. To
asses the effectiveness of the attack, we introduce two metrics.

First, we calculate the relation of the estimated size of the
subscriber set |S ′a| and the real size |Sa|. Using the ratio
|S ′a|/|Sa|, we have a measure similar to the k-anonymity [18].
The attacker tries to reduce the candidate set S ′a towards the
real subscriber set Sa. Obviously, A can exclude Ca, so S ′a is
initialized with Va\Ca. A high value shows the inefficiency of
the attack, the members of Sa are hidden in a large anonymity
set, the overlay.

However, since the first metric is coarse and does not allow
a detailed statement about the membership to Sa per node
in the overlay, we build a probability map to describe the

information gain of the attacker in more detail. The probability
map contains the probability of each node in Va being part of
Sa. The probability of a single node v ∈ Va of being part of
Sa is described as follows: The probability is 0 if v ∈ Ca,
as the node obviously can be excluded since it is controlled
by the attacker itself, if v /∈ Ca, the probability is the |Sa|
divided by the number of remaining candidates |Va| − |Ca|.
Using this probability, the sum of all probabilities is equal to
the number of subscribers. To build the probability map, we
normalize the probability of each node by dividing it by |Sa|.
Hence, for each node in Va, except the adverse ones, we use
the same initial probability and compose a map v of values
as given by Equation 1.

∀v ∈ Va : v[v] =

{
0 if v ∈ Ca
|Sa|

(|Va|−|Ca|)∗|Sa| else
(1)∑

vi∈Va

v[vi] = 1 (2)

Constraint 2 ensures that the probabilities remain valid. The
attacker adjusts the map vs in every attack step s. We calculate
the entropy Hs to quantify the information gain gs of the
attacker in every attack step. Equation 4 defines the entropy
based upon the difference between the initial and the current
probability per node. The information gain gs is defined as
difference of the entropy of the preceding attack step s−1 and
the entropy of the current attack step s, shown in Equation 5.

pdiff(vi, s) = 1− |v0[vi]− vs[vi]| (3)

Hs = −
∑

vi∈|Va|

pdiff(vi, s) ∗ log2(pdiff(vi, s)) (4)

gs = Hs−1 −Hs (5)

Hence, an attacker attempts to minimize H by maximizing g
in each step, which can be accomplished by eliminating nodes
from vs (setting their probability value to 0). The elimination
of nodes is possible if the attacker can estimate the position
of subscribers in the overlayMa and therefore exclude nodes
from begin members of Sa.

III. ANALYSIS OF INTERNAL ATTACKS

In this section, we analyze the strengths and weaknesses of
the active local attacker for breaking participant anonymity. In
particular, we determine how accurate the attacker can identify
subscribers Sa within a mesh for a given attribute a. The
following subsections introduce a timing attack in anonymous
pub-sub, explain how the attacker obtains necessary delay
information, and how the attack is carried out.

A. Timing attack in anonymous Publish-Subscribe

An attacker that successfully infiltrated the attribute mesh
for a by x malicious nodes can exploit the request/response
semantic of the system to identify the members of the sub-
scriber set Sa. For that, the attacker uses publishing nodes to
send advertisements that trigger response messages from other

nodes, and then uses these responses as well as information
about the message flow, such as round-trip time (RTT), to
learn about subscribers. For attacking subscriber anonymity in
P2P-based pub-sub, the attacker uses the RTT between adver-
tisement and subscription to estimate the delay to the closest
subscriber. Given this delay in between a malicious node and
a subscriber as well as an estimate for the average node-to-
node delay (cf. Section III-B), the attacker can approximate
the number of nodes between its malicious publishers and
the subscriber. A malicious node can repeatedly perform this
attack for each of its neighbors to find more subscribers and to
rule out forwarders. More malicious nodes controlled by the
attacker provide additional neighbors over which the attack
can be performed.

The attacker observes the RTT between sending an ad-
vertisement and receiving a subscription as in Equation 6.
The symbol d denotes the distance to the subscriber vs, i.e.,
d = |path(v0, vs)|, and is yet unknown.

observable︷ ︸︸ ︷
δ(mx

ad ,m
x
su) =

advertisements︷ ︸︸ ︷
d−2∑
j=0

δ(mj
ad ,m

j+1
ad)+

subscriptions︷ ︸︸ ︷
0∑

j=d−2

δ(mj+1
su ,mj

su)

(6)

Function δ(mx
w,m

y
v) measures the time in between send-

ing message mw from node vx and receiving mv at node
vy . To derive the subscriber distance d from the observed
δ(mad ,msu), the attacker furthermore requires an average
delay estimate, which is given by Equation 7. However, the
attacker cannot observe this delay directly. Thus, we provide
methods to obtain such an estimate in Section III-B.

δavg =

∑d−2
j=0 δ(m

j
ad ,m

j+1
ad)

d
(7)

Given the left hand sides of Equations 6 and 7, the attacker
approximates d as in Equation 8. The division by 2 is
necessary as δ(mad ,msu) describes the RTT but the attacker
requires the one-way node distance.

d ≈ δ(mad ,msu)

2× δavg
(8)

With the node distance d and background knowledge of
G, the attacker can rule out nodes closer than d, assign high
probability to nodes at distance d, and leave nodes further
away than d as undecidable. Hence, the attacker adjusts his
initial probability map v0 (cf. Equation 1) to Equation 9
such that the gained knowledge is reflected and Constraint 2
remains satisfied.

v[vx] =


0, if vx closer than d or vx ∈ Ca (j times)
λ

(k+l) , if vx at distance d (k times)
φ

(k+l) if vx further than d (l times)
(9)

The Equation 9 shows how the attacker can eliminate j out
of |Va| nodes that are closer than d hops on the shortest path
in basic overlay G. Hence, all remaining (k at distance d, l
at distance greater than d) nodes get a higher probability. To
distinguish nodes at distance d (one or more subscribers) from
nodes with greater distance (zero or more subscribers), we use
a boost factor λ ≥ 1 and a reduce factor φ ≤ 1 to model
this difference. Simulations with our model (cf. Section IV)
indicate that λ = 1.187 results in the best information gain; φ
has to be solved in each step to satisfy Constraint 2. As the
sum over all probability map entries remains constant over all
attack iterations, the attacker attempts to maximize j as nodes
once ruled out remain ruled out.

B. Estimating the average delay

The average delay δavg is crucial for the attacker to calculate
the node distance to the closest subscriber. However, the
attacker cannot observe or calculate δavg directly. Existing
delay approximations such as [19] use specific protocols such
as DNS that do not incorporate the application layer delays of
an anonymous pub-sub system such as cryptography. Hence,
we propose the following approximations:

a) Direct Neighbor Extrapolation: The attacker can use
mechanisms of the basic overlay G and send messages to
direct neighbors, e.g., a heartbeat, and use the responses to
calculate the average delay. Using neighborhood relations, any
node v ∈ V can approximate the average delay in G as given
by Equation 7.

However, this method is biased by the connectivity of such a
node itself. Hence, a bad connection would cause high delays
for all neighbors.

b) Request Round-Trip: As an alternative to the previous
approach, the attacker can exploit a time to live (TTL) feature
of a protocol in a (partially) two-connected basic overlay:
the attacker sends a message that propagates to one neighbor
and receives it later on via another neighbor. As anonymous
pub-sub systems may use flooding for advertisement or sub-
scription dissemination, it is likely that the attacker will receive
a forwarded message back again after some time. He can then
approximate the average delay via the elapsed time and the
TTL difference. For example, within our anonymous pub-sub
protocol, proposed in former work [12], the attacker can send
out advertisements and will obtain TTL information by an
attached hash value. Such hash values belong to hash chains
that realize privacy-friendly TTL counters to avoid loops in
attribute meshes.

The request round-trip approach incorporates more nodes
and thus better approximates the average delay than direct
neighbor extrapolation. However, highly connected basic over-
lays lead to short cycles and thus few traversed nodes.

c) Collusion: Similar to initiating round-trips, an attacker
that successfully deployed two malicious nodes in the topology
can exploit the TTL feature for deriving the average overlay
delay. For that, one malicious node sends a message that the
second node will eventually receive. With shared knowledge

in terms of send and receive time, as well as a TTL feature,
the attacker can approximate the average delay.

This approach reflects an average path in the basic overlay
and does not suffer from short cycles. However, a delay
anomaly on the single path between controlled nodes may
influence the average delay calculation.

C. Attack procedure

After the attacker has obtained background knowledge and
average delay, he can exploit protocol features and perform a
timing attack. The attacker needs to have an estimate on the
average delay δavg . The attacker uses a subset N(v)′ ⊆ N(v)
of the neighborhood of its malicious nodes v ∈ Ca for
this attack. The usage of the complete neighborhood of v is
possible but could render v suspicious and empower coun-
termeasures. For every neighbor in N(v)′, the attacker will
first un-advertise the attribute and then send a new mad to the
same neighbor. After sending the advertisement, the attacker
waits for possible responses. The received msu messages will
trigger the computation of the distance to the responding sub-
scriber(s). Using this distance, the attacker is able to compute
three subsets of nodes. First, the subset of nodes closer than
the distance of the responding subscriber. These nodes are
excludable since they can not be subscribers. Second, the set
containing the nodes in the recognized distance. These nodes
have an equal probability of being subscribers. The last set
computed by the attacker contains all nodes further away than
the recognized subscriber. As these nodes are located “behind”
the subscriber(s), there is no statement about their membership
in Sa possible. Using these information, the attacker updates
its probability map v in every step. This map associates every
node v with its probability of being a subscriber. The attacker
considers every node that exceeds the threshold as subscriber,
i.e., vx ∈ S ′a : vs[vx] > v0[vx].

Algorithm 1 summarizes the full attack. We use the example
as given in Figure 1 to explain the attack for an attacker that
successfully deployed one malicious node v0 in an attribute
mesh. Furthermore, we have |V | = 9 nodes and |Sa| = 2
subscribers. The attacker has complete topology knowledge on
G(V,E) and thus can order nodes according to their distance
in terms of overlay hops, which is indicated in the figure by
rings. Furthermore, the attacker is in possession of a delay
estimate and sets up its initial probability map v0 as shown
by the node annotations in Figure 1.

The attacker first sends m0
ad via v0 to neighbor v1, but does

not receive any response (Algorithm 1, lines 1-4). Thus, the
attacker sets the values of v1 and v4 in v0 to zero (lines 11-
12) and builds a more precise v1 as shown in Figure 2, i.e.,
j = 2, k = 0, l = 7. In the second step, the attacker sends m0

ad
from v0 to neighbor v2 and observes δ(m0

ad ,m
0
su) = 4× δavg

(lines 4-5). Hence, the closest subscriber must be two hops
away and the attacker adjusts v1 to v2 as shown in Figure 3,
i.e., j = 3, k = 2, l = 4.

In this third and last step the attacker performs two opera-
tions: first, he sends m0

unad to v2 as he received his m0
ad via

v3 again—hence both nodes are connected and therefore v3

!
!
!
!
!
!
!
!
!
!
!
!
!
3!

!
!
!
!
!
!
!
!
!
2!

!
!
!
!
1!

v4! v1!
v2!v0!

v7!

v5!
v6!
v9!

v3!

v8!
2/9!

2/9!

2/9!2/9!
2/9!

2/9!2/9!

2/9!
2/9!

Fig. 1: Initial probabil-
ity distribution assuming
|Sa| = 2 and |V | = 9.

!
!
!
!
!
!
!
!
!
!
!
!
!
3!

!
!
!
!
!
!
!
!
!
2!

!
!
!
!
1!

v4! v1!
v2!v0!

v7!

v5!
v6!
v9!

v3!

v8!
2/7!

2/7!

2/7!2/7!
2/7!

0!0!

2/7!
2/7!

Fig. 2: First attack step
via neighbor v1. No re-
sponse, hence probabili-
ties become 0.

!
!
!
!
!
!
!
!
!
!
!
!
!
3!

!
!
!
!
!
!
!
!
!
2!

!
!
!
!
1!

v4! v1!
v2!v0!

v7!

v5!
v6!
v9!

v3!

v8!
1/2!

1/5!

1/5!1/2!
1/5!

0!0!

1/5!
1/5!

Fig. 3: Second attack
step via neighbor v2. Re-
sponse from distance 2.

!
!
!
!
!
!
!
!
!
!
!
!
!
3!

!
!
!
!
!
!
!
!
!
2!

!
!
!
!
1!

v4! v1!
v2!v0!

v7!

v5!
v6!
v9!

v3!

v8!
1/2!

0!

0!1/2!
0!

0!0!

1!
0!

Fig. 4: Third attack step
via neighbor v3. Re-
sponse from distance 2.
Node v7 as well as either
v5 or v6 are subscribers.
Hence v8 and v9 are out.

already knows the advertised topic and would discard the new
advertisement for this topic. Second, the attacker sends m0

ad
to neighbor v3 and again observes δ(m0

ad ,m
0
su) = 4 × δavg .

The only node within the range of 2 hops must be v7 and is
therefore a subscriber. Hence the attacker adjusts the values
of v3, v7, and v9 in v2 to 0 and 1, respectively, as shown in
Figure 4, i.e., j = 3, k = 3, and l = 2.

IV. EVALUATION

In this section, we analyze the influence of the attackers’
capabilities as well as the influence of the topology of the
basic overlay on the attack success. In particular, we phrase
the following research questions:

1) What is the influence of the connection delay of the
basic overlay on the attackers ability to determine the
distance to the subscriber?

2) How much does the connectivity of malicious nodes Ca,
i.e., the number of neighbors, influence the information
gain?

3) Does the distance between colluding nodes Ca influence
the information gain?

4) How much do additional controlled nodes, i.e., more
collusion, improve the information gain?

Algorithm 1: attack(G, c)

// Initialization
1 foreach v ∈ N(c) do
2 send(munadv, c, v)
3 send(madv, c, v)
4 d←∞
5 if response received then
6 d← δ(madv,msub)

2·δavg

7 k ← candidatesAt(d)
8 l← candidatesFurther(d)
9 foreach u ∈ branch(v) do

10 d′ ← |path(c, u)|
11 if d′ < d then
12 v[u]← 0

13 else if d′ = d then
14 v[u]← λ · |S

′
a|

(k+l)

15 else if d′ > d then
16 v[u]← φ · |S

′
a|

(k+l)

A. Simulation setup

To evaluate the attack, we implemented a simulation model
for the OMNeT++1 discrete event simulator with the INET2

framework.
We assume a fixed basic overlay for our experiments. For

that, we use scale-free networks generated according to the
power law out degree algorithm [20] with recommended pa-
rameters α = −0.08 and β = 4.5 to create basic overlays with
an average diameter of 5−6 and node degree |N(v)| ≈ 6.875,
and simulate with parameters and metrics as summarized in
Table I.

We assume that no prior attribute overlay for a exists as
malicious nodes in Ca may spoof messages to disassemble
the overlay before each attack step. If not noted otherwise
we simulate with |V | = 200 nodes. The message delay for
edges E is randomly chosen from a uniform distribution
U(1ms, 20ms). Furthermore, we repeat each experiment 25
times with different random seeds (runs) and calculate 95%
confidence intervals. We assume a strong attacker (cf. Section
II-B) that knows the topology of the basic overlay G as well
as the subscriber ratio |Sa|/|V |. Hence, given an attribute a
the attacker tries to establish a set S ′a as an approximation of
the real subscriber set Sa.

For the attack evaluation, we use the information gain (cf.
Section II-C) as well as the path distance between nodes. The
information gain is calculated as entropy delta between two
succeeding attack steps (cf. Section II-C) and represents the
overall success of the attack.

1http://www.omnetpp.org
2http://inet.omnetpp.org

http://www.omnetpp.org
http://inet.omnetpp.org

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6
|path(v0, vs)| [hops]

E
rr
o
r
ra
te

[0
,1

] N (10ms, 2ms)
U(1ms, 10ms)
U(1ms, 20ms)
U(1ms, 50ms)
10ms

Fig. 5: Subscribe distance estimation error over increasing real
distances.

Parameters and Default Values
|V | = 200 // size of the basic overlay
|Sa|/|V | ∈ [0, 1] // ratio of subscribers
|Ca| ∈ [1, 5] // number of colluding malicious nodes
|Ca|/|V | ∈ [0.005, 0.025] // ratio adverse to genuine nodes
|A| = 1 // number of attributes in the system
|N(v)′| ∈ [1, 5] // neighbors used by attacker
δ = U(1ms, 20ms) // delay of edges E
runs = 25 // repetitions per setup

TABLE I: Simulation parameters.

B. End-to-end delay

To analyze the influence of connection delay between nodes
on the correct estimation of the subscriber distance, we variate
the delay distribution as well as subscriber and attacker
position, and let a single attacker determine the distance to
the closest subscriber via each neighbor from Na(v). We use
the settings as given in Table I, and variate the delay model δ
with uniform U(left , right) and normal N (mean, variance)
distributions in comparison to a static distribution with a delay
of 10ms.

We perform 200 repetitions per distribution setting with ran-
dom placements each, and then compare the attackers distance
estimation |path(v0, ṽs)| with the real distance |path(v0, vs)|.
The attacker uses the Request Round-Trip approach to approx-
imate δavg . We group the results by the real path length.

The static delay serves as reference and we expect a linear
increase of the hop error rate for the normal distribution as
the average accumulated variance should not exceed one edge
delay for several hops. Compared, the uniform distributions
should quickly approach the error rate of a random guess.

Figure 5 shows the error rates in dependence on the distance
|path(v0, vs)| in between v0 and vs for the five delay distri-
butions. As expected, the attacker well compensates normal
distributed delay across the average basic overlay diameter of
≈ 6 hops. The uniformly distributed delay already produces
high error rates from the second hop onwards.

Concluding, delays from a narrow normal distribution, e.g.,
within a LAN, have only minor impact on the correct hop-
count estimation. However, delays from a uniform distribution
effectively prevent the attack. A uniform delay with a parame-

0.000

0.025

0.050

0.075

0.0 0.1 0.2 0.3 0.4 0.5
|Sa|/|V |

g

|N(v)′| = 1
|N(v)′| = 2
|N(v)′| = 3
|N(v)′| = 4
|N(v)′| = 5

Fig. 6: Information gain over subscriber ratio each for the
number of neighbors a malicious node uses for attacking.

ter range that covers the diameter of the basic overlay renders
the attack infeasible.

C. Attacker connectivity

To analyze the influence of the attackers’ node degree on the
information gain, we vary the number of neighbors the attacker
uses. Furthermore, we use the settings as given in Table I,
vary the ratio of subscribers |Sa|/|V | ∈ (0, 0.5), and let the
attacker successively use |N(v0)

′| ∈ [1, 5] of his available
|N(v0)| neighbors.

We expect that increasing N(v)′ causes a linear increase in
information gain as the attacker can exploit more attack paths
in case no close cycles exist.

Figure 6 shows the information gain per subscriber over the
subscriber ratio for the different number of used neighbors.
For an increasing subscriber ratio, the attacker gains slightly
less as more subscribers on the same path mask each other.
However, a second neighbor almost doubles the information
gain.

Concluding, the attackers’ additional advantage of good
connectivity becomes smaller with every neighbor. Further-
more, large subscriber ratios render the attack harder.

D. Distance between colluding nodes

To analyze the influence of the hop distance between
colluding nodes, we use two malicious nodes |Ca| = 2, variate
the length of the path between these nodes, and compare the
information gain they achieve together.

We use the settings as given in Table I, a low and high sub-
scriber ratio |Sa|/|V | = {0.05, 0.15}, and compute the results
over 300 repetitions of the experiment. For every experiment,
we use two random nodes vx, vy as adverse ones and group the
experiments by the shortest path length |path(vx, vy)| between
the attackers. We measure the information gain after each
attack over all neighbors.

We expect that the large subscriber ratio experiment yield
to a lower information gain per subscriber as shown in the
previous experiment. Furthermore, we expect a longer path
between the attacking nodes to increase the information gain.
Given two attacking nodes vx, vy and a subscriber vs, a longer

0.000

0.005

0.010

0.015

0.020

0.025

1 2 3 4 5
Attackerdistance[hops]

g

|Sa|/|V | = 0.05
|Sa|/|V | = 0.15

Fig. 7: Information gain over the distances of attacker vx, vy
for |Sa|/|V | = {0.05, 0.15}.

path |path(vx, vy)| should increase the probability of pairwise
distinct nodes in path(vx, vs) and path(vy, vs). Hence, the
attacker gets more distance measurements to the subscriber
and can rule out more forwarders.

Figure 7 shows the average information gain per subscriber
over the distance between attacking nodes. An increasing
distance between controlled nodes shows no significant im-
provement of the information gain. It appears that the attack-
ers improve on distant subscribers, but loose on very close
subscribers.

Concluding, the distance between colluding nodes, and thus
the placement of the attackers’ nodes, has only minor impact
on the attack outcome. Additional simulations conducted by
us with higher graph diameters indicate a slight decrease of
the gain for large distances.

E. Collusion of malicious nodes

To analyze the influence of colluding nodes, we vary the
number of malicious nodes and measure the information gain
the attacker achieves for different subscriber ratios. We use
the settings as given in Table I, vary the subscriber ratio
|Sa|/|V | ∈ (0.0, 0.5), as well as the number of malicious
nodes |Ca| ∈ [1, 4].

We expect that this experiment behaves similar to the
experiment on attacker connectivity (cf. Section IV-C): addi-
tional nodes should improve the information gain as the delay
approximation becomes more accurate and as the attacker can
identify more close by subscribers accurately. However, we
also expect that the additional gain becomes smaller for every
additional attacking node.

Figure 8 shows the information gain per subscriber of col-
luding nodes over the subscriber ratio. The attackers |Ca| = 2
clearly improves over |Ca| = 1, however the addition gain
between |Ca| = 3 and |Ca| = 4 becomes smaller. Furthermore,
the gain of additional nodes for very low ratios of subscribers
is relatively low. The scenario with two attacking nodes causes
larger confidence intervals due to the varying distance between
both nodes over the 25 runs each (cf. Section IV-D).

0.00

0.05

0.10

0.0 0.1 0.2 0.3 0.4 0.5
|Sa|/|V |

g

|Ca| = 1
|Ca| = 2
|Ca| = 3
|Ca| = 4

Fig. 8: Information gain of a colluding attacker over subscriber
ratio. The additional gain drops with each additional node.

Concluding, many colluding nodes only benefit scenarios
with high subscriber ratios. Furthermore, the additional gain
decreases with every additional node.

V. COUNTERMEASURES

We introduce counter measures against the internal attacker
in this section. First we show how to reveal the existence of
an internal attacker, second we briefly introduce approaches
to preserve privacy in presence of the attacker.

A. Detection of malicious behaviour

Attackers have to destroy the overlayMa before each attack
step to get optimal results. Nodes can detect this behavior
in form of “flapping” neighbors. In our example, attacker
v0 sends an un-advertisement munad first, attack via its first
neighbor by sending mad, wait for results, and un-advertise
again to continue with further neighbors. Hence, nodes in close
vicinity of v0 can detect a high frequency of advertisement and
un-advertisements as potential attacker.

Another method to detect the presence of an attacker is
the recognition of changed neighbor behavior. Assuming some
local topology knowledge, e.g., gained from past behavior, a
node can detect if an attacker sends messages to only one
neighbor at a time. For instance, assuming two paths, path1 =
[v0, v1] and path2 = [v0, v2, v1], genuine node v1 can detect
attacker v0 if it receives messages via one path but not via
the second one. Furthermore, malicious nodes Ca are valid
participants in the system, they can drop messages from other
nodes. This can be detected likewise.

B. Proactive countermeasure

Genuine nodes can take countermeasures to protect them-
selves from attackers, e.g., delaying messages before sending
or forwarding them.

Nodes can introduce random delay before forwarding mes-
sages to disturb the attackers’ delay estimation and thus the lo-
calization and de-anonymization of nodes. For instance a node
vi may delay messages to its neighbor vi+1 by a uniformly
chosen time from [a, b], so that δ′(mi,mi+1) = δ(mi,mi+1)+
U(a, b). This delay may influence the attacker’s estimation of

δavg , and the attacker’s distance calculation. Furthermore, the
delay may even cause the selection of alternate paths, causing
noise between attack steps.

C. Combination of reactive detection and proactive prevention

Nodes can also prevent further attacks once an attacker has
been identified by blacklisting nodes or by using a reputation
system. Assuming a node has been identified as attacker due
to flappy behavior, neighbors can blacklist this node and
thus isolate it from G. However, the attacker could easily
detect blacklisting and perform “slower” attacks to cause less
flapping. Generalizing blacklisting, nodes could establish a
distributed reputation system, e.g., via the anonymous pub-sub
system itself, and drop messages from all nodes with insuffi-
cient reputation.

VI. CONCLUSION

In this paper we present an internal attacker model for
anonymous pub-sub systems, introduce a colluding internal
attack in detail, and analyze benefits and shortcomings of
colluding attackers.

Related work mostly tackles large scale traffic analysis and
traffic watermarking to break anonymity in anonymous com-
munication system. Complementary, we analyze an internal
attack in which the attacker possesses secrets to forge new and
valid packets, and breaks anonymity by analyzing responses.
Furthermore, we address the myth of the power of collusion
attacks by analyzing the benefits of collusion and comparing
it to a single attacker.

Our results indicate that two colluding attacker gain ap-
proximately the same benefits as one attacker with a doubled
neighborhood size. The results furthermore indicate that the
additional gain of adding an attacker decreases with the
number of controlled nodes, i.e., more nodes disclose more
subscribers but are less economical.

Artifical delay works well as a counter measure, even
against attackers with colluding nodes. A uniform delay distri-
bution provides the best protection against the attacker; narrow
distributions already perform very well. This counter measure
however also degenerates the performance of the system in
terms of total message delivery time and its capability to adapt
quickly.

Future work will address more internal attack approaches,
e.g., the exploitation of protocol features such as node iden-
tifier changes. Furthermore, we will analyze sophisticated
counter measures in detail, e.g., the detection of attackers.

ACKNOWLEDGMENT

This work was supported by the ICT R&D program of
MSIP/IITP. [13-921-03-001, Development of Smart Space to
promote the Immersive Screen Media Service] The authors
furthermore would like to thank Marc André-Bär for his
support.

REFERENCES

[1] M. Watanabe and T. Suzumura, “How social network is evolving?: a
preliminary study on billion-scale twitter network,” in WWW (Com-
panion Volume). International World Wide Web Conferences Steering
Committee / ACM, 2013, pp. 531–534.

[2] G. Lotan, E. Graeff, M. Ananny, D. Gaffney, I. Pearce et al., “The
arab spring— the revolutions were tweeted: Information flows during
the 2011 tunisian and egyptian revolutions,” International Journal of
Communication, vol. 5, p. 31, 2011.

[3] R. Dingledine, N. Mathewson, and P. F. Syverson, “Tor: The second-
generation onion router,” in USENIX Security Symposium. USENIX,
2004, pp. 303–320.

[4] D. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Commun. ACM, vol. 24, no. 2, pp. 84–88, 1981.

[5] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transac-
tions,” ACM Trans. Inf. Syst. Secur., vol. 1, no. 1, pp. 66–92, 1998.

[6] P. Winter and S. Lindskog, “Spoiled onions: Exposing malicious tor exit
relays,” CoRR, vol. abs/1401.4917, 2014.

[7] R. Jansen, P. F. Syverson, and N. Hopper, “Throttling tor bandwidth
parasites,” in USENIX Security Symposium. USENIX Association,
2012, pp. 349–363.

[8] B. N. Levine, M. K. Reiter, C. Wang, and M. K. Wright, “Timing
attacks in low-latency mix systems (extended abstract),” in Financial
Cryptography, ser. Lecture Notes in Computer Science, vol. 3110.
Springer, 2004, pp. 251–265.

[9] T. Abraham and M. Wright, “Selective cross correlation in passive
timing analysis attacks against low-latency mixes,” in GLOBECOM.
IEEE, 2010, pp. 1–5.

[10] M. A. Tariq, B. Koldehofe, A. Altaweel, and K. Rothermel, “Providing
basic security mechanisms in broker-less publish/subscribe systems,” in
DEBS. ACM, 2010, pp. 38–49.

[11] A. Shikfa, M. Önen, and R. Molva, “Privacy and confidentiality in
context-based and epidemic forwarding,” Computer Communications,
vol. 33, no. 13, pp. 1493–1504, Aug. 2010.

[12] J. Daubert, M. Fischer, S. Schiffner, and M. Mühlhäuser, “Distributed
and anonymous publish-subscribe,” in Network and System Security, ser.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013,
vol. 7873, pp. 685–691.

[13] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf, “Security Issues and
Requirements for Internet-Scale Publish-Subscribe Systems,” in HICSS.
IEEE, 2002, pp. 3940–3947.

[14] C. Raiciu and D. S. Rosenblum, “Enabling confidentiality in content-
based publish/subscribe infrastructures,” in Second International Con-
ference on Security and Privacy in Communication Networks and
the Workshops, SecureComm 2006, Baltimore, MD, Aug. 28 2006 -
September 1, 2006. IEEE, 2006, pp. 1–11.

[15] A. Shikfa, M. Önen, and R. Molva, “Privacy-preserving content-based
publish/subscribe networks,” in Emerging Challenges for Security, Pri-
vacy and Trust, 24th IFIP TC 11 International Information Security
Conference, SEC 2009, Pafos, Cyprus, May 18-20, 2009. Proceedings,
ser. IFIP Advances in Information and Communication Technology, vol.
297. Springer, 2009, pp. 270–282.

[16] W. Chen, J. Jiang, and N. Skocik, “On the privacy protection in
publish/subscribe systems,” in Proceedings of the IEEE International
Conference on Wireless Communications, Networking and Information
Security, WCNIS 2010, 25-27 June 2010, Beijing, China. IEEE, 2010,
pp. 597–601.

[17] M. Nabeel, N. Shang, and E. Bertino, “Efficient privacy preserving
content based publish subscribe systems,” in 17th ACM Symposium
on Access Control Models and Technologies, SACMAT ’12, Newark,
NJ, USA - June 20 - 22, 2012, V. Atluri, J. Vaidya, A. Kern, and
M. Kantarcioglu, Eds. ACM, 2012, pp. 133–144.

[18] L. Sweeney, “k-anonymity: A model for protecting privacy,” Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 10, no. 5, pp. 557–570, 2002.

[19] P. K. Gummadi, S. Saroiu, and S. D. Gribble, “King: estimating latency
between arbitrary internet end hosts,” Computer Communication Review,
vol. 32, no. 3, p. 11, 2002.

[20] C. R. Palmer and J. G. Steffan, “Generating network topologies that
obey power laws,” in GLOBECOM. IEEE, 2000, pp. 434–438.

