
Play it once again, Sam -
Enforcing Stateful Licenses on Open Platforms

Ahmad-Reza Sadeghi
Horst-Görtz-Institute for IT-Security

Ruhr-University Bochum
sadeghi@crypto.rub.de

Michael Scheibel
Sirrix AG Security Technologies

Bochum, Germany
m.scheibel@sirrix.com

Christian Stüble
Horst-Görtz-Institute for IT-Security

Ruhr-University Bochum
stueble@acm.org

Marko Wolf
Horst-Görtz-Institute for IT-Security

Ruhr-University Bochum
mwolf@crypto.rub.de

ABSTRACTVarious appli
ations and business models for distributingdigital
ontent over open networks demand for li
enses to
ontrol usage of the
ontent and restri
t a

ess to it byauthorized entities only. Of parti
ular interest are state-ful li
enses that allow usage for a �xed time period or �xednumber of times.However, existing solutions using stateful li
enses are vul-nerable to various atta
ks, parti
ularly on open
omputingplatforms that are under
onsumers'
ontrol who
an runexploits as well as re
on�gure the underlying operating sys-tem. In this
ontext replay atta
ks play an important role,sin
e the state of
ommon storage (e.g., hard-disks and �ashmemory)
an easily be reset to some prior state bypassinga

ess
ontrol me
hanisms or breaking
ryptographi
 pro-to
ols that keep state. Hen
e
ontent providers tend to in-�exible stati
 li
enses and
losed DRM systems that mainlyprovide unilateral se
urity, i.e., prote
t the needs of
ontentproviders and not of
onsumers.In this paper we present a se
urity ar
hite
ture that en-ables the se
ure deployment and transfer of stateful li
enseson open
omputing platforms while prote
ting the se
urityobje
tives of both users and providers. We show how toimplement this se
urity ar
hite
ture e�
iently by means ofvirtualization te
hnology, a se
urity kernel, trusted
omput-ing fun
tionality, and a lega
y operating system (
urrentlyLinux). Moreover, our system extends the TCG
hain oftrust
on
ept to arbitrary
omposed (trusted) domains, i.e.,our ar
hite
ture measures and reports the
on�guration ofonly those software
omponents that are se
urity-
riti
al fora
ertain operation at
ertain time.
KeywordsDigital Rights Management, stateful li
enses, freshness, se-
urity ar
hite
tures, trusted
omputing
1. MOTIVATIONE-
ommer
e appli
ations for trading digital goods over opennetworks are be
oming in
reasingly appealing. In this
on-text te
hniques for se
ure distribution and usage of digitalgoods, where a li
ense de�nes the owner's rights to
onsume(a

ess, use) the data linked to this li
ense, are
ru
ial.

A parti
ular li
ense type are stateful li
enses whi
h allowthe use of rights for a �xed time period, e.g., for n days, orfor a �xed quantity, e.g., for n times.A few e-business appli
ations already employ su
h (mostlyproprietary) stateful li
en
es to sell
ertain digital goods forlimited use. Important referen
es are video-on-demand ser-vi
es or online video rentals [8, 47, 29℄ that use statefulli
en
es to enable �exible pay-per-view s
enarios. Variousdigital musi
 stores [3℄ use stateful li
en
es to
ontrol themaximum number of analogue
opies allowed. Moreover,some software vendors already employ stateful li
enses too�er trial versions that allow users to test a software for alimited time or allow a limited number of exe
utions [25, 59℄.Stateful li
en
es enable new promising pay-per-use softwarebusiness models.In addition, one
an think of other interesting appli
ationsusing stateful li
en
es to enfor
e poli
ies: For instan
e sen-sitive user data su
h as email
orresponden
e or identityinformation is being stored on remote servers today. Oftenthe users are not fully aware of the data tra
es they leave onremote servers. In other
ases users have to provide somepersonal information in order to use a servi
e. However,users must have the right and be able to de
ide and limitthe usage of this information by any third party (e.g., ser-vi
e provider). Another appli
ation is when digital musi
stores allow their
ustomers for instan
e to hear a tra
k twotimes for free before o�ering the a
quisition of a li
ense forunlimited a

ess. Stateful li
en
es
an also enfor
e one-timea

ess to sensitive data. Thus, for instan
e a
ompany
anprevent their employees from making unauthorized
opies orforwarding of sensitive
ontent that
ould leak informationto its
ompetitors.Another important issue beside the se
ure usage of state-ful li
enses is the se
ure transfer of li
enses among di�er-ent platforms. This in
ludes also se
ure lending or selling(sub-)li
enses to other individuals without requiring the in-tera
tion of the li
ensor. In this
ontext the li
ense itselfdes
ribes the
onditions under whi
h a transfer of the
on-tent, it is atta
hed to, is authorized. For example, the li-
ensee would not be allowed to freely
opy the
ontent, butwould instead be allowed to move it to
ertain devi
es with-out Internet
onne
tivity. Su
h resale and sub-li
ensing is

ommonly
onsidered a

eptable use, yet unlike the �o�ine�transa
tion, usually requires intera
tion with the li
ensor.However, managing and enfor
ing stateful li
enses on openplatforms is parti
ularly vulnerable to various threats su
has unauthorized a

ess, misuse, and illegal redistributionof the
ontent to be prote
ted [24, 49, 50℄. Open plat-forms are under the
ontrol of their owners, who
an atta
kand
ir
umvent even sophisti
ated prote
tion me
hanismsby running exploits and re
on�guring the underlying oper-ating system. Parti
ularly replay atta
ks set the platformstate (e.g., hard-disks and �ash memory) and thus a statefulli
ense to a prior state and
ir
umvent se
urity me
hanisms.This
an be done for instan
e by ordinary ba
kup me
ha-nisms or by applying software tools [11℄ that log all storagemodi�
ations to easily revoke these modi�
ations for reuseof a li
ense1.Consequently,
ontent providers use tamper-resistant hard-ware devi
es like dongles [30℄ or smart
ards [4℄ to se
urelystore a small amount of data to prote
t their assets. The useof external devi
es, however,
annot guarantee the integrityof the operating system and a proper behavior of appli
a-tions sin
e debugging utilities and other manipulations ofthe operating system or appli
ations frequently allow usersto bypass se
urity me
hanisms. 2Thus,
ontent providers
urrently tend to in�exible stati
li
enses and
losed DRM systems. The problem with
losedDRM systems, su
h as [16, 28℄, is that they mainly provideunilateral se
urity prote
ting the needs of
ontent providersand usually not
onsumers3 Moreover,
ommon DRM sys-tems do not provide adequate stateful li
enses and thusheavily restri
t users' rights, e.g., by preventing them fromtransferring li
enses (that in
ludes li
ense moving, resale orrenting).
1.1 Main Contribution & OutlineIn this paper we present a se
urity ar
hite
ture that enablesse
ure enfor
ement of stateful li
enses on open
omputingplatforms and se
ure li
ense transfers among platforms whileprote
ting the se
urity obje
tives of users and providers. Tothe best of our knowledge there
urrently exists no solutionthat is
apable of enfor
ing stateful li
enses on open plat-forms while providing se
urity fun
tionalities allowing to es-tablish multilateral se
urity. We show how our ar
hite
ture
an e�
iently be implemented using existing virtualizationand trusted
omputing te
hnology. In
ontrast to existingsolutions, our system ar
hite
ture measures and reports the
on�guration of only those software
omponents that arese
urity-
riti
al for a
ertain operation, instead of reportingthe
on�guration of all
urrently running software
ompo-nents that
learly a�e
t user's priva
y.1Cryptographi
 measures like digital signatures, en
ryptionand even
ryptographi
 �le systems [7, 57℄
annot prote
tstateful li
enses, sin
e a
omplete ba
kup
an still be re-played.2In parti
ular, dongles turned out to be impra
ti
al for themass market be
ause of missing
onsumer friendliness andhigh
osts [2℄.3This is
onform to the legislative trend (see [31℄) of puttingmore restri
tions on
onsumers' rights on using digital
on-tent.

Our paper is organized as follows. In Se
tion 1.2 we sum-marize related work. We then de�ne in Se
tion 2 an idealsystem model for distributed
ontent a

ess that satis�esour stated se
urity obje
tives of the involved parties. Goingtowards the real world we repla
e the ideal model in Se
-tion 3 by several logi
al
omponents that are implementedby real software
omponents of a �rst prototype implemen-tation based on a small se
urity kernel, virtualization te
h-nology and trusted
omputing te
hnology (Se
tion 4).
1.2 Related WorkShapiro and Vingralek [45, 56℄ identi�ed the replay problemin
lient platforms that are
ompletely under the
ontrol ofthe user. The authors proposed to manage persistent statesusing external lo
ker servi
es or assumed a small amount ofse
ure memory (i.e., that
annot be read or written by anatta
ker) and se
ure one-way
ounters realized by battery-ba
ked SRAM or spe
ial on-
hip EEPROM/ROM fun
tions.Tygar and Yee [55℄ elaborate on appli
ations of physi
allyse
ure
opro
essors, in
luding enfor
ement of stati
 and dy-nami
 li
enses without
entralized servers. They show howto prote
t and attest the integrity of their system with thehelp of a se
ure
opro
essor and a se
ure bootstrap pro
ess.In addition, proto
ols for sealing of data to a lo
al platformand binding of data to a remote platform are presented.They identify the replay problem in the
ontext of ele
troni

urren
y and propose "two-phase"
ommits to ensure atomi
transfers to remote platforms. The proposed ar
hite
ure re-lies on a mi
rokernel whi
h is running in a physi
al se
uritypartition provided by the se
ure
opro
essor. This is di�er-ent to our approa
h whi
h is based on a virtualization layero�ering logi
al se
urity partitions ("
ompartments").Mar
hesini et al. [22℄ use OS hardening to
reate "software
ompartments" whi
h are isolated from ea
h other and
an-not be a

essed by a "root spy". Based thereon, their designprovides "
ompartmentalized attestation", i.e. attestationof and binding data to single
ompartments. Our approa
hdoes not employ OS hardening te
hniques to se
ure a
om-plex monolithi
 lega
y OS. Instead we put the lega
y OS ina
ompartment whi
h is then run on top of a virtualizationlayer. The performan
e loss is negligible, but the in
reasein se
urity is not, sin
e the virtualization layer is mu
h less
omplex than a monolithi
 OS kernel.Baek and Smith [6℄ build on this work and implement aprototype for enfor
ing QoS poli
ies on open platforms.Publi
ly available do
umentation on both DRM implemen-tations of Mi
rosoft Windows Rights Management Servi
es[27℄ and Authenti
a A
tive Rights Management [5℄ do notmention how they resist replay atta
ks. On
e a
lient appli-
ation is authorized to a

ess a do
ument, it
an ba
kup andrestore its state to entirely a

ess all do
uments at ba
kuptime.The same holds for
ommon DRM implementations for dig-ital
ontents (audio, video, ebooks, software), e.g., Mi
ro-soft's Windows Media Rights Management [26℄, Apple's Fair-Play [3℄ and Real Network's Helix DRM [36℄, all providingproprietary stateful li
enses.

Moreover, most of these solutions are
losed software and
annot be veri�ed for inherent se
urity �aws. Some a�e
tthe entire host se
urity [24℄ or violate user priva
y [46℄.Many
ould be
ontinuously broken [50, 49℄, and provideli
ense transfers only to some sele
ted devi
es owned by theuser. This point
learly
ontradi
ts the �rst sale do
trine:The li
ensor should be allowed to transfer legally obtaineddigital
ontent without permission or intera
tion of the li-
ensee.Another approa
h uses small-value or short-term sub-li
ensesbased on a single sour
e li
ense to transfer rights. Examplesare transient li
enses [35℄, re
hargeable tokens [17℄, or tra
k-ing �les [20℄. Sin
e users of these systems always have full
ontrol over the platform storage, they
an easily ba
kuptheir (sub-)li
enses and restore them after expiration.In [42, 44℄, the authors propose an operating system exten-sion that attests an integrity measurement (a SHA-1 digestover all exe
uted
ontent) based on a
ryptographi

opro-
essor. The proposed ar
hite
ture allows a
ontent providerto remotely verify the integrity of software and data of a
lient platform. Sin
e this approa
h measures all exe
uted
ontent, i.e., also all non-se
urity-
riti
al and private
on-tent, this pro
edure gives a
ontent provider user's overallplatform
on�guration. Sin
e delivering the
omplete plat-form
on�guration reveals a lot of additional information notrequired for li
ense enfor
ement this would
learly
on�i
twith the least privilege se
urity property, thus a�e
ting userspriva
y. On the other hand, the
ontent provider
an attestalways only the last platform
on�guration given and is notable to predi
t future
on�guration. To dete
t potential re-play atta
ks the
ontent provider would furthermore have torequest and store
lient measurement logs repeatedly. Be-sides the ne
essary online
onne
tivity, a
lient
ould stillapply replay atta
ks between two measurements.The Enfor
er proje
t alias The Bear [21, 23℄ tried to real-ize freshness using the (non-volatile) data integrity register(DIR) of the TCG spe
i�
ation version 1.1b [54℄. Writing toa DIR requires owner authorization, reading
an be done byanyone. However, this approa
h
annot be used to enfor
estateful li
enses sin
e the platform owner
an still ba
kupand restore the DIR storage.New pro
essor ar
hite
tures like AEGIS [48℄ and XOM [18℄provide se
ure in-pro
essor storage that
annot be reset byunauthorized entities. Although it seems possible to usethese pro
essor ar
hite
tures as a basis for prote
ting thefreshness of information, we
hose another solution whi
hbuilds on (
heaper)
ommer
ial-of-the-shelf
omponents.
2. SYSTEM MODEL AND OBJECTIVESWe start our
onsideration with an ideal system model fordistributed
ontent a

ess4. It represents the desired en-vironment in whi
h the se
urity obje
tives of all involvedparties are satis�ed by de�nition. In later se
tions we go to-wards real world by repla
ing this ideal system in Se
tion 34We do not
onsider payment
hannels or
ontent distribu-tion details su
h as
ontent provision or li
ense generationhere. System models for
omplete DRM systems
an befound in [12, 38℄.

with several logi
al
omponents followed by the realizationof these
omponents by software
omponents in Se
tion 4.
2.1 Terms and DefinitionsWe de�ne a
ompartment as a software
omponent that islogi
ally isolated from other software
omponents. The
on-�guration of a
ompartment unambiguously des
ribes the
ompartment's I/O behavior based on its initial state S0and its set of state transa
tions that
onvey a
ompartmentfrom state Si to state Si+1. Moreover, we distinguish se
ure,trusted, and plain
ommuni
ation
hannels between
om-partments. Plain
hannels transfer data without providingany se
urity property. Se
ure
hannels ensure
on�dential-ity and integrity of the
ommuni
ated data as well as theauthenti
ity5 of the endpoint
ompartment. Trusted
han-nels are se
ure
hannels that additionally validate the
on-�guration of the endpoint
ompartment. Finally, integrityof information obtained from a
hannel or
ompartment isprovided, if any modi�
ation is at least dete
table.
2.2 Ideal System ModelThe main parties involved are providers (li
ensors) and users(li
ensees). We
onsider a provider as the representativeparty for rights-holders whereas the user represents
on-sumers of digital
ontent. As depi
ted in Figure 1 the pro-vider distributes digital
ontent (e.g., software, media �les,et
.) and the
orresponding li
ense. The li
ense de�nes theusage-rights (e.g.,
opy, play, print, et
.) appli
able to the
ontent. li
ense represents a
erti�
ate issued by an autho-rized instan
e (li
ensor)
on�rming non-repudiability that
ertain usage-rights on
ertain
ontents are granted to someparty6. Here, a li
ense des
ribes the usage-rights that itsowner holds and the prerequisites to
onsume (a

ess, use)the
ontents linked to this li
ense. The user
onsumes the
ontent a

ording to the li
ense where the
onsumption ismanaged by the underlying platform as shown by the dashedlines in Figure 1. In the ideal model the platform is an ab-stra
t bla
k box whi
h is trusted by all other parties. Theusage-rights
an be de�ned in rights expression languagessu
h as XrML7 or ODRL8 and are digitally signed by theli
ensor. We distinguish two types of li
enses, stati
 li
ensesand stateful li
enses. While the state of a stati
 li
ense re-mains unmodi�ed when used, that of a stateful li
ense may
hange during its utilization.The involved parties have only limited trust in ea
h other.In our ideal system model the platform is fully trusted byboth user and provider to a
t
orre
tly.In Figure 1 we also made the next step by repla
ing theabstra
t platform by two logi
al
ompartments the TrustedPoli
y Enfor
er and the Trusted Storage Provider insteadof the platform as an abstra
t. These
ompartments arestrongly isolated from ea
h other and
ommuni
ate overtrusted
hannels.5A
ompartment's authenti
ity
ould be an alias or a tem-porary
ompartment identi�er.6A formal treatment of rights, li
enses and transa
tions onrights
an be found, e.g., in [1℄.7www.xrml.org8www.odrl.net

User

request[usage-right]

render[content]

Trusted Policy
Enforcer

store[object]

load[object]

Trusted Storage
Provider

Platform Interface

distribute[content, license] Provider

Figure 1: The ideal system model.The Trusted Poli
y Enfor
er (TPE) in
orporates the usage-rights management and
ontent rendering. The provideruses the trusted
hannel distribute[] to transfer
ontent andli
enses to TPE. On request of the user via request[], ausage-right is retrieved and the
ontent is rendered a

ord-ing to this right using the trusted output
hannel render[].
TPE
orre
tly maintains its state using the trusted
hannels
store[] and load[] provided by the trusted storage.The Trusted Storage Provider (TSP) provides the interfa
es
store[] and load[] to store and load data obje
ts persistentlyensuring
on�dentiality, integrity, availability and parti
u-larly freshness. Note, user and provider trust TSP only in-dire
tly, i.e., by establishing a trusted
hannel to TPE. TPEwill only be trusted if it has veri�ed TSP to be trusted byestablishing a trusted
hannel to TSP.9
2.3 Security ObjectivesIn the following we de�ne the overall se
urity obje
tivesof users and providers that our system ar
hite
ture has toa
hieve for our distributed
ontent a

ess.(O1) Li
ense integrity: Unauthorized alteration of li-
enses must be infeasible. Both user and provider re-quire this, sin
e a li
ense de�nes a
ontra
t betweenuser and provider that must not be altered withoutmutual approval.(O2) Li
enses unforgeability: Unauthorized issuan
eof li
enses must be infeasible. Only authorized parties(rights-holder) are allowed to issue new usage-rights.This prevents
reation of illegal, unauthorized li
enses.(O3) Li
ense enfor
ement: The li
ense must be en-for
ed upon a

eptan
e. This is required by the li
en-sor that the user
an a

ess and use the
ontent onlya

ording to user-rights provided by the li
ense. Oth-erwise, users
ould violate a
ontra
t with a provider.However, a li
ense should be enfor
ed only when theuser as a

epted it.(O4) Li
ense availability: Legally obtained li
enses
anbe used at any time. This espe
ially requires pre
au-tions with regard to physi
al and/or logi
al failures, asa result of the poor experien
es with hitherto existingdongles and smart
ards solutions.(O5) Priva
y: Usage of li
enses must not violate pri-va
y poli
ies. The user's priva
y poli
y must be pro-te
ted when performing transa
tions on li
enses. This9Sin
e TPE
ommuni
ates with TSP over a trusted
hannel,it
an be
entral or distributed, e.g., lo
ated at user-side, atprovider-side, or realized by a trusted third party TTP.

in
ludes that the overall system enfor
es least privi-lege su
h that
omponents not under full
ontrol ofthe user,
olle
t, store, and redistribute user's privateinformation only to the extent required for li
ense en-for
ement and with user's
onsent.(O6) Freshness: Any information obtained should benew, i.e., re
eived or retrieved information is the lastone sent or stored.
2.4 Required Security PropertiesIn order to ful�ll the overall se
urity obje
tives we
onsiderin the following the essential properties whi
h are assumedto be given in the ideal system model (in Se
tion 2.2). InSe
tion 3 and Se
tion 4 we show how one
an provide re-spe
tively implement these properties.(R1) Trusted
hannels: The underlying platform pro-vides trusted
hannels between
ompartments to en-able a party to verify a
ompartment's
on�gurationin order to determine the
ompartment's trustworthi-ness.(R2) Strong isolation: The underlying platform ensuresthat
ompartments are isolated from ea
h other, i.e.,
ompartments
annot a

ess the states of other
om-partments.(R3) Trusted storage: A trusted storage provider TSPprovides
on�dentiality, integrity, freshness and avail-ability of data persistently stored.
2.5 Usage and Transfer of LicensesBased on our ideal system model and the assumptions, thisse
tion des
ribes the general fun
tionality of our ar
hite
-ture with regard to obtaining, usage and transferring ofstateful li
enses. The main platform
omponents involvedin these transa
tions are illustrated in Figure 1.Obtaining li
enses: The �rst s
heme des
ribes how a li-
ense l (and the
orresponding
ontent) is obtained by theplatform
omponent TPE responsible for enfor
ing it. Weassume that the li
ense negotiation phase has already been
ompleted (outside our model).1. The user requests the provider the (negotiated) li
ense

l from the provider and the respe
tive
ontent (if ne
es-sary, i.e., if the user does not already has the prote
ted
ontent).2. The provider establishes a remote trusted
hannel to
TPE (to verify that the
on�guration of TPE is
on-form to his se
urity poli
y.). Then the provider dis-tributes l and the respe
tive
ontent (if ne
essary) to
TPE.3. TPE stores l and the
orresponding
ontent on TSPusing a lo
al trusted
hannel (thus verifying trustwor-thiness of TSP.).Using stateful li
enses: The following s
heme is an ab-stra
t des
ription of how the
ontent and the
orrespondingli
ense are se
urely managed by TPE.

1. The user requests TPE for a usage-right on a
ontent.2. TPE loads from TSP a li
ense l that
overs the re-quested usage-right.3. If all
onditions for the
orresponding usage-right areful�lled, TPE updates the
orresponding subset of statevariables within l , stores the
hanged l using TSPagain, and invokes the
ontent rendering.Transferring li
enses: We des
ribe a se
ure transfer pro-to
ol of a li
ense (and the
orresponding
ontent) between asour
e platform (transferor) TPEs to a destination platform(transferee) TPEd.1. The user requests TPEs to transfer a li
ense l to TPEd.2. TPEs establishes a trusted
hannel to TPEd to verifythat the
on�guration of TPEd is
onform to the se
u-rity poli
y of l needed for a transfer to
orre
tly takepla
e. Note that TPEd does not need this veri�
ationfor TPEs sin
e the overall se
urity ar
hite
ture wouldnot allow a platform to use a li
ense if it does notprovide the trust properties required by the li
ensor.3. After a trusted
hannel is established to TPEd, TPEssends l (and the
orresponding
ontent) to TPEd usingthe previously established trusted
hannel.4. After an approved transfer pro
ess based on a
rypto-graphi
 re
eipt, TPEs updates or invalidates l , while
TPEd stores the new li
ense (and
ontent) syn
hro-nized with TPEs. In order to handle transmission fail-ures, TPEs allows arbitrary retransmissions requeststo TPEd while the
orresponding usage-right remainsinvalidated.The pro
edure to loan a li
ense is similar to the li
ense trans-fer: In
ase the li
ense of allows the user to generate subli-
enses TPEs generates a subli
ense ld of the master li
ense lfor TPEd and invalidates the respe
tive usage-rights in the
orresponding master li
ense l lo
ally, i.e, disables the re-spe
tive usage-rights for the loan period or de
reases therespe
tive state variables.A se
ure implementation of these proto
ols is des
ribed inSe
tion 3.5.

3. SYSTEM DESIGNIn this se
tion we des
ribe the high-level design of our ar-
hite
ture. The ideal system model in Se
tion 2.2 is de
om-posed into several smaller
ompartments. We des
ribe howtrusted
hannels, strong isolation, and trusted storage arerealized. Finally, we
onsider in more detail how an appli
a-tion, i.e., the DRM
ontroller,
an obtain, use and transfera stateful li
ense based on these features.
3.1 Architectural OverviewFigure 2 gives an overview of the
ompartments into whi
hour ideal system model presented in Se
tion 2.2
an be de-
omposed. The resulting ar
hite
ture
onsists of the trusted
omputing base (TCB) in
luding a User Manager, a Trust

Manager, a Storage Manager, and a Compartment Man-ager. Another
ompartment, the DRM Controller, is theexample appli
ation that uses the TCB to realize the use
ases dis
ussed above. Note sin
e all
ompartments
om-muni
ate with ea
h other using trusted
hannels, there areno requirements on their a
tual physi
al lo
ation.
Compartment

Trusted Channel

Storage

Manager

Trust Manager User Manager

Compartment

Manager

Secure I/O

DRM

Controller

current

user

content,

license

content

compartment

configuration

compartment

configuration

TPE Interface

TSP Interface

Secure Channel

Remote

Compartment

state

Figure 2: Compartments of the system model.User Manager: The User Manager (UM) maps betweenreal user names and system-internal user identi�ers. More-over, it performs user authenti
ation and manages a se
retatta
hed to ea
h users, e.g., to allow the Storage Managerto bind data to a user. The programming interfa
e o�eredby the User Manager hides the
on
rete user model. Thus,it is possible to use a UNIX-like user model, or a role-basedmodel without modi�
ations of other system
omponents.Storage Manager: The Storage Manager (SM) providespersistent storage for the other
ompartments while pre-serving integrity,
on�dentiality, availability and freshnessof the stored data. Moreover it enfor
es strong isolation bybinding the stored data to the
ompartment
on�gurationand/or user se
rets10. The Storage Manager has a

ess tothe
on�guration of its
lients, sin
e it
ommuni
ates withthem over trusted
hannels. For a more detailed des
riptionof the implementation, see Se
tion 3.3 and Se
tion 3.4.Compartment Manager: The Compartment Manager(CM) manages
reation, update, and deletion of
ompart-ments. It
ontrols whi
h
ompartments are allowed to beinstalled and enfor
es the mandatory se
urity poli
y. Duringinstallation of
ompartments, it derives its
on�guration tobe able to o�er a mapping between temporary
ompartmentidenti�ers11 and persistent
ompartment
on�gurations.Trust Manager: The Trust Manager (TM) o�ers fun
-tions that
an be used by appli
ation-level
ompartmentsto establishing trusted
hannels between remote and lo
al
ompartments.Se
ure I/O: The Se
ure I/O (SO) renders (e.g., displays,plays, prints, et
.)
ontent while preventing unauthorizedinformation �ow. Thus SO in
orporates all
ompartments10Sin
e SM does not provide sharing of data between
om-partments, it does not realize a regular �le system.11A
ompartment identi�er unambiguously identi�es a
om-partment during runtime.

that are responsible for se
ure output of
ontent (e.g., drivers,trusted GUI, et
.).DRMController: The DRM
ontroller (DC) is an appli
a-tion that enfor
es the poli
y a

ording to the given li
enseatta
hed to digital
ontent. DC enfor
es se
urity poli
ieslo
ally, e.g., it uses trusted
hannels to de
ide whether a
ertain SO is trusted for rendering the
ontent, i.e., whetherit mat
hes the
on�guration des
ribed in the li
ense. Moredetails of the implementation of the DRM
ontroller
an befound in Se
tion 3.5.With the ar
hite
tural overview in mind, we explain in thefollowing se
tions how this ar
hite
ture is used to providethe ne
essary se
urity properties, i.e., priva
y, trusted
han-nels, se
ure storage, and fresh storage.
3.2 Trusted ChannelsA

ording to the de�nition in Se
tion 2.1, trusted
hannelsallow the involved
ommuni
ation end-points to determinetheir
on�guration and thus to derive their trustworthiness.Other integrity measurement ar
hite
tures, however, [42,44℄, report the integrity of the whole platform
on�gura-tion in
luding all
urrently running
ompartments to re-mote parties, and thus violating user priva
y. In
ontrast,our ar
hite
ture supports to establish trusted
hannels be-tween single
ompartments, and not only between platformswhole platforms. This has the following advantages:

• Priva
y: A remote party now only needs to know the
on�guration of the appropriate
ompartment in
lud-ing its trusted
omputing base, and not the
on�gura-tion of the whole platform.
• S
alability: Remote parties do not have to derive thetrustworthiness of all
ompartments exe
uted on topof the platform, to determine the trustworthiness ofthe appropriate
ompartment.
• Usability: Sin
e a
ompartment's trustworthiness
anbe determined independent of other
ompartments run-ning in parallel, the derived trustworthiness keeps valideven if the user installs or modi�es other
ompart-ments.Trusted
hannels
an be established using the fun
tions of-fered by the Trust Manager and the Compartment Man-ager, while the Compartment Manager, whi
h is responsiblefor installation and manipulation of
ompartments, providesthe mapping from
ompartment identi�ers into
on�gura-tions. Thus, trusted
hannels
an be established assumingthat the TCB in
luding the Compartment Manager and theTrust Manager is trustworthy. In Se
tion 4, we will explainhow remote parties
an determine the trustworthiness of theTCB, but now we
ontinue des
ribing the establishment oftrusted
hannels on this design level.We distinguish between trusted
hannels between
ompart-ments running on the same platform (lo
al trusted
hannels)and trusted
hannels between a remote and a lo
al
ompart-ment (remote trusted
hannels).

Lo
al Trusted Channels: Sin
e both the sender and there
eiver are exe
uted on top of the same TCB, an expli
itveri�
ation of the TCB's trustworthiness does not makesense in this
ase. Therefore, trusted
hannels
an easilybe established using se
ure
hannels o�ered by the underly-ing TCB, and the fun
tions provided by the CompartmentManager: The sending
ompartment �rst requests the
on-�guration of the destination
ompartment from the Com-partment Manager. On su

essful validation that the des-tination
on�guration
onforms to its se
urity poli
y, thesour
e
ompartment establishes a se
ure
hannel to the des-tination
ompartment.Remote Trusted Channels: The required steps to estab-lish a remote trusted
hannel from a remote
ompartmentto the lo
al
ompartment are as follows (
mp. Figure 3):
Trusted Channel

Secure Channel

(1) request-trusted-channel[]

(6) trusted-channel-response

(7) data

(2) request-trusted-

channel[] (5) trusted-channel-response

(3) comp-idLC

(4) comp-confLC

Plain ChannelFigure 3: A remote trusted
hannel depends on lo
aland remote se
ure
hannels.If a lo
al
ompartment re
eives a request (1) from a remote
ompartment, the lo
al
ompartment requests the Trust Man-ager (2) to re
eive a
redential in
luding its own
on�gu-ration. Then the Trust Manager generates the
redentialbased on both the
ompartment
on�guration provided bythe Compartment Manager (4) and the
on�guration of theplatform's TCB. The resulting
redential is returned to theinvoking lo
al
ompartment (5) that forwards it (6) to theremote
ompartment. That
an now verify the trustworthi-ness of the lo
al
ompartment and, on su

ess, using the
redential to open a trusted
hannel.Se
tion 4.2 des
ribes the realization of the TCB
redentialand Se
tion 4.3 des
ribes the proposed proto
ol in more de-tail. Moreover, it shows how to realize the
redentials basedon X.509
erti�
ates.
3.3 Strong IsolationIn order to strongly isolate
ompartments from ea
h other,isolation at runtime as well as isolation in persistent storageis required. On this design level, we assume that runtime iso-lation is provided by the underlying layer (see Se
tion 4.1.2).Isolation of the persistent states of
ompartments, however,is provided by the Storage Manager (SM).The Storage Manager binds all of the
ompartment's datato the
orresponding
ompartment
on�guration while pre-serving integrity and
on�dentiality. In this
ontext, bindmeans that a

ess to bound data is only possible under theterms de�ned on storage, e.g., a
ertain
ompartment
on-�guration or a user ID.

Sin
e the Storage Manager
ommuni
ates with its
lientsover trusted
hannels, it
an be lo
ated at user-side, atprovider-side, or realized by a trusted third party.12 Ourse
urity ar
hite
ture uses a lo
al Storage Manager for thefollowing reasons: First, a

ess to the storage is needed ev-ery time a stateful li
ense is used. Using a remote storagerequires an instant online a

ess and limits the frequen
yof possible state updates. Se
ond, maintaining a trusted
hannel to an external storage
learly in
reases overall
om-plexity and failure probability of the system. An externalstorage is a single point of failure. A denial of servi
e (DoS)atta
k, for instan
e, violates the availability requirement ofall stateful li
enses.
UntrustedPlain Channel

Trusted

Untrusted

Storage

Compartment

Manager
User Manager

Compartment

Storage

Manager

user id

state

protected state

compartment

configuration

Trusted Channel

Secure ChannelFigure 4: The Storage Manager enfor
es strong of-�ine isolation.Figure 4 depi
ts the involved
ompartments and dependen-
ies to realize o�ine isolation of
ompartments. The Stor-age Manager uses the Compartment Manager to retrievethe origin
ompartment
on�guration, the User Manager tobind
ompartment's data to a
ertain user (if requested) andan untrusted storage
ompartment to persistently write andread plain data13. Internally, Storage Manager uses
rypto-graphi
 fun
tions to preserve
on�dentiality and integrity ofdata before it is
ommitted to untrusted storage.
3.4 Trusted StorageThe following se
tion des
ribes how the trusted storage pro-vider TSP
an be realized. Providing a
ompletely tamper-resistant trusted storage
ompartment would
learly raise
osts and limit �exibility. Hen
e, we look for a more e�
ientapproa
h. To keep the high-level ar
hite
ture independentof a
on
rete instantiation of the underlying hardware plat-form, the design de
ision is to provide a logi
al servi
e thatprote
ts the freshness of arbitrary data. More
on
retely, weextended SM that already provides isolated se
ure storage(see Se
tion 3.3) by a freshness property. In order to real-ize freshness dete
tion, SM has ex
lusive a

ess to a small12Mi
rosoft's Media Rights Manager [26℄, for instan
e, ap-plies the provider-side approa
h where a lo
al storage
lientregularly
onne
ts to an external
ontent prote
tion serverto enfor
e freshness.13For the realization of availability we suggest
ommon solu-tions based on high redundan
y, i.e., utilization of multipledistributed storage lo
ations (e.g., USB sti
ks or online sites)assisted by an appropriate RAID system. In
ase of failureof a parti
ular storage devi
e, it is still possible to retrievedata from alternative storage mirrors.

tamper-resistant memory lo
ation.
3.5 DRM ControllerThe DRM
ontroller DC
onsists of a li
ense interpreter anda
ontent a

ess arbitration. It is the
ore
omponent for these
ure usage and transfer of li
enses (see Se
tion 2.5) whereli
enses are de�ned by an XrML li
ense �le. All available
ontents and li
enses are internally indexed to provide allne
essary information about the available
ontents and li-
enses to the user. The index itself, the
ontents, and theli
enses are persistently stored using the Storage Manager(
f. Se
tion 3.3) that enfor
es the storage se
urity require-ments of both user and provider (
f. Se
tion 2.4).The prerequisites for usage and transfer of li
enses is a properinitialization of the platform and the DRM Controller. Inthe following, we assume that (i) the TCB has been loadedproperly, (ii) the Trust Manager
ontains the appropriate
redential, (iii) the DRM Controller has been measured andstarted by the Compartment Manager, and (iv) the
ompo-nents for mandatory se
urity poli
y that relate to the DRMController are part of its
on�guration. On startup, theDRM Controller loads its a
tual
ontent/li
ense index fromthe Storage Manager over a lo
al trusted
hannel.To obtain li
enses the provider establishes a remote trusted
hannel to the DRM Controller, and if su

essful, the
on-tent and the li
ense are sent to the DRM Controller
om-partment over this
hannel. The DRM Controller updatesits index. On shutdown, it stores the li
ense and the
orre-sponding
ontent using the Storage Manager. Sin
e the
om-muni
ation is performed over a trusted
hannel, the DRMController
an verify whether the Storage Manager is trust-worthy for to the given li
ense.For using stateful li
enses the user invokes the DRM Con-troller. An example implementation would be to use a
om-muni
ation
lient that enables requests from the lega
y Linuxto the DRM Controller. The DRM
ontroller loads the
or-responding li
ense and
he
ks if all
onditions for the
orre-sponding usage-rights are ful�lled. It then veri�es the trust-worthiness of an appli
able output devi
e, e.g., the se
ureuser interfa
e, by opening a trusted
hannel to it. On a su
-
essful li
ense
overage, the DRM Controller updates the
orresponding subset of state variables within the li
ense,syn
hronizes its internal state with that stored by the Stor-age Manager, loads the
orresponding
ontent, and invokesthe output devi
e to se
urely render the given
ontent.For the transfer of stateful li
enses, again the user invokes alo
ally running DRM Controller to transfer a
ertain li
enseto a remote DRM Controller on the destination platform.The sour
e platform uses the Trust Manager to establish aremote trusted
hannel to the destination platform to sendthe li
ense (and the
orresponding
ontent) to it. In
ase thisis su

essful the sour
e platform updates resp. invalidatesits index and syn
hronizes its internal state with the StorageManager. The destination platform stores the new li
ense(and
ontent) using its own storage Manager.The se
urity of the realization dis
ussed above depends on
ertain assumptions, i.e., a se
ure
hannel between
ompart-ments,
ompartment isolation during runtime, and the avail-

ability of
redentials. The following se
tion des
ribes howour ar
hite
ture provides them.
4. IMPLEMENTATIONIn this se
tion we des
ribe details of our implementation.We �rst give an overview to des
ribe the operational basisproviding the se
urity properties demanded in Se
tion 2.4.Furtheron, we brie�y explain ea
h the layers our implemen-tation, the initialization pro
ess as well as the implementa-tion of the
ore
omponents, namely the Storage Managerand the DRM Controller.
4.1 Implementation OverviewOur implementation primarily relies on a small se
urity ker-nel, virtualization te
hnology, and Trusted Computing te
h-nology. The se
urity kernel, lo
ated as a
ontrol instan
e be-tween the hardware and the appli
ation layer, implementselementary se
urity properties like trusted
hannels and iso-lation between pro
esses. Virtualization te
hnology enablesreutilization of lega
y operating systems and present ap-pli
ations whereas Trusted Computing te
hnology serves asroot of trust.Our abstra
t de�nitions from Se
tion 2.1
an be mapped toreal world implementation. Thus a
ompartment maps toan appli
ation pro
ess, while a
ompartment
on�gurationmaps to a software binary in
luding the initial state of allvariables and the instru
tion set.The more detailed ar
hite
ture of our realization is depi
tedin Figure 5. The bottom layer is
onventional hardwarewith additional Trusted Computing (TC) support. Abovethe hardware layer resides our se
urity kernel
onsisting ofa virtualization layer and a trusted software layer providingsharing of hardware resour
es and realizing elementary se-
urity and management servi
es that are independent andprote
ted from a lega
y OS. On top of the se
urity kernel, apara-virtualized lega
y operating system (
urrently Linux)in
luding lega
y appli
ations, the DRM
ontroller, and theSe
ure I/O are exe
uted in strongly isolated
ompartmentsrunning in parallel as user pro
esses.

Trusted Software Layer

Virtualization Layer

Hardware Layer

Application Layer

Conventional Hardware

DRM

Controller
Application

TPM 1.2

IPC, Hardware Sharing, Memory Management, Scheduling...

Legacy Operating System

Application Application

Untrusted Storage

Trust
Manager

Storage
Manager

User
Manager

Compartment
Manager

S
e

c
u

ri
ty

 K
e

rn
e

l

Figure 5: The PERSEUS se
urity ar
hite
ture.In the following, we brie�y des
ribe ea
h implemented layerin more detail.
4.1.1 Hardware LayerThe hardware layer
onsists of
ommer
ial o�-the-shelf PChardware with additional Trusted Computing te
hnology asde�ned by the Trusted Computing Group (TCG) [52℄ in

form of a se
urity
hip known as Trusted Platform Mod-ule (TPM). The TPM is
onsidered to be a tamper-evidenthardware devi
e similar to a smart-
ard and is assumed to bese
urely bound to a
omputing platform. It is primarily usedas a root of trust for platform's integrity measurement andreporting. During system startup, a
hain of trust is estab-lished by
ryptographi
ally hashing ea
h boot stage beforeexe
ution. The measurement results are stored prote
tedin Platform Con�guration Registers (PCRs). Based on thisPCR
on�guration, two basi
 fun
tions
an be provided:Remote Attestation allows a TCG enabled platform to at-test the
urrent measurement and Sealing resp. Binding tolo
ally resp. remotely bind data to a
ertain platform
on-�guration. Our implementation uses su
h a TCG TrustedPlatform Module in the present version 1.2 [53℄ sin
e previ-ous TPM versions
annot be used to provide fresh storageas we will elaborate on in Se
tion 4.4).
4.1.2 Virtualization LayerThe main task of the virtualization layer is to provide an ab-stra
tion of the underlying hardware, e.g., CPU, interrupts,devi
es, and to o�er an appropriate management interfa
e.Moreover, this layer enfor
es an a

ess
ontrol poli
y basedon this resour
es. The
urrent implementation is based onmi
rokernels14 of the L4-family [15, 19℄. It implements hard-ware abstra
tions su
h as threads and logi
al address spa
esas well as an inter-pro
ess
ommuni
ation (IPC). Devi
edrivers and other essential operating system servi
es, su
has pro
ess management and memory management, run inisolated user-mode pro
esses. In our implementation, wekept the interfa
es between the layers generi
 to supportalso other virtualization te
hnologies. Thus, the interfa
eo�ered by the virtualization layer is similar to those o�eredby virtual ma
hine monitors resp. hypervisors like sHypeand Xen [33, 43, 10℄. However, we a
tually de
ided to em-ploy a L4-mi
rokernel that easily allows isolation betweensingle pro
esses without
reating a new full OS instan
e inea
h
ase su
h as when using Xen.
4.1.3 Trusted Software LayerThe trusted software layer, based on the PERSEUS se
urityar
hite
ture [32, 39, 41℄, uses the fun
tionality o�ered by thevirtualization layer to provide se
urity fun
tionalities on amore abstra
t level. It provides elementary se
urity proper-ties like trusted
hannels and strong
ompartment isolationas well as several elementary management
ompartments(e.g., I/O a

ess
ontrol poli
y) that realize se
urity
riti
alservi
es independent and prote
ted from
ompartments ofthe appli
ation layer. The main servi
es of the trusted soft-ware layer to enable stateful li
enses and li
ense transfersare, as des
ribed in Se
tion 3.1, the Trust Manager (
f. Se
-tion 4.3), the User Manager, Compartment Manager, andparti
ularly the Storage Manager (
f. Se
tion 4.4).
4.1.4 Application LayerOn top of the se
urity kernel, several instan
es of the lega
yoperating system as well as se
urity-
riti
al appli
ations � inour
ase the DRM
ontroller and Se
ure I/O � are exe
utedin strongly isolated
ompartments su
h that unauthorized14A mi
rokernel is an operating system kernel that minimizesthe amount of
ode running in privileged (�ring 0�) pro
essormode [37℄.

ommuni
ation between appli
ations or unauthorized I/Oa

ess is prevented.15 The proposed ar
hite
ture o�ers ane�
ient migration of existing lega
y operating systems. Weare
urrently running a para-virtualized Linux [14℄. Thelega
y operating system provides all operating system ser-vi
es that are not se
urity-
riti
al and o�ers users a
om-mon environment and a large set of existing appli
ations. Ifa mandatory se
urity poli
y requires isolation between ap-pli
ations of the lega
y OS, they
an be exe
uted by parallelinstan
es of the lega
y operating system.
4.2 Secure InitializationThe se
urity of the whole ar
hite
ture relies on a se
urebootstrapping of the trusted
omputing base. A TPM-enabled BIOS, the Core Root of Trust for Measurement,measures the integrity of the Master Boot Re
ord (MBR),before passing
ontrol to it. A se
ure
hain of measure-ments is then established: Before program
ode is exe
utedit is measured by a previously measured and exe
uted
om-ponent. For this purpose, we have modi�ed the GRUBbootloader16 to measure the integrity of the
ore
ompart-ments, i.e., the virtualization layer, all
ompartments in-tera
ting dire
tly with the TPM � Compartment Manager,Trust Manager and Storage Manager � as well as the TPMdevi
e driver. The measurement results are se
urely storedin the PCRs of the TPM. All other
ompartments (in
lud-ing the lega
y OS) are subsequently being loaded, veri�ed,and exe
uted by the Compartment Manager a

ording tothe e�e
tual platform se
urity poli
y.Upon
ompletion of the se
ure initialization, an authorized
ompartment (su
h as the Trust Manager)
an instru
t theTPM to generate a
redential for the Trusted ComputingBase. This
redential
onsists of all PCR values re�e
tingthe
on�guration of the TCB and a key pair whi
h is boundto these PCR values. Together with an I/O a

ess poli
ymanagement servi
e that is of
ourse also part of the TCB,the private key
an only be used by
ompartments that areboth part of the TCB and are authorized to a

ess the TPM.
4.3 Trust ManagerOur implementation of the Trust Manager is based on theopen-sour
e TCG Software Sta
k TrouSerS [51℄. In orderto provide remote trusted
hannels, the Trust Manager
re-ates on request of a lo
al
ompartment a private bindingkey whose usage is bound to the requesting
ompartment's
on�guration and the
on�guration of the platform's TCB(in
luding the Trust Manager itself). The appropriate
er-ti�
ate of the publi
 binding key has to be extended su
hthat remote parties
an verify both
on�gurations. To a

ess
ontent that is remotely de
rypted with the publi
 bindingkey, the Trust Manager
he
ks whether the
on�guration ofthe
ompartment that want to use the
orresponding privatebinding key mat
hes the
on�guration of the
ompartmentthat has initiated the
reation of that binding key. Notethat, by extending this 'mat
h' fun
tion, one
an easily pro-vide property-based attestation/sealing [40, 34, 13℄ on topof the Trust Manager.A

ording to Figure 6, in the following, we give a detailed15However,
overt
hannels are still feasible.16www.prose
.rub.de/tgrub.html

des
ription of the proto
ol for establishing a remote trusted
hannel. The proto
ol
an be de
omposed into three majorsteps, namely
erti�
ate generation, en
ryption of a sessionkey, and de
ryption of the session key.Certi�
ate Generation: The request of the remote
om-partment RC for a trusted
hannel to the lo
al
ompart-ment LC rea
hes TM via LC. After the mapping of LC's
ompartment identi�er to his a
tual
ompartment
on�g-uration comp-confLC using CM, TM invokes the TPM to
reate a asymmetri
 binding key bound to the a
tual TCB
on�guration.17 The TPM then returns the publi
 bindingkey PKBIND and the en
rypted se
ret part SK′

BIND usingTPM's storage root key (SRK). Then TM invokes the TPMto sign over the a
tual TCB
on�guration, the binding key,and the
on�guration of LC using an attestation identity key(AIK).18 Finally, TM embeds the re
eived TPM
erti�
atewithin an X.509
erti�
ate for use in the TLS handshake,whi
h will be sent together with PKBIND to RC.TCB
on�guration TCB-confPubli
 binding key PKBINDLo
al
ompartment
on�guration comp-confLCTPM Signature =
signAIK (TCB-conf , PKBIND , comp-confLC)Table 1: Stru
ture of the TPM
erti�
ate certBIND.En
ryption of Session Key: RC veri�es the
erti�
atesignature and validates the two embedded
on�gurations

TCB-conf and comp-confLC by
omparing them with ref-eren
e values known to be trustworthy. On su

ess, RC en-
rypts a symmetri
 session key to esk using PKBIND anda
knowledges the TLS handshake with esk, that
an be un-bound by LC only if it provides the stated
ompartmentand TCB
on�guration.De
ryption of Session Key: Upon re
eipt of the en-
rypted session key esk, LC requests TM to unbind the ses-sion key. Therefore, TM again maps LC's
ompartment iden-ti�er to his a
tual
ompartment
on�guration comp-confLCusing CM, to validate the
ompartment
on�guration statedin the
erti�
ate with the one requesting the unbind pro-
ess. On su

ess, TM invokes the TPM to unbind the ses-sion key using the en
rypted private part of the binding key
SK′

BIND . The TPM �rst
ompares the a
tual PCR valueswith ones SKBIND is bound to, before returning the de-
rypted session key to TM. TM �nally, passes the de
ryptedsession key ba
k to LC whi
h uses it for the
ompletion of theTLS handshake to establish a (one-way) SSL-based trusted
hannel from
ompartment RC to LC.Performan
e Measurements: We have implemented thedes
ribed proto
ol and run it on TPMs of di�erent vendors.The measurement results with maximum asymmetri
 keylengths (2048 bits) are shown below. Note that the TPM17The a
tual TCB
on�guration TCB-conf was measuredduring se
ure initialization (
f. Se
tion 4.2).18The attestation identity key (AIK) is a non-migratable keythat has been attested by a priva
y-CA to
ome from aTCG
onform platform. An AIK (in
ontrast to the generalsignature key)
an be used only to sign other TPM keys orPCR values.

Trust Manager
TM TPM

Compartment Manager
CM

Local Compartment
LC

(2) request-trusted-

channel[]

(5) certBIND, PKBIND, SK'BIND

Remote Compartment
RC

(1) request-trusted-

channel[]

(6) PKBIND, certBIND

(3) comp-idLC

(4) comp-confLC

create-binding-key[TCB-conf]

PKBIND, SK'BIND

signAIK[PKBIND, SK'BIND, comp-confLC]

certBIND

verify[PKBIND, certBIND]

esk := encryptPKBIND[session-key]

(7) esk unbind[certBIND, esk, SK'BIND]

unbind[esk, SK'BIND]

verify[certBIND, comp-confLC]

verify[TCB-conf]

decryptSRK[SK'BIND]

decryptSKBIND[esk]

session-key

comp-idLC

comp-confLC

session-key

SSL Session

TCB

Local PlatformRemote Platform

SK'BIND := encryptSRK[SKBIND]

Figure 6: Proto
ol for establishing a remote trusted
hannel. The numbers (X) on the arrows refer to theproto
ol steps of Figure 3.
al
ulations dominate the overall
omputation and networktransfer times. Atmel 1.1b NSC 1.1bCerti�
ate generation 30 � 80 s 52 � 55 sSession key en
ryption (w/o TPM) < 1 s < 1 sSession key de
ryption 2 � 3 s 23 � 24 sTable 2: Trust Manager performan
e measurementresults.
4.4 Storage ManagerThe following se
tion des
ribes the implementation of theStorage Manager SM, that enables other
ompartments topersistently bound their lo
al states to their a
tual
on�g-uration while preserving integrity,
on�dentiality and fresh-ness. We �rst give an short overview and then des
ribe the

realization of se
ure storage that will be extended by an ad-ditional freshness layer to provide also trusted storage. Atthe end of this se
tion, we brie�y des
ribe the proto
ols toinit SM as well as for storing to and loading from trustedstorage using SM.Overview: The Storage Manager is invoked by a
ompart-ment to store a data obje
t persistently preserving
on�den-tiality and integrity � optional with additional restri
tions
rest (e.g., freshness,
ertain user id). SM invokes the Com-partment Manager to retrieve the a
tual
on�guration ofthe respe
tive
ompartment to bind the data obje
t to thatorigin
ompartment
on�guration cmp-conf . As shown inFigure 7, SM
reates/updates a metadata entry for the
or-responding data obje
t data with the data obje
t identi�er
dataID, its freshness dete
tion information f , i.e., the a
tual
ryptographi
 hash value, and all relevant a

ess restri
tions

rest19 within its index indexSM. SM extends the data ob-je
t with an integrity veri�
ation information, syn
hronizesits monotoni

ounter cntSM, en
rypts the data obje
t andthe updated index and writes it on untrusted persistent stor-age using keySM. Sin
e indexSM is the base of se
urity for
SM, indexSM is sealed to SM's
on�guration via the sealed
keySM. Thus only the same, trusted Storage Manager
on-�guration is able to unseal and use the key again. On a loadrequest, SM again uses the Compartment Manager to
om-pare the invoking
ompartment
on�guration with the onethat afore stored the respe
tive data obje
t. On a su

ess-ful veri�
ation, SM reads and de
rypts the data obje
t fromthe untrusted persistent storage and veri�es its integrity.Before the data obje
t is
ommitted to the requesting
om-partment, SM also veri�es possibly existing additional re-stri
tions su
h as freshness or a
ertain user id.

TCG TPM 1.2

Compartment

data := load[dataID]
dataID := store[data,,rest]

Compartment
Manager

Storage Manager

cmp-conf dataID f rest

CP_0 ID_325 0x29... fresh

CP_1 ID_563 0x10... UID = 2

cntSM

keySM

indexSM

Figure 7: SM's metadata index.
Integrity

Confidentiality

Untrusted

Trusted Channel

Trusted

keySMe := encrypt[data ||i]

data := load[dataID]dataID := store[data, rest]

e := read[dataID]
dataID :=write[e]

Plain Channel

data||i := decrypt[e]

i := hash[data] A/R := verify[data, i]Hash

Hardware
Protected

Untrusted StorageFigure 8: Compartment view of SM's se
ure storageimplementation.Se
ure Storage: Figure 8 depi
ts our se
ure storage imple-mentation. Thus, our se
ure storage
ompartment basi
allyo�ers two trusted
hannels namely load[] and store[] whileitself uses two untrusted
hannels namely read[] and write[]from an untrusted storage
ompartment to persistently writerespe
tively read data while providing at least availability.20If SM re
eives a data obje
t data via store[data, rest], SM19Further a

ess restri
tions
an be a
ertain user id, groupid or date of expiry.20For the realization of availability we suggest solutions basedon high redundan
y, i.e., by the utilization of multiple dis-tributed storage lo
ations (e.g., USB sti
ks or online sites)assisted by an appropriate RAID system. In
ase of failureof a parti
ular storage devi
e, it is still possible to retrievedata from alternative storage mirrors.

internally
reates or updates obje
t's metadata21 and
al
u-lates its hash value i to verify integrity. Then data togetherwith i is en
rypted with the internal
ryptographi
 se
ret
keySM using the fun
tion e := encrypt[data||i] (to provide
on�dentiality). The en
rypted data e will afterwards bewritten on untrusted storage using dataID := write[e] thatreturns the obje
t identi�er dataID . Conversely, if e is readfrom the untrusted storage via e := read[dataID] it will bede
rypted to data and i via decrypt[e] using the internal
ryptographi
 se
ret keySM. Before returning data to load[],
SM veri�es the integrity of data and further a

ess restri
-tions (e.g., a
ertain user id) based on the
orrespondingmetadata in SM's index using the fun
tion verify[data , i].Trusted Storage: In order to provide trusted storage, we en-han
e SM by an additional layer for managing freshness ofdata obje
ts. Figure 9 depi
ts SM's extension where the(
urrently abstra
t) fun
tion f := memorize[data] updatesthe internal data stru
ture FRESH with the freshness value
f . Afterwards, data will be stored persistently ensuring
on-�dentiality and integrity using se
ure storage. On load fromse
ure storage, the fun
tion verify[data , f] additional veri-�es that the re
eived data obje
t data is the last one beingstored.

Freshness

data := load[dataID]dataID := store[data, rest]

f := memorize[data] A/R := verify[data, f]

Secure Storage

Trusted channel

Trusted

Untrusted channel

Hardware
ProtectedFigure 9: Compartment view of SM's trusted storageimplementation.To provide su
h freshness dete
tion, SM uses an additionalmetadata �eld (
f. Figure 7) to store the
ryptographi
 hashvalue Hash(data) that de�nes the last stored version of data .On load, SM
al
ulates Hash(data) again and
he
ks if itmat
hes the hash value on last store. In order to ensurefreshness of these metadata, the index of SM itself has to bestored fresh.We therefore analyzed to what extend TPMs of version 1.1band 1.2
an be used to realize a fresh index for SM.

• DI-Register: TPMs version 1.1b provide a Data In-tegrity Register (DIR) that
an persistently store a160 bit value [21, 23℄. Unfortunately, a

ess to thisregister is only authorized by the TPM-Owner se
retimplying that the TPM-Owner
an always perform re-play atta
ks. The only solution would be to distributeplatforms with an a
tivated TPM and an owner au-thorization se
ret that is unknown to the user. Thissolution does not
onform to the TCG spe
i�
ationthat demands that TCG-enabled platforms have to beshipped with no owner installed (see [54℄, page 139).
• SRK Re
reation: An alternative way to prevent replayatta
ks based on TPMs version 1.1b would be to
reate21More details on storage metadata at the end of this se
tion.

a new Storage Root Key (SRK) before the system isshut down. Re
reation of the SRK would prevent thatpreviously
reated TPM en
ryption keys
an be usedany more. Unfortunately, a SRK
an only be renewedby the TakeOwnership fun
tion whi
h itself requires apreviously OwnerClear that itself disables the TPM.Therefore, an online-re
reation of the SRK seems tobe impossible.
• NV-RAM: TPMs version 1.2 provide a limited amountof non-volatile (NV-) RAM to whi
h a

ess is restri
tedto authorized entities. So-
alled NV-Attributes de�newhi
h entities are authorized to write to and/or readfrom the NV-RAM. Thus, data integrity
an be pre-served by storing a hash value of the data into the NV-RAM and ensuring that only the Storage Manager
ana

ess the authorization se
ret.
• Se
ure Counter: A TPM version 1.2 supports at leastfour monotoni

ounters. Based on this fun
tionality,the freshness of data
an be dete
ted by se
urely
on-
atenating it with the a
tual
ounter value.A result of our previous analysis we showed that TPMsversion 1.1b
annot be used to provide fresh storage as re-quired to enfor
e stateful li
enses and/or to transfer li
enses.Therefore we de
ided to realize trusted storage based on themonotoni

ounter fun
tionality of TPMs version 1.2.A monotoni
 hardware
ounter allows us to se
urely main-tain versioning of an arbitrary data
omponent, by keepinga software
ounter syn
hronized with one (of four guaran-teed) hardware
ounters of the TPM. As depi
ted in Fig-ure 7, SM manages an internal software
ounter that, everytime SM updates its index, is in
remented syn
hronouslywith the monotoni
 hardware
ounter. If both mismat
h atany time, a outdated data is dete
ted, that will be handleda

ording to the a
tual se
urity poli
y.However, in order to employ TPM's monotoni

ounters, SMhas to be initialized
orre
tly. Figure 10 depi
ts the stepsneeded for the �rst initialization of SM on a new platformtogether with the initialization ne
essary for instan
e afterrebooting the platform. On the initial setup SM uses theTPM to
reate its internal
ryptographi
 key keySM thatthen will be sealed to the a
tual platform
on�guration. Toenable freshness dete
tion and thus trusted storage, SM
re-ates a monotoni

ounter cntid with a authenti
ation auth,e.g., a se
ret password. The initial setup �nishes with the
reation of SM's internal metadata index indexSM and thesaving of the sealed key blob and the en
rypted index onuntrusted storage.After a platform reboot, SM reads the key blob from theuntrusted storage and asks the TPM to unseal its internalkey. The TPM is able to unseal keySM if the platform has thesame
on�guration as it was at the sealing pro
ess, thus pre-venting a modi�ed SM to a

ess keySM. Then SM uses keySMto de
rypt its metadata index read from the untrusted stor-age. Finally, SM veri�es freshness of indexSM by
omparingthe de
rypted
ounter of indexSM with the a
tual
ountervalue of the
orresponding TPM
ounter cntid.

Untrusted
Storage

Trusted Platform Module
TPM

write[keyblobSM]

Storage Manager
SM

request-random[]

keySM

read-counter[cntid]

rnd

seal[keySM]

keyblobSM

read[keyblobSM]

unseal[keyblobSM]

decrypt[keySM, read[indexSM]]

create-counter[cntid, auth]

cnt

write[encrypt[keySM, indexSM]]

cnt

keySM:=derive[rnd]

verify[indexSM, cnt]

indexSM:= create[cnt]

Figure 10: Proto
ol view of SM's initialization.Figure 11 depi
ts the proto
ol steps required to bind a
om-partment's data obje
t persistently to its a
tual
on�gura-tion. After the mapping of
ompartment identi�er to thea
tual
ompartment
on�guration using CM, SM updates
indexSM with the
orresponding metadata as well as the in-
remented software
ounter to enable freshness dete
tion for
indexSM. Afterwards, SM writes both, the data obje
ts andthe updated index, en
rypted on the untrusted storage us-ing keySM. Finally, SM syn
hronizes its software
ounterwith the TPM's monotoni
 hardware
ounter and returnsthe data obje
t identi�er.

Comp. Manager
CM

Storage Manager
SM

store[data, rest]

Compartment
X

comp-idX

comp-confx

Untrusted Storage

increment-counter[cntid, auth]

TPM

dataID := write[encrypt[keySM, data]]

write[encrypt[keySM, indexSM]]

dataID

update-index[comp-confx, data, rest]

increment-counter[indexSM]

Figure 11: Proto
ol view of SM's store implementa-tion.We
omplete the s
enario with Figure 12 that depi
ts theproto
ol steps required to load a
ompartment's data obje
tagain. After the mapping of requesting
ompartment iden-ti�er to the a
tual
ompartment
on�guration using CM,

SM reads the requested data obje
t from untrusted storageand de
rypts it using keySM. Before returning data to the
orresponding
ompartment, SM veri�es all a

ess restri
-tions (e.g., freshness, or a
ertain user id) given on storevia rest based on the
orresponding metadata in indexSMand veri�es that the requesting
ompartment has the same
on�guration as it was on store.
Compartment Manager

CM
Storage Manager

SM

load[dataID]

Compartment
X

comp-idX

comp-confx

Untrusted Storage

decrypt[keySM, read[dataID]]

data

verify[data, comp-confx]Figure 12: Proto
ol view of SM's load implementa-tion.
4.5 Secure I/OThe Se
ure I/O
ompartment re
eives prote
ted
ontent inplain for rendering. Thus the SO is a se
urity
riti
al
om-partment that has to be trusted by user and provider. There-fore SO is exe
uted in parallel, isolated from the a
tuallega
y OS and has to be veri�ed by the DRM
ontrollerfor trustworthiness. In order to provide a �exible e�
ientimplementation, we used a para-virtualized Linux operat-ing system redu
ed to the essential fun
tionality to renderthe de
rypted
ontent22 from DC. Moreover, our whole sys-tem ar
hite
ture enfor
es that SO is allowed to
ommuni
ateonly with devi
es essential for the rendering pro
ess and inturn re
eives
ommuni
ation only from DC so that de
rypted
ontent
annot leak into untrusted
ompartments.
5. SECURITY CONSIDERATIONSIn this se
tion we �rst show why our implementation realizesthe se
urity properties (R1) � (R3) demanded in Se
tion 2.4.We then shortly analyze how we
an ful�ll the overall se
u-rity obje
tives (O1) � (O6) demanded in Se
tion 2.3.
5.1 Trusted ChannelsThe inter-pro
ess
ommuni
ation (IPC) provided by the vir-tualization layer enables se
ure
hannels between lo
al
om-partments that enfor
e
on�dentiality and integrity prote
-tion. To provide se
ure
hannels also between lo
al and re-mote
ompartments, we suggest the appli
ation of
ommonestablished me
hanisms for
ommuni
ation se
urity su
h asSSH [58℄ and TLS [9℄. In order to extend se
ure
hannelsto trusted
hannels that enable a party to verify a
om-partment's
on�guration, we have implemented the TrustManager (TM) and the Compartment Manager (CM). Bothtogether allow lo
al and remote
ompartments to determinethe
on�guration of their
ommuni
ation
onta
ts and thusto derive their trustworthiness. Moreover, our ar
hite
ture22Our exemplary SO implementation provides rendering ofseveral audio formats

enfor
es that information bound to the determined
on�gu-ration
annot be a

essed by an unauthorized (and poten-tially untrusted)
on�guration based on the TCG me
ha-nisms sealing and binding. The se
ure initialization pro
ess(
f. Se
tion 4.2) however enfor
es the trustworthiness of
TM, CM and the underlying TCB.
5.2 Strong IsolationIn order to strongly isolate
ompartments from ea
h other,isolation at runtime as well as isolation in persistent storageis required. Runtime isolation is provided by the small virtu-alization layer that implements only logi
al address spa
es,inter-pro
ess
ommuni
ation (IPC) and an appropriate in-terfa
e to enfor
e an a

ess
ontrol management for the un-derlying hardware. Devi
e drivers and other essential op-erating system servi
es, su
h as pro
ess management andmemory management, run in isolated user-mode pro
esses.Thus, the amount of
ode running in privileged (�ring 0�)pro
essor mode, is
learly minimized and
an, in
ontrastto monolithi
 operating system kernels su
h as Linux or MSWindows, properly be veri�ed for its
orre
tness. More-over, a failure in one of these servi
es
annot dire
tly a�e
tthe other servi
es, espe
ially the
ode running in privilegedmode. Thus, mali
ious devi
e drivers
annot
ompromise
ore operating system servi
es as they are all exe
uted inuser-mode. Isolation in persistent storage is provided byour Storage Manager (SM) implementation and the usage oftrusted
hannels. Sin
e
onventional
omputer ar
hite
tures
annot provide a trusted
hannel to the persistent storagedevi
e, an adversary
an always arbitrarily
hange the stateof the storage or a

ess the
ommuni
ation to and from the
orresponding
ontroller. We prevent su
h o�ine manipula-tions and replay atta
ks while establishing a trusted
hannelto SM during the se
ure initialization (
f. Se
tion 4.2) pro-
ess that enables the platform to verify the trustworthinessof SM.
5.3 Trusted StorageOur ar
hite
ture provides se
ure storage, i.e., storage pro-viding integrity and
on�dentiality, using established
ryp-tographi
 me
hanisms. However, we improved
ommon ap-proa
hes while taking advantage of the strong isolation
apa-bility of our ar
hite
ture that prevents the exposure of
ryp-tographi
 se
rets to unauthorized or mali
ious pro
esses.We also extended the se
ure storage by a hardware-basedfreshness dete
tion me
hanism that dete
ts outdated persis-tently stored information, i.e., information that indeed
ouldbe de
rypted and veri�ed for integrity but that was not theinformation written at last. Having a freshness dete
tionme
hanism for persistent storage, our ar
hite
ture is able tomanage for instan
e stateful li
enses while preventing the
orresponding replay atta
ks. In order to provide TrustedStorage, i.e., storage that enables other
ompartments topersistently bound their lo
al states to their a
tual
on�g-uration while preserving integrity,
on�dentiality and fresh-ness, we employ the Storage Manager (SM) together withthe Compartment Mananger (CM). As SM innately enfor
esintegrity,
on�dentiality and freshness, CM provides trust-worthy measurement of
ompartments
on�guration usedby SM to return information requested on load only to
om-partments with the same
on�guration as provided on thepre
eding storage request. The se
ure initialization (
f. Se
-tion 4.2) however, again enfor
es the trustworthiness of SM,

CM and the underlying TCB.
5.4 Security ObjectivesIn the following we shortly analyze how we ful�ll the overallse
urity obje
tives (O1) � (O6) of users and providers de-manded in Se
tion 2.3 using the implemented se
urity prop-erties (R1) � (R3).(O1) Li
ense integrity: Trusted
hannels ensure thatonly mutually trusted
ompartments
an modify a li-
ense, whereas strong isolation and trusted storageprevents unauthorized alteration of li
enses at runtimeand while persistently stored.(O2) Li
enses unforgeability: Trusted
hannels enablea party to verify a
ompartment's
on�guration for
orre
t subli
ensing and li
ense transfers.(O3) Li
ense enfor
ement: Trusted
hannels enable aparty to verify a
ompartment's
on�guration for
or-re
t li
ense enfor
ement whereas strong isolation pre-vents mali
ious impa
ts on the li
ense enfor
ing
om-partment.(O4) Li
ense availability: Using trusted storage ensuresavailability of li
enses.(O5) Priva
y: User's priva
y is realized by ensuring thatthe se
urity poli
y de�ned by the platform owner re-stri
ts the I/O behavior of every appli
ation. Thus,even if third party appli
ations, like the DRM
on-troller,
an lo
ally enfor
e their own se
urity poli
y,they
annot bypass the platform's se
urity poli
y whilea

essing non authorized information or devi
es. Atthe same time we ensure that the platform owner
an-not dire
tly a

ess the state of appli
ations to bypassse
urity poli
ies lo
ally enfor
ed by the appli
ations.Moreover, our ar
hite
ture is able to attest (resp. sealto) single
ompartments su
h that
ontent providersonly know the
on�guration of the TCB and theirDRM
ontroller. The
ontroller itself
an
he
k if allother required servi
es su
h as user management, lo-
al poli
y enfor
ement, or storage are a

ording to the
ontent provider's se
urity poli
y. While not deliveringthe user's overall platform
on�guration to the
ontentprovider, our approa
h reveals only information essen-tial to attest the DRM
ontroller and thus ensuring these
urity property of least privilege. The user in turn
an lo
ally attest23 the DRM
ontroller and enfor
ethat it
annot reveal any additional information notessential for li
ense enfor
ement. A possible extensionwould be to add the
on
ept of property-based attesta-tion [40℄ to the Trust Manager and the CompartmentManager to hide both the (binary)
on�guration of theTCB and the DRM
ontroller.(O6) Freshness: Using trusted storage ensures freshnessof arbitrary information, i.e., trusted storage ensuresretrieved information is the last one stored.23The user
an attest third party appli
ations for instan
eby
omparing the attestation results with known good val-ues provided by an institution trusted by the user that hassu�
ient expertise and possibly further resour
es.

6. SUMMARYIn this paper, we introdu
ed the design, the realization andimplementation of an open se
urity ar
hite
ture that is
a-pable to enfor
e stateful li
en
es on open platforms. Parti
-ularly, it allows the transfer of stateful li
en
es, while pre-venting replay atta
ks. Further, the se
urity ar
hite
tureprovides se
urity properties su
h as strong isolation thatare used to enfor
e the user's poli
y, e.g., prote
ting againstspyware. We have shown how to implement this se
urity ar-
hite
ture by means of virtualization te
hnology, an (opensour
e) se
urity kernel, trusted
omputing fun
tionality, anda lega
y operating system (
urrently Linux).
7. REFERENCES[1℄ Adelsba
h, A., Sadeghi, A.-R., and Rohe, M.Towards multilateral se
ure digital rights distributioninfrastru
tures. In ACM DRM 2005 (2005).[2℄ Anderson, R. J. Se
urity Engineering � A Guide toBuilding Dependable Distributed Systems. 2001.[3℄ Apple Computer, In
. FairPlay DRM.www.apple.
om/itunes/.[4℄ Aura, T., and Gollmann, D. Software li
ensemanagement with smart
ards. In Pro
eedings of theFirst USENIX Workshop on Smart
ard Te
hnology(Chi
ago, Il, May 1999), USENIX. ISBN1-880446-34-0.[5℄ Authenti
a, In
. Authenti
a a
tive rightsmanagement.www.authenti
a.
om/produ
ts/overview.aspx.[6℄ Baek, K.-H., and Smith, S. W. Preventing theft ofquality of servi
e on open platforms.IEEE/CREATE-NET Workshop on Se
urity and QoSin Communi
ations Networks (September 2005).[7℄ Blaze, M. A
ryptographi
 �le system for UNIX. InCCS '93: Pro
eedings of the 1st ACM
onferen
e onComputer and
ommuni
ations se
urity (New York,NY, USA, 1993), ACM Press, pp. 9�16.[8℄ Deuts
he Telekom AG. T-online: Video ondemand. http://vod.t-online.de.[9℄ Dierks, T., and Allen, C. RFC2246 - the TLSproto
ol version 1.0. www.ietf.org/rf
/rf
2246.txt,January 1999.[10℄ Dragovi
, B., Fraser, K., Hand, S., Harris, T.,Ho, A., Pratt, I., Warfield, A., Barham, P.,and Neugebauer, R. Xen and the art ofvirtualization. In Pro
eedings of the ACM Symposiumon Operating Systems Prin
iples (O
tober 2003).[11℄ Epsilon Squared, In
. InstallRite Version 2.5.www.www.epsilonsquared.
om.[12℄ Guth, S. A Sample DRM System., vol. 2770 ofLNCS. Springer, 2003, pp. 150�161.[13℄ Haldar, V., Chandra, D., and Franz, M.Semanti
 remote attestation: A virtual ma
hinedire
ted approa
h to trusted
omputing. In USENIXVirtual Ma
hine Resear
h and Te
hnology Symposium

(May 2004). also Te
hni
al Report No. 03-20, S
hoolof Information and Computer S
ien
e, University ofCalifornia, Irvine; O
tober 2003.[14℄ Hohmuth, M. Linux-Emulation auf einemMikrokern. Master's thesis, Dresden University ofTe
hnology, Dept. of Computer S
ien
e, 1996.[15℄ Jaeger, T., Liedtke, J., Panteleenko, V., Park,Y., and Islam, N. Se
urity ar
hite
ture for
omponent-based operating systems. In 8th ACMSIGOPS European Workshop (Sintra, Portugal, Sept.1998).[16℄ Koenen, R., La
y, J., Ma
Kay, M., andMit
hell, S. The long mar
h to interoperable digitalrights management. Pro
eedings of the IEEE 92, 6(June 2004), 883�897.[17℄ Kwok, S. H. Digital rights management for theonline musi
 business. SIGe
om Ex
h. 3, 3 (2002),17�24.[18℄ Lie, D., Thekkath, C., Mit
hell, M., Lin
oln,P., Boneh, D., Mit
hell, J., and Horowitz, M.Ar
hite
tural support for
opy and tamper resistantsoftware. In Ninth International Conferen
e onAr
hite
tural Support for Programming Languages andOperating Systems (ASPLOS-IX) (Cambridge, MA,USA, Nov. 2000), ACM Press, pp. 168�177. Appearedas 34.5.[19℄ Liedtke, J. Towards real mi
rokernels.Communi
ations of the ACM 39, 9 (September 1996),70�77.[20℄ Liu, Q., Safavi-Naini, R., and Sheppard, N. P. Ali
ense-sharing s
heme in digital rights management.Te
h. rep., Cooperative Resear
h Centres - SmartInternet Te
hnology, Australia, 2004.[21℄ Ma
Donald, R., Smith, S., Mar
hesini, J., andWild, O. Bear: An open-sour
e virtual se
ure
opro
essor based on TCPA. Te
h. Rep. TR2003-471,Department of Computer S
ien
e, Dartmouth College,2003.[22℄ Mar
hesini, J., Smith, S., Wild, O., Barsamian,A., and Stabiner, J. Open-sour
e appli
ations ofTCPA hardware. In 20th Annual Computer Se
urityAppli
ations Conferen
e (De
. 2004), ACM.[23℄ Mar
hesini, J., Smith, S. W., Wild, O., andMa
Donald, R. Experimenting with TCPA/TCGhardware, or: How I learned to stop worrying and lovethe bear. Te
h. Rep. TR2003-476, Department ofComputer S
ien
e, Dartmouth College, 2003.[24℄ Mark's Sysinternals Blog. Sony, rootkits anddigital rights management gone too far.www.sysinternals.
om/blog/2005/10/sony-rootkits-and-digital-rights.html, O
tober2005.[25℄ Mi
rosoft Corporation. Visio 2003 30-daysoftware trial. www.mi
rosoft.
om/offi
e/visio/prodinfo/trial.mspx.

[26℄ Mi
rosoft Corporation. Windows media rightsmanager 10. www.mi
rosoft.
om/windows/windowsmedia/drm/default.aspx.[27℄ Mi
rosoft Corporation. Windows rightsmanagement servi
es.www.mi
rosoft.
om/windowsserver2003/te
hnologies/rightsmgmt/default.mspx.[28℄ Mi
rosoft Corporation. Intodu
tion to NetworkA

ess Prote
tion.http://www.mi
rosoft.
om/windowsserver2003/te
hinfo/overview/napoverview.mspx, June 2004.Updated April 2005.[29℄ Movielink, LLC. Movielink video on-demandservi
e. www.movielink.
om.[30℄ National Resear
h Coun
il. The DigitalDilemma, Intelle
tual Property in the InformationAge. National A
ademy Press, 2000.[31℄ Offi
e, U. C. Copyright law of the United States ofAmeri
a. Title 17 of the United States Code U.S.C,June 2003.[32℄ Pfitzmann, B., Riordan, J., Stüble, C.,Waidner, M., and Weber, A. The PERSEUSsystem ar
hite
ture. Te
h. Rep. RZ 3335 (#93381),IBM Resear
h Division, Zuri
h Laboratory, Apr. 2001.[33℄ Popek, G. J., and Goldberg, R. P. Formalrequirements for virtualizable third generationar
hite
tures. Communi
ations of the ACM 17, 7(1974), 412�421.[34℄ Poritz, J., S
hunter, M., Van Herreweghen,E., and Waidner, M. Property attestation�s
alableand priva
y-friendly se
urity assessment of peer
omputers. Te
h. Rep. RZ 3548, IBM Resear
h, May2004.[35℄ Pruneda, A., and Travis, J. Metering the use ofdigital media
ontent with Windows Media DRM 10.msdn.mi
rosoft.
om/library/en-us/dnwmt/html/metering
ontentusage10.asp.[36℄ RealNetworks, In
. Helix DRM.www.realnetworks.
om/produ
ts/drm/.[37℄ Robin, J. S., and Irvine, C. E. Analysis of the intelpentium's ability to support a se
ure virtual ma
hinemonitor. In Pro
eedings of the 9th USENIX Se
uritySymposium (Denver, Colorado, Aug. 2000), USENIX.[38℄ Rosenblatt, W., Mooney, S., and Trippe, W.Digital Rights Management: Business and Te
hnology.John Wiley & Sons, In
., New York, NY, USA, 2001.[39℄ Sadeghi, A.-R., and Stüble, C. Bridging the gapbetween TCPA/Palladium and personal se
urity.Te
h. rep., Saarland University, Germany, 2003.[40℄ Sadeghi, A.-R., and Stüble, C. Property-basedattestation for
omputing platforms: Caring aboutproperties, not me
hanisms. In The 2004 New Se
urityParadigms Workshop (Virginia Bea
h, VA, USA, Sept.2004), ACM SIGSAC, ACM Press.

[41℄ Sadeghi, A.-R., Stüble, C., and Pohlmann, N.European multilateral se
ure
omputing base - opentrusted
omputing for you and me. 548�554.[42℄ Sailer, R., Jaeger, T., Zhang, X., and vanDoorn, L. Attestation-based poli
y enfor
ement forremote a

ess. In Pro
eedings of the 11th ACMConferen
e on Computer and Communi
ationsSe
urity (Washington, DC, USA, O
t. 2004), ACMPress.[43℄ Sailer, R., Valdez, E., Jaeger, T., Perez, R.,van Doorn, L., Griffin, J. L., and Berger, S.sHype: Se
ure hypervisor approa
h to trustedvirtualized systems. Te
h. Rep. RC23511, IBMResear
h Division, Feb. 2005.[44℄ Sailer, R., Zhang, X., Jaeger, T., and vanDoorn, L. Design and implementation of aTCG-based integrity measurement ar
hite
ture. InPro
eedings of the 13th USENIX Se
urity Symposium(Aug. 2004), USENIX.[45℄ Shapiro, W., and Vingralek, R. How to managepersistent state in DRM systems. In DRM '01:Revised Papers from the ACM CCS-8 Workshop onSe
urity and Priva
y in Digital Rights Management(London, UK, 2002), vol. 2320 of LNCS, pp. 176�191.[46℄ SPIEGEL ONLINE. Datens
hutzproblem: itunesfunkt na
h hause. www.spiegel.de/netzwelt/politik/0,1518,394740,00.html, January 2006.[47℄ Starz Entertainment Group. Video downloadservi
e for portables. www.vongo.
om.[48℄ Suh, G., Clarke, D., Gassend, B., van Dijk, M.,and Devadas, S. AEGIS: Ar
hite
ture fortamper-evident and tamper-resistant pro
essing. InPro
eedings of the Annual USENIX Te
hni
alConferen
e (2003).[49℄ The Hymn Proje
t. Free your itunes musi
 storepur
hases from their drm restri
tions.www.hymn-proje
t.org, May 2006.[50℄ The Register. Dvd jon ha
ks media player �leen
ryption. www.theregister.
o.uk/2005/09/02/dvd_jon_mediaplayer/, O
tober 2005.[51℄ TrouSerS. The open-sour
e TCG software sta
k.http://trousers.sour
eforge.net.[52℄ Trusted Computing Group.www.trusted
omputinggroup.org.[53℄ Trusted Computing Group. TPM mainspe
i�
ation. Main Spe
i�
ation Version 1.2 rev. 85,Trusted Computing Group, Feb. 2005.[54℄ Trusted Computing Platform Allian
e(TCPA). Main spe
i�
ation, Feb. 2002. Version 1.1b.[55℄ Tygar, J., and Yee, B. Dyad: a system usingphysi
ally se
ure
opro
essors. Te
h. rep., 1993.

[56℄ Vingralek, R., Maheshwari, U., and Shapiro,W. TDB: A database system for digital rightsmanagement. Te
hni
al Report STAR-TR-01-01,STAR*Lab, InterTrust Te
hnologies Corporation,2001.[57℄ Wright, C., Martino, M., and Zadok, E.N
ryptfs: A se
ure and
onvenient
ryptographi
 �lesystem. In Pro
eedings of the Annual USENIXTe
hni
al Conferen
e (2003), pp. 197�210.[58℄ Ylonen, T., Kivinen, T., Saarinen, M., Rinne,T., and Lehtinen, S. IETF draft - SSH transportlayer proto
ol. www.openssh.org/txt/draft-ietf-se
sh-transport-14.txt, Mar
h 2002.[59℄ ZDNet. Trail li
ense �lter.http://downloads.zdnet.
om.

