Play it once again, Sam -
Enforcing Stateful Licenses on Open Platforms

Ahmad-Reza Sadeghi
Horst-Gortz-Institute for IT-Security
Ruhr-University Bochum
sadeghi@crypto.rub.de

Christian Stuble
Horst-Gortz-Institute for IT-Security
Ruhr-University Bochum
stueble@acm.org

ABSTRACT

Various applications and business models for distributing
digital content over open networks demand for licenses to
control usage of the content and restrict access to it by
authorized entities only. Of particular interest are state-
ful licenses that allow usage for a fixed time period or fixed
number of times.

However, existing solutions using stateful licenses are vul-
nerable to various attacks, particularly on open computing
platforms that are under consumers’ control who can run
exploits as well as reconfigure the underlying operating sys-
tem. In this context replay attacks play an important role,
since the state of common storage (e.g., hard-disks and flash
memory) can easily be reset to some prior state bypassing
access control mechanisms or breaking cryptographic pro-
tocols that keep state. Hence content providers tend to in-
flexible static licenses and closed DRM systems that mainly
provide unilateral security, i.e., protect the needs of content
providers and not of consumers.

In this paper we present a security architecture that en-
ables the secure deployment and transfer of stateful licenses
on open computing platforms while protecting the security
objectives of both users and providers. We show how to
implement this security architecture efficiently by means of
virtualization technology, a security kernel, trusted comput-
ing functionality, and a legacy operating system (currently
Linux). Moreover, our system extends the TCG chain of
trust concept to arbitrary composed (trusted) domains, i.e.,
our architecture measures and reports the configuration of
only those software components that are security-critical for
a certain operation at certain time.

Keywords
Digital Rights Management, stateful licenses, freshness, se-
curity architectures, trusted computing

1. MOTIVATION

E-commerce applications for trading digital goods over open
networks are becoming increasingly appealing. In this con-
text techniques for secure distribution and usage of digital
goods, where a license defines the owner’s rights to consume
(access, use) the data linked to this license, are crucial.

Michael Scheibel
Sirrix AG Security Technologies
Bochum, Germany
m.scheibel@sirrix.com

Marko Wolf
Horst-Gortz-Institute for IT-Security
Ruhr-University Bochum
mwolf@crypto.rub.de

A particular license type are stateful licenses which allow
the use of rights for a fixed time period, e.g., for n days, or
for a fixed quantity, e.g., for n times.

A few e-business applications already employ such (mostly
proprietary) stateful licences to sell certain digital goods for
limited use. Important references are video-on-demand ser-
vices or online video rentals [8, 47, 29] that use stateful
licences to enable flexible pay-per-view scenarios. Various
digital music stores [3] use stateful licences to control the
maximum number of analogue copies allowed. Moreover,
some software vendors already employ stateful licenses to
offer trial versions that allow users to test a software for a
limited time or allow a limited number of executions [25, 59].
Stateful licences enable new promising pay-per-use software
business models.

In addition, one can think of other interesting applications
using stateful licences to enforce policies: For instance sen-
sitive user data such as email correspondence or identity
information is being stored on remote servers today. Often
the users are not fully aware of the data traces they leave on
remote servers. In other cases users have to provide some
personal information in order to use a service. However,
users must have the right and be able to decide and limit
the usage of this information by any third party (e.g., ser-
vice provider). Another application is when digital music
stores allow their customers for instance to hear a track two
times for free before offering the acquisition of a license for
unlimited access. Stateful licences can also enforce one-time
access to sensitive data. Thus, for instance a company can
prevent their employees from making unauthorized copies or
forwarding of sensitive content that could leak information
to its competitors.

Another important issue beside the secure usage of state-
ful licenses is the secure transfer of licenses among differ-
ent platforms. This includes also secure lending or selling
(sub-)licenses to other individuals without requiring the in-
teraction of the licensor. In this context the license itself
describes the conditions under which a transfer of the con-
tent, it is attached to, is authorized. For example, the li-
censee would not be allowed to freely copy the content, but
would instead be allowed to mowve it to certain devices with-
out Internet connectivity. Such resale and sub-licensing is

commonly considered acceptable use, yet unlike the “offline”
transaction, usually requires interaction with the licensor.

However, managing and enforcing stateful licenses on open
platforms is particularly vulnerable to various threats such
as unauthorized access, misuse, and illegal redistribution
of the content to be protected [24, 49, 50]. Open plat-
forms are under the control of their owners, who can attack
and circumvent even sophisticated protection mechanisms
by running exploits and reconfiguring the underlying oper-
ating system. Particularly replay attacks set the platform
state (e.g., hard-disks and flash memory) and thus a stateful
license to a prior state and circumvent security mechanisms.
This can be done for instance by ordinary backup mecha-
nisms or by applying software tools [11] that log all storage
modifications to easily revoke these modifications for reuse
of a license’.

Consequently, content providers use tamper-resistant hard-
ware devices like dongles [30] or smartcards [4] to securely
store a small amount of data to protect their assets. The use
of external devices, however, cannot guarantee the integrity
of the operating system and a proper behavior of applica-
tions since debugging utilities and other manipulations of
the operating system or applications frequently allow users
to bypass security mechanisms. >

Thus, content providers currently tend to inflexible static
licenses and closed DRM systems. The problem with closed
DRM systems, such as [16, 28], is that they mainly provide
unilateral security protecting the needs of content providers
and usually not consumers® Moreover, common DRM sys-
tems do not provide adequate stateful licenses and thus
heavily restrict users’ rights, e.g., by preventing them from
transferring licenses (that includes license moving, resale or
renting).

1.1 Main Contribution & Outline

In this paper we present a security architecture that enables
secure enforcement of stateful licenses on open computing
platforms and secure license transfers among platforms while
protecting the security objectives of users and providers. To
the best of our knowledge there currently exists no solution
that is capable of enforcing stateful licenses on open plat-
forms while providing security functionalities allowing to es-
tablish multilateral security. We show how our architecture
can efficiently be implemented using existing virtualization
and trusted computing technology. In contrast to existing
solutions, our system architecture measures and reports the
configuration of only those software components that are
security-critical for a certain operation, instead of reporting
the configuration of all currently running software compo-
nents that clearly affect user’s privacy.

! Cryptographic measures like digital signatures, encryption
and even cryptographic file systems |7, 57| cannot protect
stateful licenses, since a complete backup can still be re-
played.

In particular, dongles turned out to be impractical for the
mass market because of missing consumer friendliness and
high costs [2].

#This is conform to the legislative trend (see [31]) of putting
more restrictions on consumers’ rights on using digital con-
tent.

Our paper is organized as follows. In Section 1.2 we sum-
marize related work. We then define in Section 2 an ideal
system model for distributed content access that satisfies
our stated security objectives of the involved parties. Going
towards the real world we replace the ideal model in Sec-
tion 3 by several logical components that are implemented
by real software components of a first prototype implemen-
tation based on a small security kernel, virtualization tech-
nology and trusted computing technology (Section 4).

1.2 Related Work

Shapiro and Vingralek [45, 56] identified the replay problem
in client platforms that are completely under the control of
the user. The authors proposed to manage persistent states
using external locker services or assumed a small amount of
secure memory (i.e., that cannot be read or written by an
attacker) and secure one-way counters realized by battery-
backed SRAM or special on-chip EEPROM/ROM functions.

Tygar and Yee [55] elaborate on applications of physically
secure coprocessors, including enforcement of static and dy-
namic licenses without centralized servers. They show how
to protect and attest the integrity of their system with the
help of a secure coprocessor and a secure bootstrap process.
In addition, protocols for sealing of data to a local platform
and binding of data to a remote platform are presented.
They identify the replay problem in the context of electronic
currency and propose "two-phase" commits to ensure atomic
transfers to remote platforms. The proposed architecure re-
lies on a microkernel which is running in a physical security
partition provided by the secure coprocessor. This is differ-
ent to our approach which is based on a virtualization layer
offering logical security partitions ("compartments").

Marchesini et al. [22] use OS hardening to create "software
compartments" which are isolated from each other and can-
not be accessed by a "root spy". Based thereon, their design
provides "compartmentalized attestation", i.e. attestation
of and binding data to single compartments. Our approach
does not employ OS hardening techniques to secure a com-
plex monolithic legacy OS. Instead we put the legacy OS in
a compartment which is then run on top of a virtualization
layer. The performance loss is negligible, but the increase
in security is not, since the virtualization layer is much less
complex than a monolithic OS kernel.

Baek and Smith [6] build on this work and implement a
prototype for enforcing QoS policies on open platforms.

Publicly available documentation on both DRM implemen-
tations of Microsoft Windows Rights Management Services
[27] and Authentica Active Rights Management [5] do not
mention how they resist replay attacks. Once a client appli-
cation is authorized to access a document, it can backup and
restore its state to entirely access all documents at backup
time.

The same holds for common DRM implementations for dig-
ital contents (audio, video, ebooks, software), e.g., Micro-
soft’s Windows Media Rights Management [26], Apple’s Fair-
Play [3] and Real Network’s Helix DRM [36], all providing
proprietary stateful licenses.

Moreover, most of these solutions are closed software and
cannot be verified for inherent security flaws. Some affect
the entire host security [24] or violate user privacy [46].
Many could be continuously broken [50, 49|, and provide
license transfers only to some selected devices owned by the
user. This point clearly contradicts the first sale doctrine:
The licensor should be allowed to transfer legally obtained
digital content without permission or interaction of the li-
censee.

Another approach uses small-value or short-term sub-licenses
based on a single source license to transfer rights. Examples
are transient licenses [35], rechargeable tokens [17], or track-
ing files [20]. Since users of these systems always have full
control over the platform storage, they can easily backup
their (sub-)licenses and restore them after expiration.

In [42, 44], the authors propose an operating system exten-
sion that attests an integrity measurement (a SHA-1 digest
over all executed content) based on a cryptographic copro-
cessor. The proposed architecture allows a content provider
to remotely verify the integrity of software and data of a
client platform. Since this approach measures all executed
content, i.e., also all non-security-critical and private con-
tent, this procedure gives a content provider user’s overall
platform configuration. Since delivering the complete plat-
form configuration reveals a lot of additional information not
required for license enforcement this would clearly conflict
with the least privilege security property, thus affecting users
privacy. On the other hand, the content provider can attest
always only the last platform configuration given and is not
able to predict future configuration. To detect potential re-
play attacks the content provider would furthermore have to
request and store client measurement logs repeatedly. Be-
sides the necessary online connectivity, a client could still
apply replay attacks between two measurements.

The Enforcer project alias The Bear |21, 23] tried to real-
ize freshness using the (non-volatile) data integrity register
(DIR) of the TCG specification version 1.1b [54]. Writing to
a DIR requires owner authorization, reading can be done by
anyone. However, this approach cannot be used to enforce
stateful licenses since the platform owner can still backup
and restore the DIR storage.

New processor architectures like AEGIS [48] and XOM [18]
provide secure in-processor storage that cannot be reset by
unauthorized entities. Although it seems possible to use
these processor architectures as a basis for protecting the
freshness of information, we chose another solution which
builds on (cheaper) commercial-of-the-shelf components.

2. SYSTEM MODEL AND OBJECTIVES

We start our consideration with an ideal system model for
distributed content access®. It represents the desired en-
vironment in which the security objectives of all involved
parties are satisfied by definition. In later sections we go to-
wards real world by replacing this ideal system in Section 3

4We do not consider payment channels or content distribu-
tion details such as content provision or license generation
here. System models for complete DRM systems can be
found in [12, 38].

with several logical components followed by the realization
of these components by software components in Section 4.

2.1 Terms and Definitions

We define a compartment as a software component that is
logically isolated from other software components. The con-
figuration of a compartment unambiguously describes the
compartment’s I/O behavior based on its initial state Sp
and its set of state transactions that convey a compartment
from state S; to state S;4+1. Moreover, we distinguish secure,
trusted, and plain communication channels between com-
partments. Plain channels transfer data without providing
any security property. Secure channels ensure confidential-
ity and integrity of the communicated data as well as the
authenticity® of the endpoint compartment. Trusted chan-
nels are secure channels that additionally validate the con-
figuration of the endpoint compartment. Finally, integrity
of information obtained from a channel or compartment is
provided, if any modification is at least detectable.

2.2 ldeal System Model

The main parties involved are providers (licensors) and users
(licensees). We consider a provider as the representative
party for rights-holders whereas the user represents con-
sumers of digital content. As depicted in Figure 1 the pro-
vider distributes digital content (e.g., software, media files,
etc.) and the corresponding license. The license defines the
usage-rights (e.g., copy, play, print, etc.) applicable to the
content. license represents a certificate issued by an autho-
rized instance (licensor) confirming non-repudiability that
certain usage-rights on certain contents are granted to some
partyS. Here, a license describes the usage-rights that its
owner holds and the prerequisites to consume (access, use)
the contents linked to this license. The user consumes the
content according to the license where the consumption is
managed by the underlying platform as shown by the dashed
lines in Figure 1. In the ideal model the platform is an ab-
stract black box which is trusted by all other parties. The
usage-rights can be defined in rights expression languages
such as XrML” or ODRL® and are digitally signed by the
licensor. We distinguish two types of licenses, static licenses
and stateful licenses. While the state of a static license re-
mains unmodified when used, that of a stateful license may
change during its utilization.

The involved parties have only limited trust in each other.
In our ideal system model the platform is fully trusted by
both user and provider to act correctly.

In Figure 1 we also made the next step by replacing the
abstract platform by two logical compartments the Trusted
Policy Enforcer and the Trusted Storage Provider instead
of the platform as an abstract. These compartments are
strongly isolated from each other and communicate over
trusted channels.

5A compartment’s authenticity could be an alias or a tem-
porary compartment identifier.

®A formal treatment of rights, licenses and transactions on
rights can be found, e.g., in [1].

"www.xrml.org

8www.odrl.net

request[usage-right]

Trusted Policy
User Enforcer
(Licensee) A render][content] TPE

distribute[content, license] Provider

(Licensor)

store[object]
load[object]
|

Platform Interface

Trusted Storage
Provider

TSP

Figure 1: The ideal system model.

The Trusted Policy Enforcer (TPE) incorporates the usage-
rights management and content rendering. The provider
uses the trusted channel distribute[] to transfer content and
licenses to TPE. On request of the user via request[], a
usage-right is retrieved and the content is rendered accord-
ing to this right using the trusted output channel render]].
TPE correctly maintains its state using the trusted channels
store[] and load]] provided by the trusted storage.

The Trusted Storage Provider (TSP) provides the interfaces
store[] and load[] to store and load data objects persistently
ensuring confidentiality, integrity, availability and particu-
larly freshness. Note, user and provider trust TSP only in-
directly, i.e., by establishing a trusted channel to TPE. TPE
will only be trusted if it has verified TSP to be trusted by
establishing a trusted channel to TSP.°

2.3 Security Objectives

In the following we define the overall security objectives
of users and providers that our system architecture has to
achieve for our distributed content access.

(O1) License integrity: Unauthorized alteration of li-
censes must be infeasible. Both user and provider re-
quire this, since a license defines a contract between
user and provider that must not be altered without
mutual approval.

(02) Licenses unforgeability: Unauthorized issuance
of licenses must be infeasible. Only authorized parties
(rights-holder) are allowed to issue new usage-rights.
This prevents creation of illegal, unauthorized licenses.

(0O3) License enforcement: The license must be en-
forced upon acceptance. This is required by the licen-
sor that the user can access and use the content only
according to user-rights provided by the license. Oth-
erwise, users could violate a contract with a provider.
However, a license should be enforced only when the
user as accepted it.

(04) License availability: Legally obtained licenses can
be used at any time. This especially requires precau-
tions with regard to physical and/or logical failures, as
a result of the poor experiences with hitherto existing
dongles and smartcards solutions.

(0O5) Privacy: Usage of licenses must not violate pri-
vacy policies. The user’s privacy policy must be pro-
tected when performing transactions on licenses. This

Since TPE communicates with TSP over a trusted channel,
it can be central or distributed, e.g., located at user-side, at
provider-side, or realized by a trusted third party TTP.

includes that the overall system enforces least privi-
lege such that components not under full control of
the user, collect, store, and redistribute user’s private
information only to the extent required for license en-
forcement and with user’s consent.

(O6) Freshness: Any information obtained should be
new, i.e., received or retrieved information is the last
one sent or stored.

2.4 Required Security Properties

In order to fulfill the overall security objectives we consider
in the following the essential properties which are assumed
to be given in the ideal system model (in Section 2.2). In
Section 3 and Section 4 we show how one can provide re-
spectively implement these properties.

(R1) Trusted channels: The underlying platform pro-
vides trusted channels between compartments to en-
able a party to verify a compartment’s configuration
in order to determine the compartment’s trustworthi-
ness.

(R2) Strong isolation: The underlying platform ensures
that compartments are isolated from each other, i.e.,
compartments cannot access the states of other com-
partments.

(R3) Trusted storage: A trusted storage provider TSP
provides confidentiality, integrity, freshness and avail-
ability of data persistently stored.

2.5 Usage and Transfer of Licenses
Based on our ideal system model and the assumptions, this
section describes the general functionality of our architec-
ture with regard to obtaining, usage and transferring of
stateful licenses. The main platform components involved
in these transactions are illustrated in Figure 1.

Obtaining licenses: The first scheme describes how a li-
cense | (and the corresponding content) is obtained by the
platform component TPE responsible for enforcing it. We
assume that the license negotiation phase has already been
completed (outside our model).

1. The user requests the provider the (negotiated) license
[from the provider and the respective content (if neces-
sary, i.e., if the user does not already has the protected
content).

2. The provider establishes a remote trusted channel to
TPE (to verify that the configuration of TPE is con-
form to his security policy.). Then the provider dis-
tributes [and the respective content (if necessary) to
TPE.

3. TPE stores [and the corresponding content on TSP
using a local trusted channel (thus verifying trustwor-
thiness of TSP.).

Using stateful licenses: The following scheme is an ab-
stract description of how the content and the corresponding
license are securely managed by TPE.

1. The user requests TPE for a usage-right on a content.

2. TPE loads from TSP a license [that covers the re-
quested usage-right.

3. If all conditions for the corresponding usage-right are
fulfilled, TPE updates the corresponding subset of state
variables within [, stores the changed [using TSP
again, and invokes the content rendering.

Transferring licenses: We describe a secure transfer pro-
tocol of a license (and the corresponding content) between a
source platform (transferor) TPE; to a destination platform
(transferee) TPE,.

1. The user requests TPE; to transfer a license [to TPE,.

2. TPE; establishes a trusted channel to TPE, to verify
that the configuration of TPE, is conform to the secu-
rity policy of [needed for a transfer to correctly take
place. Note that TPEy; does not need this verification
for TPE; since the overall security architecture would
not allow a platform to use a license if it does not
provide the trust properties required by the licensor.

3. After a trusted channel is established to TPE4, TPE;
sends ! (and the corresponding content) to TPE4 using
the previously established trusted channel.

4. After an approved transfer process based on a crypto-
graphic receipt, TPE; updates or invalidates [, while
TPE, stores the new license (and content) synchro-
nized with TPE,. In order to handle transmission fail-
ures, TPE; allows arbitrary retransmissions requests
to TPE, while the corresponding usage-right remains
invalidated.

The procedure to loan a license is similar to the license trans-
fer: In case the license of allows the user to generate subli-
censes TPE; generates a sublicense /; of the master license [
for TPE; and invalidates the respective usage-rights in the
corresponding master license [locally, i.e, disables the re-
spective usage-rights for the loan period or decreases the
respective state variables.

A secure implementation of these protocols is described in
Section 3.5.

3. SYSTEM DESIGN

In this section we describe the high-level design of our ar-
chitecture. The ideal system model in Section 2.2 is decom-
posed into several smaller compartments. We describe how
trusted channels, strong isolation, and trusted storage are
realized. Finally, we consider in more detail how an applica-
tion, i.e., the DRM controller, can obtain, use and transfer
a stateful license based on these features.

3.1 Architectural Overview

Figure 2 gives an overview of the compartments into which
our ideal system model presented in Section 2.2 can be de-
composed. The resulting architecture consists of the trusted
computing base (TCB) including a User Manager, a Trust

Manager, a Storage Manager, and a Compartment Man-
ager. Another compartment, the DRM Controller, is the
example application that uses the TCB to realize the use
cases discussed above. Note since all compartments com-
municate with each other using trusted channels, there are
no requirements on their actual physical location.

Remote S 1/0
ecure :
Compartment . TPE Interface
content
y :
content, . current
T " license K DRM user U M
rust Manager Controller <«—— User Manager
¥ ¥

compartment

configuration
! ! TSP Interface
Y L | S

compartment
configuration Storage
Manager

Compartment

Trusted Channel

Compartment
Manager

Secure Channel

Figure 2: Compartments of the system model.

User Manager: The User Manager (UM) maps between
real user names and system-internal user identifiers. More-
over, it performs user authentication and manages a secret
attached to each users, e.g., to allow the Storage Manager
to bind data to a user. The programming interface offered
by the User Manager hides the concrete user model. Thus,
it is possible to use a UNIX-like user model, or a role-based
model without modifications of other system components.

Storage Manager: The Storage Manager (SM) provides
persistent storage for the other compartments while pre-
serving integrity, confidentiality, availability and freshness
of the stored data. Moreover it enforces strong isolation by
binding the stored data to the compartment configuration
and/or user secrets'’. The Storage Manager has access to
the configuration of its clients, since it communicates with
them over trusted channels. For a more detailed description
of the implementation, see Section 3.3 and Section 3.4.

Compartment Manager: The Compartment Manager
(CM) manages creation, update, and deletion of compart-
ments. It controls which compartments are allowed to be
installed and enforces the mandatory security policy. During
installation of compartments, it derives its configuration to
be able to offer a mapping between temporary compartment
identifiers'' and persistent compartment configurations.

Trust Manager: The Trust Manager (TM) offers func-
tions that can be used by application-level compartments
to establishing trusted channels between remote and local
compartments.

Secure I/0: The Secure I/O (SO) renders (e.g., displays,
plays, prints, etc.) content while preventing unauthorized
information flow. Thus SO incorporates all compartments

19Since SM does not provide sharing of data between com-
partments, it does not realize a regular file system.

A compartment identifier unambiguously identifies a com-
partment during runtime.

that are responsible for secure output of content (e.g., drivers,
trusted GUI, etc.).

DRM Controller: The DRM controller (DC) is an applica-
tion that enforces the policy according to the given license
attached to digital content. DC enforces security policies
locally, e.g., it uses trusted channels to decide whether a
certain SO is trusted for rendering the content, i.e., whether
it matches the configuration described in the license. More
details of the implementation of the DRM controller can be
found in Section 3.5.

With the architectural overview in mind, we explain in the
following sections how this architecture is used to provide
the necessary security properties, i.e., privacy, trusted chan-
nels, secure storage, and fresh storage.

3.2 Trusted Channels

According to the definition in Section 2.1, trusted channels
allow the involved communication end-points to determine
their configuration and thus to derive their trustworthiness.
Other integrity measurement architectures, however, [42,
44], report the integrity of the whole platform configura-
tion including all currently running compartments to re-
mote parties, and thus violating user privacy. In contrast,
our architecture supports to establish trusted channels be-
tween single compartments, and not only between platforms
whole platforms. This has the following advantages:

e Privacy: A remote party now only needs to know the
configuration of the appropriate compartment includ-
ing its trusted computing base, and not the configura-
tion of the whole platform.

e Scalability: Remote parties do not have to derive the
trustworthiness of all compartments executed on top
of the platform, to determine the trustworthiness of
the appropriate compartment.

e Usability: Since a compartment’s trustworthiness can
be determined independent of other compartments run-
ning in parallel, the derived trustworthiness keeps valid
even if the user installs or modifies other compart-
ments.

Trusted channels can be established using the functions of-
fered by the Trust Manager and the Compartment Man-
ager, while the Compartment Manager, which is responsible
for installation and manipulation of compartments, provides
the mapping from compartment identifiers into configura-
tions. Thus, trusted channels can be established assuming
that the TCB including the Compartment Manager and the
Trust Manager is trustworthy. In Section 4, we will explain
how remote parties can determine the trustworthiness of the
TCB, but now we continue describing the establishment of
trusted channels on this design level.

We distinguish between trusted channels between compart-
ments running on the same platform (local trusted channels)
and trusted channels between a remote and a local compart-
ment (remote trusted channels).

Local Trusted Channels: Since both the sender and the
receiver are executed on top of the same TCB, an explicit
verification of the TCB’s trustworthiness does not make
sense in this case. Therefore, trusted channels can easily
be established using secure channels offered by the underly-
ing TCB, and the functions provided by the Compartment
Manager: The sending compartment first requests the con-
figuration of the destination compartment from the Com-
partment Manager. On successful validation that the des-
tination configuration conforms to its security policy, the
source compartment establishes a secure channel to the des-
tination compartment.

Remote Trusted Channels: The required steps to estab-
lish a remote trusted channel from a remote compartment
to the local compartment are as follows (cmp. Figure 3):

.. (1), request-trusted-channell]
Local Remote
Compartment |--- (8) tusted-chamnelresponse __ o compartment
LC (7) data RC

(2) request-trusted;»;,(

channelll .. .?(5) yusted-channel-response
,

| _(3) comp-idie | compartment

Manager
llg(4) comp-confic_| e

Trust Manager

Trusted Channel
™ EE—

Secure Channel

Figure 3: A remote trusted channel depends on local
and remote secure channels.

If a local compartment receives a request (1) from a remote
compartment, the local compartment requests the Trust Man-
ager (2) to receive a credential including its own configu-
ration. Then the Trust Manager generates the credential
based on both the compartment configuration provided by
the Compartment Manager (4) and the configuration of the
platform’s TCB. The resulting credential is returned to the
invoking local compartment (5) that forwards it (6) to the
remote compartment. That can now verify the trustworthi-
ness of the local compartment and, on success, using the
credential to open a trusted channel.

Section 4.2 describes the realization of the TCB credential
and Section 4.3 describes the proposed protocol in more de-
tail. Moreover, it shows how to realize the credentials based
on X.509 certificates.

3.3 Strong Isolation

In order to strongly isolate compartments from each other,
isolation at runtime as well as isolation in persistent storage
isrequired. On this design level, we assume that runtime iso-
lation is provided by the underlying layer (see Section 4.1.2).

Isolation of the persistent states of compartments, however,
is provided by the Storage Manager (SM).

The Storage Manager binds all of the compartment’s data
to the corresponding compartment configuration while pre-
serving integrity and confidentiality. In this context, bind
means that access to bound data is only possible under the
terms defined on storage, e.g., a certain compartment con-
figuration or a user ID.

Since the Storage Manager communicates with its clients
over trusted channels, it can be located at user-side, at
provider-side, or realized by a trusted third party.'? Our
security architecture uses a local Storage Manager for the
following reasons: First, access to the storage is needed ev-
ery time a stateful license is used. Using a remote storage
requires an instant online access and limits the frequency
of possible state updates. Second, maintaining a trusted
channel to an external storage clearly increases overall com-
plexity and failure probability of the system. An external
storage is a single point of failure. A denial of service (DoS)
attack, for instance, violates the availability requirement of
all stateful licenses.

Compartment

T

state

compartment
configuration

Compartment
Manager

Storage user id
Manager

y

User Manager

8

protected state

Trusted Channel Trusted

Secure Channel Untrusted

Storage

Untrusted

Figure 4: The Storage Manager enforces strong of-
fline isolation.

Figure 4 depicts the involved compartments and dependen-
cies to realize offline isolation of compartments. The Stor-
age Manager uses the Compartment Manager to retrieve
the origin compartment configuration, the User Manager to
bind compartment’s data to a certain user (if requested) and
an untrusted storage compartment to persistently write and
read plain data'®. Internally, Storage Manager uses crypto-
graphic functions to preserve confidentiality and integrity of
data before it is committed to untrusted storage.

3.4 Trusted Storage

The following section describes how the trusted storage pro-
vider TSP can be realized. Providing a completely tamper-
resistant trusted storage compartment would clearly raise
costs and limit flexibility. Hence, we look for a more efficient
approach. To keep the high-level architecture independent
of a concrete instantiation of the underlying hardware plat-
form, the design decision is to provide a logical service that
protects the freshness of arbitrary data. More concretely, we
extended SM that already provides isolated secure storage
(see Section 3.3) by a freshness property. In order to real-
ize freshness detection, SM has exclusive access to a small

2Microsoft’s Media Rights Manager [26], for instance, ap-
plies the provider-side approach where a local storage client
regularly connects to an external content protection server
to enforce freshness.

13For the realization of availability we suggest common solu-
tions based on high redundancy, i.e., utilization of multiple
distributed storage locations (e.g., USB sticks or online sites)
assisted by an appropriate RAID system. In case of failure
of a particular storage device, it is still possible to retrieve
data from alternative storage mirrors.

tamper-resistant memory location.

3.5 DRM Controller

The DRM controller DC counsists of a license interpreter and
a content access arbitration. It is the core component for the
secure usage and transfer of licenses (see Section 2.5) where
licenses are defined by an XrML license file. All available
contents and licenses are internally indexed to provide all
necessary information about the available contents and li-
censes to the user. The index itself, the contents, and the
licenses are persistently stored using the Storage Manager
(cf. Section 3.3) that enforces the storage security require-
ments of both user and provider (cf. Section 2.4).

The prerequisites for usage and transfer of licenses is a proper
initialization of the platform and the DRM Controller. In
the following, we assume that (i) the TCB has been loaded
properly, (ii) the Trust Manager contains the appropriate
credential, (iii) the DRM Controller has been measured and
started by the Compartment Manager, and (iv) the compo-
nents for mandatory security policy that relate to the DRM
Controller are part of its configuration. On startup, the
DRM Controller loads its actual content/license index from
the Storage Manager over a local trusted channel.

To obtain licenses the provider establishes a remote trusted
channel to the DRM Controller, and if successful, the con-
tent and the license are sent to the DRM Controller com-
partment over this channel. The DRM Controller updates
its index. On shutdown, it stores the license and the corre-
sponding content using the Storage Manager. Since the com-
munication is performed over a trusted channel, the DRM
Controller can verify whether the Storage Manager is trust-
worthy for to the given license.

For using stateful licenses the user invokes the DRM Con-
troller. An example implementation would be to use a com-
munication client that enables requests from the legacy Linux
to the DRM Controller. The DRM controller loads the cor-
responding license and checks if all conditions for the corre-
sponding usage-rights are fulfilled. It then verifies the trust-
worthiness of an applicable output device, e.g., the secure
user interface, by opening a trusted channel to it. On a suc-
cessful license coverage, the DRM Controller updates the
corresponding subset of state variables within the license,
synchronizes its internal state with that stored by the Stor-
age Manager, loads the corresponding content, and invokes
the output device to securely render the given content.

For the transfer of stateful licenses, again the user invokes a
locally running DRM Controller to transfer a certain license
to a remote DRM Controller on the destination platform.
The source platform uses the Trust Manager to establish a
remote trusted channel to the destination platform to send
the license (and the corresponding content) to it. In case this
is successful the source platform updates resp. invalidates
its index and synchronizes its internal state with the Storage
Manager. The destination platform stores the new license
(and content) using its own storage Manager.

The security of the realization discussed above depends on
certain assumptions, i.e., a secure channel between compart-
ments, compartment isolation during runtime, and the avail-

ability of credentials. The following section describes how
our architecture provides them.

4. IMPLEMENTATION

In this section we describe details of our implementation.
We first give an overview to describe the operational basis
providing the security properties demanded in Section 2.4.
Furtheron, we briefly explain each the layers our implemen-
tation, the initialization process as well as the implementa-
tion of the core components, namely the Storage Manager
and the DRM Controller.

4.1 Implementation Overview

Our implementation primarily relies on a small security ker-
nel, virtualization technology, and Trusted Computing tech-
nology. The security kernel, located as a control instance be-
tween the hardware and the application layer, implements
elementary security properties like trusted channels and iso-
lation between processes. Virtualization technology enables
reutilization of legacy operating systems and present ap-
plications whereas Trusted Computing technology serves as
root of trust.

Our abstract definitions from Section 2.1 can be mapped to
real world implementation. Thus a compartment maps to
an application process, while a compartment configuration
maps to a software binary including the initial state of all
variables and the instruction set.

The more detailed architecture of our realization is depicted
in Figure 5. The bottom layer is conventional hardware
with additional Trusted Computing (TC) support. Above
the hardware layer resides our security kernel consisting of
a virtualization layer and a trusted software layer providing
sharing of hardware resources and realizing elementary se-
curity and management services that are independent and
protected from a legacy OS. On top of the security kernel, a
para-virtualized legacy operating system (currently Linux)
including legacy applications, the DRM controller, and the
Secure I/O are executed in strongly isolated compartments
running in parallel as user processes.

Application Application
e DRM
Untrusted Storage Application Controller

Legacy Operating System

Application Layer

User
Manager

Trust
Manager

Storage
Manager

Compartment
Manager

Trusted Software Layer

Security Kernel-‘

IPC, Hardware Sharing, Memory Management, Scheduling... |

(e

Virtualization Layer

Conventional Hardware Hardware Layer

Figure 5: The PERSEUS security architecture.

In the following, we briefly describe each implemented layer
in more detail.

411 Hardware Layer

The hardware layer consists of commercial off-the-shelf PC
hardware with additional Trusted Computing technology as
defined by the Trusted Computing Group (TCG) [52] in

form of a security chip known as Trusted Platform Mod-
ule (TPM). The TPM is considered to be a tamper-evident
hardware device similar to a smart-card and is assumed to be
securely bound to a computing platform. It is primarily used
as a root of trust for platform’s integrity measurement and
reporting. During system startup, a chain of trust is estab-
lished by cryptographically hashing each boot stage before
execution. The measurement results are stored protected
in Platform Configuration Registers (PCRs). Based on this
PCR configuration, two basic functions can be provided:
Remote Attestation allows a TCG enabled platform to at-
test the current measurement and Sealing resp. Binding to
locally resp. remotely bind data to a certain platform con-
figuration. Our implementation uses such a TCG Trusted
Platform Module in the present version 1.2 [53] since previ-
ous TPM versions cannot be used to provide fresh storage
as we will elaborate on in Section 4.4).

4.1.2 Mrtualization Layer

The main task of the virtualization layer is to provide an ab-
straction of the underlying hardware, e.g., CPU, interrupts,
devices, and to offer an appropriate management interface.
Moreover, this layer enforces an access control policy based
on this resources. The current implementation is based on
microkernels'* of the Ld-family [15, 19]. It implements hard-
ware abstractions such as threads and logical address spaces
as well as an inter-process communication (IPC). Device
drivers and other essential operating system services, such
as process management and memory management, run in
isolated user-mode processes. In our implementation, we
kept the interfaces between the layers generic to support
also other virtualization technologies. Thus, the interface
offered by the virtualization layer is similar to those offered
by virtual machine monitors resp. hypervisors like sHype
and Xen [33, 43, 10]. However, we actually decided to em-
ploy a L4-microkernel that easily allows isolation between
single processes without creating a new full OS instance in
each case such as when using Xen.

4.1.3 Trusted Software Layer

The trusted software layer, based on the PERSEUS security
architecture [32, 39, 41|, uses the functionality offered by the
virtualization layer to provide security functionalities on a
more abstract level. It provides elementary security proper-
ties like trusted channels and strong compartment isolation
as well as several elementary management compartments
(e.g., I/O access control policy) that realize security critical
services independent and protected from compartments of
the application layer. The main services of the trusted soft-
ware layer to enable stateful licenses and license transfers
are, as described in Section 3.1, the Trust Manager (cf. Sec-
tion 4.3), the User Manager, Compartment Manager, and
particularly the Storage Manager (cf. Section 4.4).

4.1.4 Application Layer

On top of the security kernel, several instances of the legacy
operating system as well as security-critical applications — in
our case the DRM controller and Secure I/O are executed
in strongly isolated compartments such that unauthorized

1 A microkernel is an operating system kernel that minimizes
the amount of code running in privileged (“ring 0”) processor
mode [37].

communication between applications or unauthorized I/0O
access is prevented.'”®> The proposed architecture offers an
efficient migration of existing legacy operating systems. We
are currently running a para-virtualized Linux [14]. The
legacy operating system provides all operating system ser-
vices that are not security-critical and offers users a com-
mon environment and a large set of existing applications. If
a mandatory security policy requires isolation between ap-
plications of the legacy OS, they can be executed by parallel
instances of the legacy operating system.

4.2 Secure Initialization

The security of the whole architecture relies on a secure
bootstrapping of the trusted computing base. A TPM-
enabled BIOS, the Core Root of Trust for Measurement,
measures the integrity of the Master Boot Record (MBR),
before passing control to it. A secure chain of measure-
ments is then established: Before program code is executed
it is measured by a previously measured and executed com-
ponent. For this purpose, we have modified the GRUB
bootloader'® to measure the integrity of the core compart-
ments, i.e., the virtualization layer, all compartments in-
teracting directly with the TPM — Compartment Manager,
Trust Manager and Storage Manager — as well as the TPM
device driver. The measurement results are securely stored
in the PCRs of the TPM. All other compartments (includ-
ing the legacy OS) are subsequently being loaded, verified,
and executed by the Compartment Manager according to
the effectual platform security policy.

Upon completion of the secure initialization, an authorized
compartment (such as the Trust Manager) can instruct the
TPM to generate a credential for the Trusted Computing
Base. This credential consists of all PCR values reflecting
the configuration of the TCB and a key pair which is bound
to these PCR values. Together with an I/O access policy
management service that is of course also part of the TCB,
the private key can only be used by compartments that are
both part of the TCB and are authorized to access the TPM.

4.3 Trust Manager

Our implementation of the Trust Manager is based on the
open-source TCG Software Stack TrouSerS [51]. In order
to provide remote trusted channels, the Trust Manager cre-
ates on request of a local compartment a private binding
key whose usage is bound to the requesting compartment’s
configuration and the configuration of the platform’s TCB
(including the Trust Manager itself). The appropriate cer-
tificate of the public binding key has to be extended such
that remote parties can verify both configurations. To access
content that is remotely decrypted with the public binding
key, the Trust Manager checks whether the configuration of
the compartment that want to use the corresponding private
binding key matches the configuration of the compartment
that has initiated the creation of that binding key. Note
that, by extending this 'match’ function, one can easily pro-
vide property-based attestation/sealing [40, 34, 13] on top
of the Trust Manager.

According to Figure 6, in the following, we give a detailed

5"However, covert channels are still feasible.
16www.prosec.rub.de/tgrub.html

description of the protocol for establishing a remote trusted
channel. The protocol can be decomposed into three major
steps, namely certificate generation, encryption of a session
key, and decryption of the session key.

Certificate Generation: The request of the remote com-
partment RC for a trusted channel to the local compart-
ment LC reaches TM via LC. After the mapping of LC’s
compartment identifier to his actual compartment config-
uration comp-confic using CM, TM invokes the TPM to
create a asymmetric binding key bound to the actual TCB
configuration.'” The TPM then returns the public binding
key PKprnp and the encrypted secret part SKz;yp using
TPM’s storage root key (SRK). Then TM invokes the TPM
to sign over the actual TCB configuration, the binding key,
and the configuration of LC using an attestation identity key
(AIK).'® Finally, TM embeds the received TPM certificate
within an X.509 certificate for use in the TLS handshake,
which will be sent together with PKgrnp to RC.

TCB configuration TCB-conf
Public binding key PKprND

Local compartment configuration comp-con fc

TPM Signature =
signarx (TCB-conf, PKpIinp, comp-confic)

Table 1: Structure of the TPM certificate certginp-

Encryption of Session Key: RC verifies the certificate
signature and validates the two embedded configurations
TCB-conf and comp-confic by comparing them with ref-
erence values known to be trustworthy. On success, RC en-
crypts a symmetric session key to esk using PKprnp and
acknowledges the TLS handshake with esk, that can be un-
bound by LC only if it provides the stated compartment
and TCB configuration.

Decryption of Session Key: Upon receipt of the en-
crypted session key esk, LC requests TM to unbind the ses-
sion key. Therefore, TM again maps LC’s compartment iden-
tifier to his actual compartment configuration comp-con fic
using CM, to validate the compartment configuration stated
in the certificate with the one requesting the unbind pro-
cess. On success, TM invokes the TPM to unbind the ses-
sion key using the encrypted private part of the binding key
SKpnp- The TPM first compares the actual PCR values
with ones SKpryp is bound to, before returning the de-
crypted session key to TM. TM finally, passes the decrypted
session key back to LC which uses it for the completion of the
TLS handshake to establish a (one-way) SSL-based trusted
channel from compartment RC to LC.

Performance Measurements: We have implemented the
described protocol and run it on TPMs of different vendors.
The measurement results with maximum asymmetric key
lengths (2048 bits) are shown below. Note that the TPM

"The actual TCB configuration TC'B-conf was measured
during secure initialization (cf. Section 4.2).

'8The attestation identity key (AIK) is a non-migratable key
that has been attested by a privacy-CA to come from a
TCG conform platform. An AIK (in contrast to the general
signature key) can be used only to sign other TPM keys or
PCR values.

Remote Compartment Local Compartment

Trust Manager

Compartment Manager

RC LC ™ CM TPM
(1) request-trusted- (2) request-trusted-
channel[] o channel[] (3) comp-id,c o
o« (&) compreonfic
create-binding-key[TCB-conf] o
SK'sivp = encryptsrk[SKamp]
< PKpivp, SK'pinp
Signa[PKswp, SK'sivp, comp-confic] >
(6) PKginp, certginp 4(5) certginp, PKgivp, SK'sivp - certpinp
verify[PKgnp, certsip]
esk 1= encrypleumo| session-key]
(7) esk unbind[certsmp, esk, SK'snpl . comp-id, c o
P comp-confic
verify[certgp, comp-confic]
unbind[esk, SK'znp] _
verify[TCB-conf']
decryptsri[SK'sp]
decryptsgsml esk]
P session-key - session-key
SSL Session
¢———>
v v v

TCB |

--— Remote Platform J ‘

Local Platform ‘

Figure 6: Protocol for establishing a remote trusted channel. The numbers (X) on the arrows refer to the

protocol steps of Figure 3.

calculations dominate the overall computation and network
transfer times.

| Atmel 1.1b | NSC L.1b

Certificate generation 30 80s 52 55 s
Session key encryption (w/o TPM) | < 1s <1ls
Session key decryption 2-3s 23 —24's

Table 2: Trust Manager performance measurement
results.

4.4 Storage Manager

The following section describes the implementation of the
Storage Manager SM, that enables other compartments to
persistently bound their local states to their actual config-
uration while preserving integrity, confidentiality and fresh-
ness. We first give an short overview and then describe the

realization of secure storage that will be extended by an ad-
ditional freshness layer to provide also trusted storage. At
the end of this section, we briefly describe the protocols to
init SM as well as for storing to and loading from trusted
storage using SM.

Overview: The Storage Manager is invoked by a compart-
ment to store a data object persistently preserving confiden-
tiality and integrity optional with additional restrictions
rest (e.g., freshness, certain user id). SM invokes the Com-
partment Manager to retrieve the actual configuration of
the respective compartment to bind the data object to that
origin compartment configuration ecmp-conf. As shown in
Figure 7, SM creates/updates a metadata entry for the cor-
responding data object data with the data object identifier
datarp, its freshness detection information f, i.e., the actual
cryptographic hash value, and all relevant access restrictions

rest!® within its index indexsm. SM extends the data ob-

ject with an integrity verification information, synchronizes
its momnotonic counter cntsm, encrypts the data object and
the updated index and writes it on untrusted persistent stor-
age using keysu. Since indexsm is the base of security for
SM, indexsm is sealed to SM’s configuration via the sealed
keysm. Thus only the same, trusted Storage Manager con-
figuration is able to unseal and use the key again. On a load
request, SM again uses the Compartment Manager to com-
pare the invoking compartment configuration with the one
that afore stored the respective data object. On a success-
ful verification, SM reads and decrypts the data object from
the untrusted persistent storage and verifies its integrity.
Before the data object is committed to the requesting com-
partment, SM also verifies possibly existing additional re-
strictions such as freshness or a certain user id.

Compartment

|
datayp, = store| data, rest] data = 10ad| datap]

indexsm
Compartment ;
cmp-con data, rest
Manager p-conf D f
CP_0 ID_325 0x29... fresh
CP_1 ID_563 0x10... uD=2
cntsm
TCG TPM 1.2 >
keysm
Storage Manager

Figure 7: SM’s metadata index.

datayp 1= store[data, rest] data = load[datap]
|

Fy

4
A/R := veri'fy[data, il

Integrity

I I
e:= enclypt[datalli] ' data||i 1= decrypt[e]

Confidentiality

I
i 1= hash[data]

Plain Channel

Trusted Channel

v A Trusted
datayp 1=write[e]

v

e := read[data
R [0] Untrusted

Untrusted Storage

Figure 8: Compartment view of SM’s secure storage
implementation.

Secure Storage: Figure 8 depicts our secure storage imple-
mentation. Thus, our secure storage compartment basically
offers two trusted channels namely load[] and store[] while
itself uses two untrusted channels namely read[] and write]|
from an untrusted storage compartment to persistently write
respectively read data while providing at least availability.2°
If SM receives a data object data via store[data, rest], SM

9Further access restrictions can be a certain user id, group
id or date of expiry.

20For the realization of availability we suggest solutions based
on high redundancy, i.e., by the utilization of multiple dis-
tributed storage locations (e.g., USB sticks or online sites)
assisted by an appropriate RAID system. In case of failure
of a particular storage device, it is still possible to retrieve
data from alternative storage mirrors.

internally creates or updates object’s metadata?! and calcu-
lates its hash value i to verify integrity. Then data together
with 4 is encrypted with the internal cryptographic secret
keysm using the function e := encrypt[datal|i] (to provide
confidentiality). The encrypted data e will afterwards be
written on untrusted storage using datarp := write[e] that
returns the object identifier data;p. Conversely, if e is read
from the untrusted storage via e := read[datarp] it will be
decrypted to data and i via decrypt[e] using the internal
cryptographic secret keysm. Before returning data to load[],
SM verifies the integrity of data and further access restric-
tions (e.g., a certain user id) based on the corresponding
metadata in SM’s index using the function verify[data, i].

Trusted Storage: In order to provide trusted storage, we en-
hance SM by an additional layer for managing freshness of
data objects. Figure 9 depicts SM’s extension where the
(currently abstract) function f := memorize[data] updates
the internal data structure FRESH with the freshness value
f. Afterwards, data will be stored persistently ensuring con-
fidentiality and integrity using secure storage. On load from
secure storage, the function verify[data,f] additional veri-
fies that the received data object data is the last one being
stored.

datayp : = store[data, rest] data 1= load[data;p]

f Untrusted channel

f:= memorize[data] i A/R := verify[data, f]

Freshness

Trusted channel

Trusted

Secure Storage

i

Figure 9: Compartment view of SM’s trusted storage
implementation.

To provide such freshness detection, SM uses an additional
metadata field (cf. Figure 7) to store the cryptographic hash
value Hash(data) that defines the last stored version of data.
On load, SM calculates Hash(data) again and checks if it
matches the hash value on last store. In order to ensure
freshness of these metadata, the index of SM itself has to be
stored fresh.

We therefore analyzed to what extend TPMs of version 1.1b
and 1.2 can be used to realize a fresh index for SM.

e DI-Register: TPMs version 1.1b provide a Data In-
tegrity Register (DIR) that can persistently store a
160 bit value |21, 23|. Unfortunately, access to this
register is only authorized by the TPM-Owner secret
implying that the TPM-Owner can always perform re-
play attacks. The only solution would be to distribute
platforms with an activated TPM and an owner au-
thorization secret that is unknown to the user. This
solution does not conform to the TCG specification
that demands that TCG-enabled platforms have to be
shipped with no owner installed (see [54], page 139).

e SRK Recreation: An alternative way to prevent replay
attacks based on TPMs version 1.1b would be to create

2! More details on storage metadata at the end of this section.

a new Storage Root Key (SRK) before the system is
shut down. Recreation of the SRK would prevent that
previously created TPM encryption keys can be used
any more. Unfortunately, a SRK can only be renewed
by the TakeOwnership function which itself requires a
previously OwnerClear that itself disables the TPM.
Therefore, an online-recreation of the SRK seems to
be impossible.

e NV-RAM: TPMs version 1.2 provide a limited amount
of non-volatile (NV-) RAM to which access is restricted
to authorized entities. So-called NV-Attributes define
which entities are authorized to write to and/or read
from the NV-RAM. Thus, data integrity can be pre-
served by storing a hash value of the data into the NV-
RAM and ensuring that only the Storage Manager can
access the authorization secret.

e Secure Counter: A TPM version 1.2 supports at least
four monotonic counters. Based on this functionality,
the freshness of data can be detected by securely con-
catenating it with the actual counter value.

A result of our previous analysis we showed that TPMs
version 1.1b cannot be used to provide fresh storage as re-
quired to enforce stateful licenses and/or to transfer licenses.
Therefore we decided to realize trusted storage based on the
monotonic counter functionality of TPMs version 1.2.

A monotonic hardware counter allows us to securely main-
tain versioning of an arbitrary data component, by keeping
a software counter synchronized with one (of four guaran-
teed) hardware counters of the TPM. As depicted in Fig-
ure 7, SM manages an internal software counter that, every
time SM updates its index, is incremented synchronously
with the monotonic hardware counter. If both mismatch at
any time, a outdated data is detected, that will be handled
according to the actual security policy.

However, in order to employ TPM’s monotonic counters, SM
has to be initialized correctly. Figure 10 depicts the steps
needed for the first initialization of SM on a new platform
together with the initialization necessary for instance after
rebooting the platform. On the initial setup SM uses the
TPM to create its internal cryptographic key keysm that
then will be sealed to the actual platform configuration. To
enable freshness detection and thus trusted storage, SM cre-
ates a monotonic counter cntid with a authentication auth,
e.g., a secret password. The initial setup finishes with the
creation of SM’s internal metadata index indexsy and the
saving of the sealed key blob and the encrypted index on
untrusted storage.

After a platform reboot, SM reads the key blob from the
untrusted storage and asks the TPM to unseal its internal
key. The TPM is able to unseal keysw if the platform has the
same configuration as it was at the sealing process, thus pre-
venting a modified SM to access keysm. Then SM uses keysm
to decrypt its metadata index read from the untrusted stor-
age. Finally, SM verifies freshness of indexsy by comparing
the decrypted counter of indexsm with the actual counter
value of the corresponding TPM counter cntid.

Trusted Platform Module Untrusted

Storage Manager
M TPM Storage

request-random[]

»
»

P rnd
<

keysm:=derive[rnd]
e seal[keysm]

keyblobsm

<
<

create-counter[cntid, auth]
>

cnt

<
<

indexsm:= create[cnt]
write[encrypt[keysw, indexsw]]

v

write[keyblobsm]

v

read[keyblobsw]

unseal[keyblobsw]

keysm

A

decrypt[keysw, read[indexsm]]

A

read-counter[cntid]

cnt

<
<

verify[indexsw, cnt]

Figure 10: Protocol view of SM’s initialization.

Figure 11 depicts the protocol steps required to bind a com-
partment’s data object persistently to its actual configura-
tion. After the mapping of compartment identifier to the
actual compartment configuration using CM, SM updates
indexsm with the corresponding metadata as well as the in-
cremented software counter to enable freshness detection for
indersm. Afterwards, SM writes both, the data objects and
the updated index, encrypted on the untrusted storage us-
ing keysm. Finally, SM synchronizes its software counter
with the TPM’s monotonic hardware counter and returns
the data object identifier.

Compartment Storage Manager Comp. Manager
X SM CM

store[data, rest] N comp-idx -
> >
< comp-confx

update-index[comp-confy, data, rest]

increment-counter[indexsy] Untrusted Storage

datay := write[encrypt[keysw, data]]

write[encrypt[keysw, indexsm]]

»
»

TPM

increment-counter[cntid, auth] l
>

data;p
«— S

v v

Figure 11: Protocol view of SM’s store implementa-
tion.

We complete the scenario with Figure 12 that depicts the
protocol steps required to load a compartment’s data object
again. After the mapping of requesting compartment iden-
tifier to the actual compartment configuration using CM,

SM reads the requested data object from untrusted storage
and decrypts it using keysm. Before returning data to the
corresponding compartment, SM verifies all access restric-
tions (e.g., freshness, or a certain user id) given on store
via rest based on the corresponding metadata in indexsm
and verifies that the requesting compartment has the same
configuration as it was on store.

Compartment Storage Manager Compartment Manager
X SM CM

load[data;p] comp-idy

» »
> >

comp-confx

Untrusted Storage
 decrypt[keysu, read[data;p]]

verify[data, comp-confx]

data
+—

v v

Figure 12: Protocol view of SM’s load implementa-
tion.

45 Secure l/O

The Secure I/O compartment receives protected content in
plain for rendering. Thus the SO is a security critical com-
partment that has to be trusted by user and provider. There-
fore SO is executed in parallel, isolated from the actual
legacy OS and has to be verified by the DRM controller
for trustworthiness. In order to provide a flexible efficient
implementation, we used a para-virtualized Linux operat-
ing system reduced to the essential functionality to render
the decrypted content?? from DC. Moreover, our whole sys-
tem architecture enforces that SO is allowed to communicate
only with devices essential for the rendering process and in
turn receives communication only from DC so that decrypted
content cannot leak into untrusted compartments.

5. SECURITY CONSIDERATIONS

In this section we first show why our implementation realizes
the security properties (R1) (R$8) demanded in Section 2.4.
We then shortly analyze how we can fulfill the overall secu-
rity objectives (O1) (06) demanded in Section 2.3.

5.1 Trusted Channels

The inter-process communication (IPC) provided by the vir-
tualization layer enables secure channels between local com-
partments that enforce confidentiality and integrity protec-
tion. To provide secure channels also between local and re-
mote compartments, we suggest the application of common
established mechanisms for communication security such as
SSH [58] and TLS [9]. In order to extend secure channels
to trusted channels that enable a party to verify a com-
partment’s configuration, we have implemented the Trust
Manager (TM) and the Compartment Manager (CM). Both
together allow local and remote compartments to determine
the configuration of their communication contacts and thus
to derive their trustworthiness. Moreover, our architecture

220ur exemplary SO implementation provides rendering of
several audio formats

enforces that information bound to the determined configu-
ration cannot be accessed by an unauthorized (and poten-
tially untrusted) configuration based on the TCG mecha-
nisms sealing and binding. The secure initialization process
(cf. Section 4.2) however enforces the trustworthiness of
TM, CM and the underlying TCB.

5.2 Strong Isolation

In order to strongly isolate compartments from each other,
isolation at runtime as well as isolation in persistent storage
is required. Runtime isolation is provided by the small virtu-
alization layer that implements only logical address spaces,
inter-process communication (IPC) and an appropriate in-
terface to enforce an access control management for the un-
derlying hardware. Device drivers and other essential op-
erating system services, such as process management and
memory management, run in isolated user-mode processes.
Thus, the amount of code running in privileged (“ring 07)
processor mode, is clearly minimized and can, in contrast
to monolithic operating system kernels such as Linux or MS
Windows, properly be verified for its correctness. More-
over, a failure in one of these services cannot directly affect
the other services, especially the code running in privileged
mode. Thus, malicious device drivers cannot compromise
core operating system services as they are all executed in
user-mode. Isolation in persistent storage is provided by
our Storage Manager (SM) implementation and the usage of
trusted channels. Since conventional computer architectures
cannot provide a trusted channel to the persistent storage
device, an adversary can always arbitrarily change the state
of the storage or access the communication to and from the
corresponding controller. We prevent such offline manipula-
tions and replay attacks while establishing a trusted channel
to SM during the secure initialization (cf. Section 4.2) pro-
cess that enables the platform to verify the trustworthiness
of SM.

5.3 Trusted Storage

Our architecture provides secure storage, i.e., storage pro-
viding integrity and confidentiality, using established cryp-
tographic mechanisms. However, we improved common ap-
proaches while taking advantage of the strong isolation capa-
bility of our architecture that prevents the exposure of cryp-
tographic secrets to unauthorized or malicious processes.
We also extended the secure storage by a hardware-based
freshness detection mechanism that detects outdated persis-
tently stored information, i.e., information that indeed could
be decrypted and verified for integrity but that was not the
information written at last. Having a freshness detection
mechanism for persistent storage, our architecture is able to
manage for instance stateful licenses while preventing the
corresponding replay attacks. In order to provide Trusted
Storage, i.e., storage that enables other compartments to
persistently bound their local states to their actual config-
uration while preserving integrity, confidentiality and fresh-
ness, we employ the Storage Manager (SM) together with
the Compartment Mananger (CM). As SM innately enforces
integrity, confidentiality and freshness, CM provides trust-
worthy measurement of compartments configuration used
by SM to return information requested on load only to com-
partments with the same configuration as provided on the
preceding storage request. The secure initialization (cf. Sec-
tion 4.2) however, again enforces the trustworthiness of SM,

CM and the underlying TCB.

5.4 Security Objectives

In the following we shortly analyze how we fulfill the overall
security objectives (O1) (06) of users and providers de-
manded in Section 2.3 using the implemented security prop-
erties (R1) (R3).

(O1) License integrity: Trusted channels ensure that
only mutually trusted compartments can modify a li-
cense, whereas strong isolation and trusted storage
prevents unauthorized alteration of licenses at runtime
and while persistently stored.

(02) Licenses unforgeability: Trusted channels enable
a party to verify a compartment’s configuration for
correct sublicensing and license transfers.

(0O3) License enforcement: Trusted channels enable a
party to verify a compartment’s configuration for cor-
rect license enforcement whereas strong isolation pre-
vents malicious impacts on the license enforcing com-
partment.

(04) License availability: Using trusted storage ensures
availability of licenses.

(0O5) Privacy: User’s privacy is realized by ensuring that
the security policy defined by the platform owner re-
stricts the I/O behavior of every application. Thus,
even if third party applications, like the DRM con-
troller, can locally enforce their own security policy,
they cannot bypass the platform’s security policy while
accessing non authorized information or devices. At
the same time we ensure that the platform owner can-
not directly access the state of applications to bypass
security policies locally enforced by the applications.
Moreover, our architecture is able to attest (resp. seal
to) single compartments such that content providers
only know the configuration of the TCB and their
DRM controller. The controller itself can check if all
other required services such as user management, lo-
cal policy enforcement, or storage are according to the
content provider’s security policy. While not delivering
the user’s overall platform configuration to the content
provider, our approach reveals only information essen-
tial to attest the DRM controller and thus ensuring the
security property of least privilege. The user in turn
can locally attest®® the DRM controller and enforce
that it cannot reveal any additional information not
essential for license enforcement. A possible extension
would be to add the concept of property-based attesta-
tion [40] to the Trust Manager and the Compartment
Manager to hide both the (binary) configuration of the
TCB and the DRM controller.

(0O6) Freshness: Using trusted storage ensures freshness
of arbitrary information, i.e., trusted storage ensures
retrieved information is the last one stored.

23The user can attest third party applications for instance
by comparing the attestation results with known good val-
ues provided by an institution trusted by the user that has
sufficient expertise and possibly further resources.

6. SUMMARY

In this paper, we introduced the design, the realization and
implementation of an open security architecture that is ca-
pable to enforce stateful licences on open platforms. Partic-
ularly, it allows the transfer of stateful licences, while pre-
venting replay attacks. Further, the security architecture
provides security properties such as strong isolation that
are used to enforce the user’s policy, e.g., protecting against
spyware. We have shown how to implement this security ar-
chitecture by means of virtualization technology, an (open
source) security kernel, trusted computing functionality, and
a legacy operating system (currently Linux).

7. REFERENCES

[1] ApeELsBAcH, A., SADEGHI, A.-R., AND ROHE, M.
Towards multilateral secure digital rights distribution
infrastructures. In ACM DRM 2005 (2005).

[2] ANDERSON, R. J. Security Engineering — A Guide to
Building Dependable Distributed Systems. 2001.

[3] AppLE COMPUTER, INC. FairPlay DRM.
www.apple.com/itunes/.

[4] Aura, T., AND GOLLMANN, D. Software license
management with smart cards. In Proceedings of the
First USENIX Workshop on Smartcard Technology
(Chicago, 11, May 1999), USENIX. ISBN
1-880446-34-0.

[5] AuTHENTICA, INC. Authentica active rights
management.
wuw.authentica.com/products/overview.aspx.

[6] BaEk, K.-H., AND SmiTH, S. W. Preventing theft of
quality of service on open platforms.
IEEE/CREATE-NET Workshop on Security and QoS
in Communications Networks (September 2005).

[7] Brazge, M. A cryptographic file system for UNIX. In
CCS ’93: Proceedings of the 1st ACM conference on
Computer and communications security (New York,

NY, USA, 1993), ACM Press, pp. 9-16.

[8] DEuTscHE TELEKOM AG. T-online: Video on
demand. http://vod.t-online.de.

[9] Dierks, T., AND ALLEN, C. RFC2246 - the TLS
protocol version 1.0. wuw.ietf.org/rfc/rfc2246.txt,
January 1999.

[10] Dracovic, B., Fraser, K., HAnND, S., HArRris, T.,
Ho, A., PrarT, 1., WARFIELD, A., BARHAM, P.|
AND NEUGEBAUER, R. Xen and the art of
virtualization. In Proceedings of the ACM Symposium
on Operating Systems Principles (October 2003).

[11] EpsiLON SQUARED, INc. InstallRite Version 2.5.
WWW.WWW.epsilonsquared. com.

[12] GutH, S. A Sample DRM System., vol. 2770 of
LNCS. Springer, 2003, pp. 150 161.

[13] HALDAR, V., CHANDRA, D., AND FrANZ, M.
Semantic remote attestation: A virtual machine
directed approach to trusted computing. In USENIX
Virtual Machine Research and Technology Symposium

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

(May 2004). also Technical Report No. 03-20, School
of Information and Computer Science, University of
California, Irvine; October 2003.

HoumuTH, M. Linux-Emulation auf einem
Mikrokern. Master’s thesis, Dresden University of
Technology, Dept. of Computer Science, 1996.

JAEGER, T., LIEDTKE, J., PANTELEENKO, V., PARK,
Y., aND IsnaM, N. Security architecture for
component-based operating systems. In 8th ACM
SIGOPS European Workshop (Sintra, Portugal, Sept.
1998).

KoEeNEN, R., Lacy, J., MacKay, M., AND
MitcHELL, S. The long march to interoperable digital
rights management. Proceedings of the IEEE 92, 6
(June 2004), 883 897.

Kwok, S. H. Digital rights management for the
online music business. SIGecorn Ezch. 3, 3 (2002),
17 24.

Lig, D., THEKkATH, C., MITCHELL, M., LINCOLN,
P., BoNeEH, D., MrrcHELL, J., AND HOrROWITZ, M.
Architectural support for copy and tamper resistant
software. In Ninth International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-1X) (Cambridge, MA,
USA, Nov. 2000), ACM Press, pp. 168-177. Appeared
as 34.5.

LiepTKE, J. Towards real microkernels.
Communications of the ACM 89, 9 (September 1996),
70 77.

Liu, Q., SAravi-NaINI, R.; AND SHEPPARD, N. P. A
license-sharing scheme in digital rights management.
Tech. rep., Cooperative Research Centres - Smart
Internet Technology, Australia, 2004.

MacDoNALD, R., SmITH, S.;, MARCHESINI, J., AND
WiLp, O. Bear: An open-source virtual secure
coprocessor based on TCPA. Tech. Rep. TR2003-471,
Department of Computer Science, Dartmouth College,
2003.

MARCHESINI, J., SMITH, S., WILD, O., BARSAMIAN,
A., AND STABINER, J. Open-source applications of
TCPA hardware. In 20th Annual Computer Security
Applications Conference (Dec. 2004), ACM.

MARCHESINI, J., SMITH, S. W., WiLD, O., AND
MacDonNALD, R. Experimenting with TCPA/TCG
hardware, or: How I learned to stop worrying and love
the bear. Tech. Rep. TR2003-476, Department of
Computer Science, Dartmouth College, 2003.

MARK’S SYSINTERNALS BLoa. Sony, rootkits and
digital rights management gone too far.
www.sysinternals.com/blog/2005/10/
sony-rootkits-and-digital-rights.html, October
2005.

MicrOSOFT CORPORATION. Visio 2003 30-day
software trial. www.microsoft.com/office/visio/
prodinfo/trial .mspx.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Mi1cROSOFT CORPORATION. Windows media rights
manager 10. wuw.microsoft.com/windows/
windowsmedia/drm/default.aspx.

Mi1CROSOFT CORPORATION. Windows rights
management services.
www.microsoft.com/windowsserver2003/
technologies/rightsmgmt/default.mspx.

MI1cROSOFT CORPORATION. Intoduction to Network
Access Protection.
http://www.microsoft.com/windowsserver2003/
techinfo/overview/napoverview.mspx, June 2004.

Updated April 2005.

MovieLINK, LLC. Movielink video on-demand
service. www.movielink. com.

NATIONAL RESEARCH CoOuNcCIL. The Digital
Dilemma, Intellectual Property in the Information
Age. National Academy Press, 2000.

OFrICcE, U. C. Copyright law of the United States of
America. Title 17 of the United States Code U.S.C,
June 2003.

PriTzmANN, B., RiIorDAN, J.; STUBLE, C.,
WAIDNER, M., AND WEBER, A. The PERSEUS
system architecture. Tech. Rep. RZ 3335 (#93381),
IBM Research Division, Zurich Laboratory, Apr. 2001.

Porek, G. J., AND GOLDBERG, R. P. Formal
requirements for virtualizable third generation
architectures. Communications of the ACM 17,7
(1974), 412 421.

Porirz, J., SCHUNTER, M., VAN HERREWEGHEN,
E., AND WAIDNER, M. Property attestation—scalable
and privacy-friendly security assessment of peer
computers. Tech. Rep. RZ 3548, IBM Research, May
2004.

PRUNEDA, A., AND TRAvis, J. Metering the use of
digital media content with Windows Media DRM 10.
msdn.microsoft.com/library/en-us/dnwmt/html/
meteringcontentusagel0.asp.

REALNETWORKS, INC. Helix DRM.
www.realnetworks.com/products/drm/.

RoginN, J. S.; AnND IrvINE, C. E. Analysis of the intel
pentium’s ability to support a secure virtual machine
monitor. In Proceedings of the 9th USENIX Security
Symposium (Denver, Colorado, Aug. 2000), USENIX.

RosenBLATT, W., MOONEY, S., AND TRIPPE, W.
Digital Rights Management: Business and Technology.
John Wiley & Sons, Inc., New York, NY, USA, 2001.

SapeaHi, A.-R., AND STUBLE, C. Bridging the gap
between TCPA /Palladium and personal security.
Tech. rep., Saarland University, Germany, 2003.

SADEGHI, A.-R., AND STUBLE, C. Property-based
attestation for computing platforms: Caring about
properties, not mechanisms. In The 2004 New Security
Paradigms Workshop (Virginia Beach, VA, USA, Sept.
2004), ACM SIGSAC, ACM Press.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

I51]

[52]

[53]

[54]

[55]

SapeaHI, A.-R., STUBLE, C., AND POHLMANN, N.
European multilateral secure computing base - open
trusted computing for you and me. 548 554.

SAILER, R., JAEGER, T., ZHANG, X., AND VAN
DoornN, L. Attestation-based policy enforcement for
remote access. In Proceedings of the 11th ACM
Conference on Computer and Communications
Security (Washington, DC, USA, Oct. 2004), ACM
Press.

SAILER, R., VALDEZ, E.,| JAEGER, T., PEREZ, R.,
VAN DoOORN, L., GrirrIN, J. L., AND BERGER, S.
sHype: Secure hypervisor approach to trusted
virtualized systems. Tech. Rep. RC23511, IBM
Research Division, Feb. 2005.

SAILER, R., ZHANG, X., JAEGER, T., AND VAN
DoornN, L. Design and implementation of a
TCG-based integrity measurement architecture. In
Proceedings of the 18th USENIX Security Symposium
(Aug. 2004), USENIX.

SHAPIRO, W., AND VINGRALEK, R. How to manage
persistent state in DRM systems. In DRM °01:
Revised Papers from the ACM CCS-8 Workshop on
Security and Privacy in Digital Rights Management
(London, UK, 2002), vol. 2320 of LNCS, pp. 176-191.

SPIEGEL ONLINE. Datenschutzproblem: itunes
funkt nach hause. www.spiegel.de/netzwelt/
politik/0,1518,394740,00.html, January 2006.

STARZ ENTERTAINMENT GROUP. Video download
service for portables. www.vongo.com.

SuH, G., CLARKE, D., GasseEnD, B., vax Duk, M.,
AND DEvADAS, S. AEGIS: Architecture for
tamper-evident and tamper-resistant processing. In
Proceedings of the Annual USENIX Technical
Conference (2003).

THE HymMN PRrROJECT. Free your itunes music store
purchases from their drm restrictions.
www.hymn-project.org, May 2006.

THE REGISTER. Dvd jon hacks media player file
encryption. www.theregister.co.uk/2005/09/02/
dvd_jon_mediaplayer/, October 2005.

TROUSERS. The open-source TCG software stack.
http://trousers.sourceforge.net.

TrusTED COMPUTING GROUP.
WwWW.trustedcomputinggroup.org.

TrUSTED COMPUTING GROUP. TPM main
specification. Main Specification Version 1.2 rev. 85,
Trusted Computing Group, Feb. 2005.

TRUSTED COMPUTING PLATFORM ALLIANCE
(TCPA). Main specification, Feb. 2002. Version 1.1b.

TyGAR, J., AND YEE, B. Dyad: a system using
physically secure coprocessors. Tech. rep., 1993.

[56]

[57]

[58]

[59]

VINGRALEK, R., MAHESHWARI, U., AND SHAPIRO,
W. TDB: A database system for digital rights
management. Technical Report STAR-TR-01-01,
STAR*Lab, InterTrust Technologies Corporation,
2001.

WRIGHT, C.; MARTINO, M., AND ZADOK, E.

Ncryptfs: A secure and convenient cryptographic file
system. In Proceedings of the Annual USENIX
Technical Conference (2003), pp. 197-210.

YronNEN, T., KIvINEN, T., SAARINEN, M., RINNE,
T., aAND LEHTINEN, S. IETF draft - SSH transport
layer protocol. www.openssh.org/txt/

draft-ietf-secsh-transport-14.txt, March 2002.

ZDNET. Trail license filter.
http://downloads.zdnet.com.

