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ABSTRACTVarious appli
ations and business models for distributingdigital 
ontent over open networks demand for li
enses to
ontrol usage of the 
ontent and restri
t a

ess to it byauthorized entities only. Of parti
ular interest are state-ful li
enses that allow usage for a �xed time period or �xednumber of times.However, existing solutions using stateful li
enses are vul-nerable to various atta
ks, parti
ularly on open 
omputingplatforms that are under 
onsumers' 
ontrol who 
an runexploits as well as re
on�gure the underlying operating sys-tem. In this 
ontext replay atta
ks play an important role,sin
e the state of 
ommon storage (e.g., hard-disks and �ashmemory) 
an easily be reset to some prior state bypassinga

ess 
ontrol me
hanisms or breaking 
ryptographi
 pro-to
ols that keep state. Hen
e 
ontent providers tend to in-�exible stati
 li
enses and 
losed DRM systems that mainlyprovide unilateral se
urity, i.e., prote
t the needs of 
ontentproviders and not of 
onsumers.In this paper we present a se
urity ar
hite
ture that en-ables the se
ure deployment and transfer of stateful li
enseson open 
omputing platforms while prote
ting the se
urityobje
tives of both users and providers. We show how toimplement this se
urity ar
hite
ture e�
iently by means ofvirtualization te
hnology, a se
urity kernel, trusted 
omput-ing fun
tionality, and a lega
y operating system (
urrentlyLinux). Moreover, our system extends the TCG 
hain oftrust 
on
ept to arbitrary 
omposed (trusted) domains, i.e.,our ar
hite
ture measures and reports the 
on�guration ofonly those software 
omponents that are se
urity-
riti
al fora 
ertain operation at 
ertain time.
KeywordsDigital Rights Management, stateful li
enses, freshness, se-
urity ar
hite
tures, trusted 
omputing
1. MOTIVATIONE-
ommer
e appli
ations for trading digital goods over opennetworks are be
oming in
reasingly appealing. In this 
on-text te
hniques for se
ure distribution and usage of digitalgoods, where a li
ense de�nes the owner's rights to 
onsume(a

ess, use) the data linked to this li
ense, are 
ru
ial.

A parti
ular li
ense type are stateful li
enses whi
h allowthe use of rights for a �xed time period, e.g., for n days, orfor a �xed quantity, e.g., for n times.A few e-business appli
ations already employ su
h (mostlyproprietary) stateful li
en
es to sell 
ertain digital goods forlimited use. Important referen
es are video-on-demand ser-vi
es or online video rentals [8, 47, 29℄ that use statefulli
en
es to enable �exible pay-per-view s
enarios. Variousdigital musi
 stores [3℄ use stateful li
en
es to 
ontrol themaximum number of analogue 
opies allowed. Moreover,some software vendors already employ stateful li
enses too�er trial versions that allow users to test a software for alimited time or allow a limited number of exe
utions [25, 59℄.Stateful li
en
es enable new promising pay-per-use softwarebusiness models.In addition, one 
an think of other interesting appli
ationsusing stateful li
en
es to enfor
e poli
ies: For instan
e sen-sitive user data su
h as email 
orresponden
e or identityinformation is being stored on remote servers today. Oftenthe users are not fully aware of the data tra
es they leave onremote servers. In other 
ases users have to provide somepersonal information in order to use a servi
e. However,users must have the right and be able to de
ide and limitthe usage of this information by any third party (e.g., ser-vi
e provider). Another appli
ation is when digital musi
stores allow their 
ustomers for instan
e to hear a tra
k twotimes for free before o�ering the a
quisition of a li
ense forunlimited a

ess. Stateful li
en
es 
an also enfor
e one-timea

ess to sensitive data. Thus, for instan
e a 
ompany 
anprevent their employees from making unauthorized 
opies orforwarding of sensitive 
ontent that 
ould leak informationto its 
ompetitors.Another important issue beside the se
ure usage of state-ful li
enses is the se
ure transfer of li
enses among di�er-ent platforms. This in
ludes also se
ure lending or selling(sub-)li
enses to other individuals without requiring the in-tera
tion of the li
ensor. In this 
ontext the li
ense itselfdes
ribes the 
onditions under whi
h a transfer of the 
on-tent, it is atta
hed to, is authorized. For example, the li-
ensee would not be allowed to freely 
opy the 
ontent, butwould instead be allowed to move it to 
ertain devi
es with-out Internet 
onne
tivity. Su
h resale and sub-li
ensing is




ommonly 
onsidered a

eptable use, yet unlike the �o�ine�transa
tion, usually requires intera
tion with the li
ensor.However, managing and enfor
ing stateful li
enses on openplatforms is parti
ularly vulnerable to various threats su
has unauthorized a

ess, misuse, and illegal redistributionof the 
ontent to be prote
ted [24, 49, 50℄. Open plat-forms are under the 
ontrol of their owners, who 
an atta
kand 
ir
umvent even sophisti
ated prote
tion me
hanismsby running exploits and re
on�guring the underlying oper-ating system. Parti
ularly replay atta
ks set the platformstate (e.g., hard-disks and �ash memory) and thus a statefulli
ense to a prior state and 
ir
umvent se
urity me
hanisms.This 
an be done for instan
e by ordinary ba
kup me
ha-nisms or by applying software tools [11℄ that log all storagemodi�
ations to easily revoke these modi�
ations for reuseof a li
ense1.Consequently, 
ontent providers use tamper-resistant hard-ware devi
es like dongles [30℄ or smart
ards [4℄ to se
urelystore a small amount of data to prote
t their assets. The useof external devi
es, however, 
annot guarantee the integrityof the operating system and a proper behavior of appli
a-tions sin
e debugging utilities and other manipulations ofthe operating system or appli
ations frequently allow usersto bypass se
urity me
hanisms. 2Thus, 
ontent providers 
urrently tend to in�exible stati
li
enses and 
losed DRM systems. The problem with 
losedDRM systems, su
h as [16, 28℄, is that they mainly provideunilateral se
urity prote
ting the needs of 
ontent providersand usually not 
onsumers3 Moreover, 
ommon DRM sys-tems do not provide adequate stateful li
enses and thusheavily restri
t users' rights, e.g., by preventing them fromtransferring li
enses (that in
ludes li
ense moving, resale orrenting).
1.1 Main Contribution & OutlineIn this paper we present a se
urity ar
hite
ture that enablesse
ure enfor
ement of stateful li
enses on open 
omputingplatforms and se
ure li
ense transfers among platforms whileprote
ting the se
urity obje
tives of users and providers. Tothe best of our knowledge there 
urrently exists no solutionthat is 
apable of enfor
ing stateful li
enses on open plat-forms while providing se
urity fun
tionalities allowing to es-tablish multilateral se
urity. We show how our ar
hite
ture
an e�
iently be implemented using existing virtualizationand trusted 
omputing te
hnology. In 
ontrast to existingsolutions, our system ar
hite
ture measures and reports the
on�guration of only those software 
omponents that arese
urity-
riti
al for a 
ertain operation, instead of reportingthe 
on�guration of all 
urrently running software 
ompo-nents that 
learly a�e
t user's priva
y.1Cryptographi
 measures like digital signatures, en
ryptionand even 
ryptographi
 �le systems [7, 57℄ 
annot prote
tstateful li
enses, sin
e a 
omplete ba
kup 
an still be re-played.2In parti
ular, dongles turned out to be impra
ti
al for themass market be
ause of missing 
onsumer friendliness andhigh 
osts [2℄.3This is 
onform to the legislative trend (see [31℄) of puttingmore restri
tions on 
onsumers' rights on using digital 
on-tent.

Our paper is organized as follows. In Se
tion 1.2 we sum-marize related work. We then de�ne in Se
tion 2 an idealsystem model for distributed 
ontent a

ess that satis�esour stated se
urity obje
tives of the involved parties. Goingtowards the real world we repla
e the ideal model in Se
-tion 3 by several logi
al 
omponents that are implementedby real software 
omponents of a �rst prototype implemen-tation based on a small se
urity kernel, virtualization te
h-nology and trusted 
omputing te
hnology (Se
tion 4).
1.2 Related WorkShapiro and Vingralek [45, 56℄ identi�ed the replay problemin 
lient platforms that are 
ompletely under the 
ontrol ofthe user. The authors proposed to manage persistent statesusing external lo
ker servi
es or assumed a small amount ofse
ure memory (i.e., that 
annot be read or written by anatta
ker) and se
ure one-way 
ounters realized by battery-ba
ked SRAM or spe
ial on-
hip EEPROM/ROM fun
tions.Tygar and Yee [55℄ elaborate on appli
ations of physi
allyse
ure 
opro
essors, in
luding enfor
ement of stati
 and dy-nami
 li
enses without 
entralized servers. They show howto prote
t and attest the integrity of their system with thehelp of a se
ure 
opro
essor and a se
ure bootstrap pro
ess.In addition, proto
ols for sealing of data to a lo
al platformand binding of data to a remote platform are presented.They identify the replay problem in the 
ontext of ele
troni

urren
y and propose "two-phase" 
ommits to ensure atomi
transfers to remote platforms. The proposed ar
hite
ure re-lies on a mi
rokernel whi
h is running in a physi
al se
uritypartition provided by the se
ure 
opro
essor. This is di�er-ent to our approa
h whi
h is based on a virtualization layero�ering logi
al se
urity partitions ("
ompartments").Mar
hesini et al. [22℄ use OS hardening to 
reate "software
ompartments" whi
h are isolated from ea
h other and 
an-not be a

essed by a "root spy". Based thereon, their designprovides "
ompartmentalized attestation", i.e. attestationof and binding data to single 
ompartments. Our approa
hdoes not employ OS hardening te
hniques to se
ure a 
om-plex monolithi
 lega
y OS. Instead we put the lega
y OS ina 
ompartment whi
h is then run on top of a virtualizationlayer. The performan
e loss is negligible, but the in
reasein se
urity is not, sin
e the virtualization layer is mu
h less
omplex than a monolithi
 OS kernel.Baek and Smith [6℄ build on this work and implement aprototype for enfor
ing QoS poli
ies on open platforms.Publi
ly available do
umentation on both DRM implemen-tations of Mi
rosoft Windows Rights Management Servi
es[27℄ and Authenti
a A
tive Rights Management [5℄ do notmention how they resist replay atta
ks. On
e a 
lient appli-
ation is authorized to a

ess a do
ument, it 
an ba
kup andrestore its state to entirely a

ess all do
uments at ba
kuptime.The same holds for 
ommon DRM implementations for dig-ital 
ontents (audio, video, ebooks, software), e.g., Mi
ro-soft's Windows Media Rights Management [26℄, Apple's Fair-Play [3℄ and Real Network's Helix DRM [36℄, all providingproprietary stateful li
enses.



Moreover, most of these solutions are 
losed software and
annot be veri�ed for inherent se
urity �aws. Some a�e
tthe entire host se
urity [24℄ or violate user priva
y [46℄.Many 
ould be 
ontinuously broken [50, 49℄, and provideli
ense transfers only to some sele
ted devi
es owned by theuser. This point 
learly 
ontradi
ts the �rst sale do
trine:The li
ensor should be allowed to transfer legally obtaineddigital 
ontent without permission or intera
tion of the li-
ensee.Another approa
h uses small-value or short-term sub-li
ensesbased on a single sour
e li
ense to transfer rights. Examplesare transient li
enses [35℄, re
hargeable tokens [17℄, or tra
k-ing �les [20℄. Sin
e users of these systems always have full
ontrol over the platform storage, they 
an easily ba
kuptheir (sub-)li
enses and restore them after expiration.In [42, 44℄, the authors propose an operating system exten-sion that attests an integrity measurement (a SHA-1 digestover all exe
uted 
ontent) based on a 
ryptographi
 
opro-
essor. The proposed ar
hite
ture allows a 
ontent providerto remotely verify the integrity of software and data of a
lient platform. Sin
e this approa
h measures all exe
uted
ontent, i.e., also all non-se
urity-
riti
al and private 
on-tent, this pro
edure gives a 
ontent provider user's overallplatform 
on�guration. Sin
e delivering the 
omplete plat-form 
on�guration reveals a lot of additional information notrequired for li
ense enfor
ement this would 
learly 
on�i
twith the least privilege se
urity property, thus a�e
ting userspriva
y. On the other hand, the 
ontent provider 
an attestalways only the last platform 
on�guration given and is notable to predi
t future 
on�guration. To dete
t potential re-play atta
ks the 
ontent provider would furthermore have torequest and store 
lient measurement logs repeatedly. Be-sides the ne
essary online 
onne
tivity, a 
lient 
ould stillapply replay atta
ks between two measurements.The Enfor
er proje
t alias The Bear [21, 23℄ tried to real-ize freshness using the (non-volatile) data integrity register(DIR) of the TCG spe
i�
ation version 1.1b [54℄. Writing toa DIR requires owner authorization, reading 
an be done byanyone. However, this approa
h 
annot be used to enfor
estateful li
enses sin
e the platform owner 
an still ba
kupand restore the DIR storage.New pro
essor ar
hite
tures like AEGIS [48℄ and XOM [18℄provide se
ure in-pro
essor storage that 
annot be reset byunauthorized entities. Although it seems possible to usethese pro
essor ar
hite
tures as a basis for prote
ting thefreshness of information, we 
hose another solution whi
hbuilds on (
heaper) 
ommer
ial-of-the-shelf 
omponents.
2. SYSTEM MODEL AND OBJECTIVESWe start our 
onsideration with an ideal system model fordistributed 
ontent a

ess4. It represents the desired en-vironment in whi
h the se
urity obje
tives of all involvedparties are satis�ed by de�nition. In later se
tions we go to-wards real world by repla
ing this ideal system in Se
tion 34We do not 
onsider payment 
hannels or 
ontent distribu-tion details su
h as 
ontent provision or li
ense generationhere. System models for 
omplete DRM systems 
an befound in [12, 38℄.

with several logi
al 
omponents followed by the realizationof these 
omponents by software 
omponents in Se
tion 4.
2.1 Terms and DefinitionsWe de�ne a 
ompartment as a software 
omponent that islogi
ally isolated from other software 
omponents. The 
on-�guration of a 
ompartment unambiguously des
ribes the
ompartment's I/O behavior based on its initial state S0and its set of state transa
tions that 
onvey a 
ompartmentfrom state Si to state Si+1. Moreover, we distinguish se
ure,trusted, and plain 
ommuni
ation 
hannels between 
om-partments. Plain 
hannels transfer data without providingany se
urity property. Se
ure 
hannels ensure 
on�dential-ity and integrity of the 
ommuni
ated data as well as theauthenti
ity5 of the endpoint 
ompartment. Trusted 
han-nels are se
ure 
hannels that additionally validate the 
on-�guration of the endpoint 
ompartment. Finally, integrityof information obtained from a 
hannel or 
ompartment isprovided, if any modi�
ation is at least dete
table.
2.2 Ideal System ModelThe main parties involved are providers (li
ensors) and users(li
ensees). We 
onsider a provider as the representativeparty for rights-holders whereas the user represents 
on-sumers of digital 
ontent. As depi
ted in Figure 1 the pro-vider distributes digital 
ontent (e.g., software, media �les,et
.) and the 
orresponding li
ense. The li
ense de�nes theusage-rights (e.g., 
opy, play, print, et
.) appli
able to the
ontent. li
ense represents a 
erti�
ate issued by an autho-rized instan
e (li
ensor) 
on�rming non-repudiability that
ertain usage-rights on 
ertain 
ontents are granted to someparty6. Here, a li
ense des
ribes the usage-rights that itsowner holds and the prerequisites to 
onsume (a

ess, use)the 
ontents linked to this li
ense. The user 
onsumes the
ontent a

ording to the li
ense where the 
onsumption ismanaged by the underlying platform as shown by the dashedlines in Figure 1. In the ideal model the platform is an ab-stra
t bla
k box whi
h is trusted by all other parties. Theusage-rights 
an be de�ned in rights expression languagessu
h as XrML7 or ODRL8 and are digitally signed by theli
ensor. We distinguish two types of li
enses, stati
 li
ensesand stateful li
enses. While the state of a stati
 li
ense re-mains unmodi�ed when used, that of a stateful li
ense may
hange during its utilization.The involved parties have only limited trust in ea
h other.In our ideal system model the platform is fully trusted byboth user and provider to a
t 
orre
tly.In Figure 1 we also made the next step by repla
ing theabstra
t platform by two logi
al 
ompartments the TrustedPoli
y Enfor
er and the Trusted Storage Provider insteadof the platform as an abstra
t. These 
ompartments arestrongly isolated from ea
h other and 
ommuni
ate overtrusted 
hannels.5A 
ompartment's authenti
ity 
ould be an alias or a tem-porary 
ompartment identi�er.6A formal treatment of rights, li
enses and transa
tions onrights 
an be found, e.g., in [1℄.7www.xrml.org8www.odrl.net
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Figure 1: The ideal system model.The Trusted Poli
y Enfor
er (TPE) in
orporates the usage-rights management and 
ontent rendering. The provideruses the trusted 
hannel distribute[] to transfer 
ontent andli
enses to TPE. On request of the user via request[], ausage-right is retrieved and the 
ontent is rendered a

ord-ing to this right using the trusted output 
hannel render[].
TPE 
orre
tly maintains its state using the trusted 
hannels
store[] and load[] provided by the trusted storage.The Trusted Storage Provider (TSP) provides the interfa
es
store[] and load[] to store and load data obje
ts persistentlyensuring 
on�dentiality, integrity, availability and parti
u-larly freshness. Note, user and provider trust TSP only in-dire
tly, i.e., by establishing a trusted 
hannel to TPE. TPEwill only be trusted if it has veri�ed TSP to be trusted byestablishing a trusted 
hannel to TSP.9
2.3 Security ObjectivesIn the following we de�ne the overall se
urity obje
tivesof users and providers that our system ar
hite
ture has toa
hieve for our distributed 
ontent a

ess.(O1) Li
ense integrity: Unauthorized alteration of li-
enses must be infeasible. Both user and provider re-quire this, sin
e a li
ense de�nes a 
ontra
t betweenuser and provider that must not be altered withoutmutual approval.(O2) Li
enses unforgeability: Unauthorized issuan
eof li
enses must be infeasible. Only authorized parties(rights-holder) are allowed to issue new usage-rights.This prevents 
reation of illegal, unauthorized li
enses.(O3) Li
ense enfor
ement: The li
ense must be en-for
ed upon a

eptan
e. This is required by the li
en-sor that the user 
an a

ess and use the 
ontent onlya

ording to user-rights provided by the li
ense. Oth-erwise, users 
ould violate a 
ontra
t with a provider.However, a li
ense should be enfor
ed only when theuser as a

epted it.(O4) Li
ense availability: Legally obtained li
enses 
anbe used at any time. This espe
ially requires pre
au-tions with regard to physi
al and/or logi
al failures, asa result of the poor experien
es with hitherto existingdongles and smart
ards solutions.(O5) Priva
y: Usage of li
enses must not violate pri-va
y poli
ies. The user's priva
y poli
y must be pro-te
ted when performing transa
tions on li
enses. This9Sin
e TPE 
ommuni
ates with TSP over a trusted 
hannel,it 
an be 
entral or distributed, e.g., lo
ated at user-side, atprovider-side, or realized by a trusted third party TTP.

in
ludes that the overall system enfor
es least privi-lege su
h that 
omponents not under full 
ontrol ofthe user, 
olle
t, store, and redistribute user's privateinformation only to the extent required for li
ense en-for
ement and with user's 
onsent.(O6) Freshness: Any information obtained should benew, i.e., re
eived or retrieved information is the lastone sent or stored.
2.4 Required Security PropertiesIn order to ful�ll the overall se
urity obje
tives we 
onsiderin the following the essential properties whi
h are assumedto be given in the ideal system model (in Se
tion 2.2). InSe
tion 3 and Se
tion 4 we show how one 
an provide re-spe
tively implement these properties.(R1) Trusted 
hannels: The underlying platform pro-vides trusted 
hannels between 
ompartments to en-able a party to verify a 
ompartment's 
on�gurationin order to determine the 
ompartment's trustworthi-ness.(R2) Strong isolation: The underlying platform ensuresthat 
ompartments are isolated from ea
h other, i.e.,
ompartments 
annot a

ess the states of other 
om-partments.(R3) Trusted storage: A trusted storage provider TSPprovides 
on�dentiality, integrity, freshness and avail-ability of data persistently stored.
2.5 Usage and Transfer of LicensesBased on our ideal system model and the assumptions, thisse
tion des
ribes the general fun
tionality of our ar
hite
-ture with regard to obtaining, usage and transferring ofstateful li
enses. The main platform 
omponents involvedin these transa
tions are illustrated in Figure 1.Obtaining li
enses: The �rst s
heme des
ribes how a li-
ense l (and the 
orresponding 
ontent) is obtained by theplatform 
omponent TPE responsible for enfor
ing it. Weassume that the li
ense negotiation phase has already been
ompleted (outside our model).1. The user requests the provider the (negotiated) li
ense

l from the provider and the respe
tive 
ontent (if ne
es-sary, i.e., if the user does not already has the prote
ted
ontent).2. The provider establishes a remote trusted 
hannel to
TPE (to verify that the 
on�guration of TPE is 
on-form to his se
urity poli
y.). Then the provider dis-tributes l and the respe
tive 
ontent (if ne
essary) to
TPE.3. TPE stores l and the 
orresponding 
ontent on TSPusing a lo
al trusted 
hannel (thus verifying trustwor-thiness of TSP.).Using stateful li
enses: The following s
heme is an ab-stra
t des
ription of how the 
ontent and the 
orrespondingli
ense are se
urely managed by TPE.



1. The user requests TPE for a usage-right on a 
ontent.2. TPE loads from TSP a li
ense l that 
overs the re-quested usage-right.3. If all 
onditions for the 
orresponding usage-right areful�lled, TPE updates the 
orresponding subset of statevariables within l , stores the 
hanged l using TSPagain, and invokes the 
ontent rendering.Transferring li
enses: We des
ribe a se
ure transfer pro-to
ol of a li
ense (and the 
orresponding 
ontent) between asour
e platform (transferor) TPEs to a destination platform(transferee) TPEd.1. The user requests TPEs to transfer a li
ense l to TPEd.2. TPEs establishes a trusted 
hannel to TPEd to verifythat the 
on�guration of TPEd is 
onform to the se
u-rity poli
y of l needed for a transfer to 
orre
tly takepla
e. Note that TPEd does not need this veri�
ationfor TPEs sin
e the overall se
urity ar
hite
ture wouldnot allow a platform to use a li
ense if it does notprovide the trust properties required by the li
ensor.3. After a trusted 
hannel is established to TPEd, TPEssends l (and the 
orresponding 
ontent) to TPEd usingthe previously established trusted 
hannel.4. After an approved transfer pro
ess based on a 
rypto-graphi
 re
eipt, TPEs updates or invalidates l , while
TPEd stores the new li
ense (and 
ontent) syn
hro-nized with TPEs. In order to handle transmission fail-ures, TPEs allows arbitrary retransmissions requeststo TPEd while the 
orresponding usage-right remainsinvalidated.The pro
edure to loan a li
ense is similar to the li
ense trans-fer: In 
ase the li
ense of allows the user to generate subli-
enses TPEs generates a subli
ense ld of the master li
ense lfor TPEd and invalidates the respe
tive usage-rights in the
orresponding master li
ense l lo
ally, i.e, disables the re-spe
tive usage-rights for the loan period or de
reases therespe
tive state variables.A se
ure implementation of these proto
ols is des
ribed inSe
tion 3.5.

3. SYSTEM DESIGNIn this se
tion we des
ribe the high-level design of our ar-
hite
ture. The ideal system model in Se
tion 2.2 is de
om-posed into several smaller 
ompartments. We des
ribe howtrusted 
hannels, strong isolation, and trusted storage arerealized. Finally, we 
onsider in more detail how an appli
a-tion, i.e., the DRM 
ontroller, 
an obtain, use and transfera stateful li
ense based on these features.
3.1 Architectural OverviewFigure 2 gives an overview of the 
ompartments into whi
hour ideal system model presented in Se
tion 2.2 
an be de-
omposed. The resulting ar
hite
ture 
onsists of the trusted
omputing base (TCB) in
luding a User Manager, a Trust

Manager, a Storage Manager, and a Compartment Man-ager. Another 
ompartment, the DRM Controller, is theexample appli
ation that uses the TCB to realize the use
ases dis
ussed above. Note sin
e all 
ompartments 
om-muni
ate with ea
h other using trusted 
hannels, there areno requirements on their a
tual physi
al lo
ation.
Compartment

Trusted Channel

Storage 

Manager

Trust Manager User Manager

Compartment 

Manager

Secure I/O
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user

content, 
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content
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configuration
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TPE Interface

TSP Interface

Secure Channel

Remote 

Compartment
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Figure 2: Compartments of the system model.User Manager: The User Manager (UM) maps betweenreal user names and system-internal user identi�ers. More-over, it performs user authenti
ation and manages a se
retatta
hed to ea
h users, e.g., to allow the Storage Managerto bind data to a user. The programming interfa
e o�eredby the User Manager hides the 
on
rete user model. Thus,it is possible to use a UNIX-like user model, or a role-basedmodel without modi�
ations of other system 
omponents.Storage Manager: The Storage Manager (SM) providespersistent storage for the other 
ompartments while pre-serving integrity, 
on�dentiality, availability and freshnessof the stored data. Moreover it enfor
es strong isolation bybinding the stored data to the 
ompartment 
on�gurationand/or user se
rets10. The Storage Manager has a

ess tothe 
on�guration of its 
lients, sin
e it 
ommuni
ates withthem over trusted 
hannels. For a more detailed des
riptionof the implementation, see Se
tion 3.3 and Se
tion 3.4.Compartment Manager: The Compartment Manager(CM) manages 
reation, update, and deletion of 
ompart-ments. It 
ontrols whi
h 
ompartments are allowed to beinstalled and enfor
es the mandatory se
urity poli
y. Duringinstallation of 
ompartments, it derives its 
on�guration tobe able to o�er a mapping between temporary 
ompartmentidenti�ers11 and persistent 
ompartment 
on�gurations.Trust Manager: The Trust Manager (TM) o�ers fun
-tions that 
an be used by appli
ation-level 
ompartmentsto establishing trusted 
hannels between remote and lo
al
ompartments.Se
ure I/O: The Se
ure I/O (SO) renders (e.g., displays,plays, prints, et
.) 
ontent while preventing unauthorizedinformation �ow. Thus SO in
orporates all 
ompartments10Sin
e SM does not provide sharing of data between 
om-partments, it does not realize a regular �le system.11A 
ompartment identi�er unambiguously identi�es a 
om-partment during runtime.



that are responsible for se
ure output of 
ontent (e.g., drivers,trusted GUI, et
.).DRMController: The DRM 
ontroller (DC) is an appli
a-tion that enfor
es the poli
y a

ording to the given li
enseatta
hed to digital 
ontent. DC enfor
es se
urity poli
ieslo
ally, e.g., it uses trusted 
hannels to de
ide whether a
ertain SO is trusted for rendering the 
ontent, i.e., whetherit mat
hes the 
on�guration des
ribed in the li
ense. Moredetails of the implementation of the DRM 
ontroller 
an befound in Se
tion 3.5.With the ar
hite
tural overview in mind, we explain in thefollowing se
tions how this ar
hite
ture is used to providethe ne
essary se
urity properties, i.e., priva
y, trusted 
han-nels, se
ure storage, and fresh storage.
3.2 Trusted ChannelsA

ording to the de�nition in Se
tion 2.1, trusted 
hannelsallow the involved 
ommuni
ation end-points to determinetheir 
on�guration and thus to derive their trustworthiness.Other integrity measurement ar
hite
tures, however, [42,44℄, report the integrity of the whole platform 
on�gura-tion in
luding all 
urrently running 
ompartments to re-mote parties, and thus violating user priva
y. In 
ontrast,our ar
hite
ture supports to establish trusted 
hannels be-tween single 
ompartments, and not only between platformswhole platforms. This has the following advantages:

• Priva
y: A remote party now only needs to know the
on�guration of the appropriate 
ompartment in
lud-ing its trusted 
omputing base, and not the 
on�gura-tion of the whole platform.
• S
alability: Remote parties do not have to derive thetrustworthiness of all 
ompartments exe
uted on topof the platform, to determine the trustworthiness ofthe appropriate 
ompartment.
• Usability: Sin
e a 
ompartment's trustworthiness 
anbe determined independent of other 
ompartments run-ning in parallel, the derived trustworthiness keeps valideven if the user installs or modi�es other 
ompart-ments.Trusted 
hannels 
an be established using the fun
tions of-fered by the Trust Manager and the Compartment Man-ager, while the Compartment Manager, whi
h is responsiblefor installation and manipulation of 
ompartments, providesthe mapping from 
ompartment identi�ers into 
on�gura-tions. Thus, trusted 
hannels 
an be established assumingthat the TCB in
luding the Compartment Manager and theTrust Manager is trustworthy. In Se
tion 4, we will explainhow remote parties 
an determine the trustworthiness of theTCB, but now we 
ontinue des
ribing the establishment oftrusted 
hannels on this design level.We distinguish between trusted 
hannels between 
ompart-ments running on the same platform (lo
al trusted 
hannels)and trusted 
hannels between a remote and a lo
al 
ompart-ment (remote trusted 
hannels).

Lo
al Trusted Channels: Sin
e both the sender and there
eiver are exe
uted on top of the same TCB, an expli
itveri�
ation of the TCB's trustworthiness does not makesense in this 
ase. Therefore, trusted 
hannels 
an easilybe established using se
ure 
hannels o�ered by the underly-ing TCB, and the fun
tions provided by the CompartmentManager: The sending 
ompartment �rst requests the 
on-�guration of the destination 
ompartment from the Com-partment Manager. On su

essful validation that the des-tination 
on�guration 
onforms to its se
urity poli
y, thesour
e 
ompartment establishes a se
ure 
hannel to the des-tination 
ompartment.Remote Trusted Channels: The required steps to estab-lish a remote trusted 
hannel from a remote 
ompartmentto the lo
al 
ompartment are as follows (
mp. Figure 3):
Trusted Channel

Secure Channel

(1) request-trusted-channel[]

(6) trusted-channel-response

(7) data

(2) request-trusted-

channel[] (5) trusted-channel-response

(3) comp-idLC

(4) comp-confLC

Plain ChannelFigure 3: A remote trusted 
hannel depends on lo
aland remote se
ure 
hannels.If a lo
al 
ompartment re
eives a request (1) from a remote
ompartment, the lo
al 
ompartment requests the Trust Man-ager (2) to re
eive a 
redential in
luding its own 
on�gu-ration. Then the Trust Manager generates the 
redentialbased on both the 
ompartment 
on�guration provided bythe Compartment Manager (4) and the 
on�guration of theplatform's TCB. The resulting 
redential is returned to theinvoking lo
al 
ompartment (5) that forwards it (6) to theremote 
ompartment. That 
an now verify the trustworthi-ness of the lo
al 
ompartment and, on su

ess, using the
redential to open a trusted 
hannel.Se
tion 4.2 des
ribes the realization of the TCB 
redentialand Se
tion 4.3 des
ribes the proposed proto
ol in more de-tail. Moreover, it shows how to realize the 
redentials basedon X.509 
erti�
ates.
3.3 Strong IsolationIn order to strongly isolate 
ompartments from ea
h other,isolation at runtime as well as isolation in persistent storageis required. On this design level, we assume that runtime iso-lation is provided by the underlying layer (see Se
tion 4.1.2).Isolation of the persistent states of 
ompartments, however,is provided by the Storage Manager (SM).The Storage Manager binds all of the 
ompartment's datato the 
orresponding 
ompartment 
on�guration while pre-serving integrity and 
on�dentiality. In this 
ontext, bindmeans that a

ess to bound data is only possible under theterms de�ned on storage, e.g., a 
ertain 
ompartment 
on-�guration or a user ID.



Sin
e the Storage Manager 
ommuni
ates with its 
lientsover trusted 
hannels, it 
an be lo
ated at user-side, atprovider-side, or realized by a trusted third party.12 Ourse
urity ar
hite
ture uses a lo
al Storage Manager for thefollowing reasons: First, a

ess to the storage is needed ev-ery time a stateful li
ense is used. Using a remote storagerequires an instant online a

ess and limits the frequen
yof possible state updates. Se
ond, maintaining a trusted
hannel to an external storage 
learly in
reases overall 
om-plexity and failure probability of the system. An externalstorage is a single point of failure. A denial of servi
e (DoS)atta
k, for instan
e, violates the availability requirement ofall stateful li
enses.
UntrustedPlain Channel
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User Manager
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state
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configuration

Trusted Channel

Secure ChannelFigure 4: The Storage Manager enfor
es strong of-�ine isolation.Figure 4 depi
ts the involved 
ompartments and dependen-
ies to realize o�ine isolation of 
ompartments. The Stor-age Manager uses the Compartment Manager to retrievethe origin 
ompartment 
on�guration, the User Manager tobind 
ompartment's data to a 
ertain user (if requested) andan untrusted storage 
ompartment to persistently write andread plain data13. Internally, Storage Manager uses 
rypto-graphi
 fun
tions to preserve 
on�dentiality and integrity ofdata before it is 
ommitted to untrusted storage.
3.4 Trusted StorageThe following se
tion des
ribes how the trusted storage pro-vider TSP 
an be realized. Providing a 
ompletely tamper-resistant trusted storage 
ompartment would 
learly raise
osts and limit �exibility. Hen
e, we look for a more e�
ientapproa
h. To keep the high-level ar
hite
ture independentof a 
on
rete instantiation of the underlying hardware plat-form, the design de
ision is to provide a logi
al servi
e thatprote
ts the freshness of arbitrary data. More 
on
retely, weextended SM that already provides isolated se
ure storage(see Se
tion 3.3) by a freshness property. In order to real-ize freshness dete
tion, SM has ex
lusive a

ess to a small12Mi
rosoft's Media Rights Manager [26℄, for instan
e, ap-plies the provider-side approa
h where a lo
al storage 
lientregularly 
onne
ts to an external 
ontent prote
tion serverto enfor
e freshness.13For the realization of availability we suggest 
ommon solu-tions based on high redundan
y, i.e., utilization of multipledistributed storage lo
ations (e.g., USB sti
ks or online sites)assisted by an appropriate RAID system. In 
ase of failureof a parti
ular storage devi
e, it is still possible to retrievedata from alternative storage mirrors.

tamper-resistant memory lo
ation.
3.5 DRM ControllerThe DRM 
ontroller DC 
onsists of a li
ense interpreter anda 
ontent a

ess arbitration. It is the 
ore 
omponent for these
ure usage and transfer of li
enses (see Se
tion 2.5) whereli
enses are de�ned by an XrML li
ense �le. All available
ontents and li
enses are internally indexed to provide allne
essary information about the available 
ontents and li-
enses to the user. The index itself, the 
ontents, and theli
enses are persistently stored using the Storage Manager(
f. Se
tion 3.3) that enfor
es the storage se
urity require-ments of both user and provider (
f. Se
tion 2.4).The prerequisites for usage and transfer of li
enses is a properinitialization of the platform and the DRM Controller. Inthe following, we assume that (i) the TCB has been loadedproperly, (ii) the Trust Manager 
ontains the appropriate
redential, (iii) the DRM Controller has been measured andstarted by the Compartment Manager, and (iv) the 
ompo-nents for mandatory se
urity poli
y that relate to the DRMController are part of its 
on�guration. On startup, theDRM Controller loads its a
tual 
ontent/li
ense index fromthe Storage Manager over a lo
al trusted 
hannel.To obtain li
enses the provider establishes a remote trusted
hannel to the DRM Controller, and if su

essful, the 
on-tent and the li
ense are sent to the DRM Controller 
om-partment over this 
hannel. The DRM Controller updatesits index. On shutdown, it stores the li
ense and the 
orre-sponding 
ontent using the Storage Manager. Sin
e the 
om-muni
ation is performed over a trusted 
hannel, the DRMController 
an verify whether the Storage Manager is trust-worthy for to the given li
ense.For using stateful li
enses the user invokes the DRM Con-troller. An example implementation would be to use a 
om-muni
ation 
lient that enables requests from the lega
y Linuxto the DRM Controller. The DRM 
ontroller loads the 
or-responding li
ense and 
he
ks if all 
onditions for the 
orre-sponding usage-rights are ful�lled. It then veri�es the trust-worthiness of an appli
able output devi
e, e.g., the se
ureuser interfa
e, by opening a trusted 
hannel to it. On a su
-
essful li
ense 
overage, the DRM Controller updates the
orresponding subset of state variables within the li
ense,syn
hronizes its internal state with that stored by the Stor-age Manager, loads the 
orresponding 
ontent, and invokesthe output devi
e to se
urely render the given 
ontent.For the transfer of stateful li
enses, again the user invokes alo
ally running DRM Controller to transfer a 
ertain li
enseto a remote DRM Controller on the destination platform.The sour
e platform uses the Trust Manager to establish aremote trusted 
hannel to the destination platform to sendthe li
ense (and the 
orresponding 
ontent) to it. In 
ase thisis su

essful the sour
e platform updates resp. invalidatesits index and syn
hronizes its internal state with the StorageManager. The destination platform stores the new li
ense(and 
ontent) using its own storage Manager.The se
urity of the realization dis
ussed above depends on
ertain assumptions, i.e., a se
ure 
hannel between 
ompart-ments, 
ompartment isolation during runtime, and the avail-



ability of 
redentials. The following se
tion des
ribes howour ar
hite
ture provides them.
4. IMPLEMENTATIONIn this se
tion we des
ribe details of our implementation.We �rst give an overview to des
ribe the operational basisproviding the se
urity properties demanded in Se
tion 2.4.Furtheron, we brie�y explain ea
h the layers our implemen-tation, the initialization pro
ess as well as the implementa-tion of the 
ore 
omponents, namely the Storage Managerand the DRM Controller.
4.1 Implementation OverviewOur implementation primarily relies on a small se
urity ker-nel, virtualization te
hnology, and Trusted Computing te
h-nology. The se
urity kernel, lo
ated as a 
ontrol instan
e be-tween the hardware and the appli
ation layer, implementselementary se
urity properties like trusted 
hannels and iso-lation between pro
esses. Virtualization te
hnology enablesreutilization of lega
y operating systems and present ap-pli
ations whereas Trusted Computing te
hnology serves asroot of trust.Our abstra
t de�nitions from Se
tion 2.1 
an be mapped toreal world implementation. Thus a 
ompartment maps toan appli
ation pro
ess, while a 
ompartment 
on�gurationmaps to a software binary in
luding the initial state of allvariables and the instru
tion set.The more detailed ar
hite
ture of our realization is depi
tedin Figure 5. The bottom layer is 
onventional hardwarewith additional Trusted Computing (TC) support. Abovethe hardware layer resides our se
urity kernel 
onsisting ofa virtualization layer and a trusted software layer providingsharing of hardware resour
es and realizing elementary se-
urity and management servi
es that are independent andprote
ted from a lega
y OS. On top of the se
urity kernel, apara-virtualized lega
y operating system (
urrently Linux)in
luding lega
y appli
ations, the DRM 
ontroller, and theSe
ure I/O are exe
uted in strongly isolated 
ompartmentsrunning in parallel as user pro
esses.
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Figure 5: The PERSEUS se
urity ar
hite
ture.In the following, we brie�y des
ribe ea
h implemented layerin more detail.
4.1.1 Hardware LayerThe hardware layer 
onsists of 
ommer
ial o�-the-shelf PChardware with additional Trusted Computing te
hnology asde�ned by the Trusted Computing Group (TCG) [52℄ in

form of a se
urity 
hip known as Trusted Platform Mod-ule (TPM). The TPM is 
onsidered to be a tamper-evidenthardware devi
e similar to a smart-
ard and is assumed to bese
urely bound to a 
omputing platform. It is primarily usedas a root of trust for platform's integrity measurement andreporting. During system startup, a 
hain of trust is estab-lished by 
ryptographi
ally hashing ea
h boot stage beforeexe
ution. The measurement results are stored prote
tedin Platform Con�guration Registers (PCRs). Based on thisPCR 
on�guration, two basi
 fun
tions 
an be provided:Remote Attestation allows a TCG enabled platform to at-test the 
urrent measurement and Sealing resp. Binding tolo
ally resp. remotely bind data to a 
ertain platform 
on-�guration. Our implementation uses su
h a TCG TrustedPlatform Module in the present version 1.2 [53℄ sin
e previ-ous TPM versions 
annot be used to provide fresh storageas we will elaborate on in Se
tion 4.4).
4.1.2 Virtualization LayerThe main task of the virtualization layer is to provide an ab-stra
tion of the underlying hardware, e.g., CPU, interrupts,devi
es, and to o�er an appropriate management interfa
e.Moreover, this layer enfor
es an a

ess 
ontrol poli
y basedon this resour
es. The 
urrent implementation is based onmi
rokernels14 of the L4-family [15, 19℄. It implements hard-ware abstra
tions su
h as threads and logi
al address spa
esas well as an inter-pro
ess 
ommuni
ation (IPC). Devi
edrivers and other essential operating system servi
es, su
has pro
ess management and memory management, run inisolated user-mode pro
esses. In our implementation, wekept the interfa
es between the layers generi
 to supportalso other virtualization te
hnologies. Thus, the interfa
eo�ered by the virtualization layer is similar to those o�eredby virtual ma
hine monitors resp. hypervisors like sHypeand Xen [33, 43, 10℄. However, we a
tually de
ided to em-ploy a L4-mi
rokernel that easily allows isolation betweensingle pro
esses without 
reating a new full OS instan
e inea
h 
ase su
h as when using Xen.
4.1.3 Trusted Software LayerThe trusted software layer, based on the PERSEUS se
urityar
hite
ture [32, 39, 41℄, uses the fun
tionality o�ered by thevirtualization layer to provide se
urity fun
tionalities on amore abstra
t level. It provides elementary se
urity proper-ties like trusted 
hannels and strong 
ompartment isolationas well as several elementary management 
ompartments(e.g., I/O a

ess 
ontrol poli
y) that realize se
urity 
riti
alservi
es independent and prote
ted from 
ompartments ofthe appli
ation layer. The main servi
es of the trusted soft-ware layer to enable stateful li
enses and li
ense transfersare, as des
ribed in Se
tion 3.1, the Trust Manager (
f. Se
-tion 4.3), the User Manager, Compartment Manager, andparti
ularly the Storage Manager (
f. Se
tion 4.4).
4.1.4 Application LayerOn top of the se
urity kernel, several instan
es of the lega
yoperating system as well as se
urity-
riti
al appli
ations � inour 
ase the DRM 
ontroller and Se
ure I/O � are exe
utedin strongly isolated 
ompartments su
h that unauthorized14A mi
rokernel is an operating system kernel that minimizesthe amount of 
ode running in privileged (�ring 0�) pro
essormode [37℄.




ommuni
ation between appli
ations or unauthorized I/Oa

ess is prevented.15 The proposed ar
hite
ture o�ers ane�
ient migration of existing lega
y operating systems. Weare 
urrently running a para-virtualized Linux [14℄. Thelega
y operating system provides all operating system ser-vi
es that are not se
urity-
riti
al and o�ers users a 
om-mon environment and a large set of existing appli
ations. Ifa mandatory se
urity poli
y requires isolation between ap-pli
ations of the lega
y OS, they 
an be exe
uted by parallelinstan
es of the lega
y operating system.
4.2 Secure InitializationThe se
urity of the whole ar
hite
ture relies on a se
urebootstrapping of the trusted 
omputing base. A TPM-enabled BIOS, the Core Root of Trust for Measurement,measures the integrity of the Master Boot Re
ord (MBR),before passing 
ontrol to it. A se
ure 
hain of measure-ments is then established: Before program 
ode is exe
utedit is measured by a previously measured and exe
uted 
om-ponent. For this purpose, we have modi�ed the GRUBbootloader16 to measure the integrity of the 
ore 
ompart-ments, i.e., the virtualization layer, all 
ompartments in-tera
ting dire
tly with the TPM � Compartment Manager,Trust Manager and Storage Manager � as well as the TPMdevi
e driver. The measurement results are se
urely storedin the PCRs of the TPM. All other 
ompartments (in
lud-ing the lega
y OS) are subsequently being loaded, veri�ed,and exe
uted by the Compartment Manager a

ording tothe e�e
tual platform se
urity poli
y.Upon 
ompletion of the se
ure initialization, an authorized
ompartment (su
h as the Trust Manager) 
an instru
t theTPM to generate a 
redential for the Trusted ComputingBase. This 
redential 
onsists of all PCR values re�e
tingthe 
on�guration of the TCB and a key pair whi
h is boundto these PCR values. Together with an I/O a

ess poli
ymanagement servi
e that is of 
ourse also part of the TCB,the private key 
an only be used by 
ompartments that areboth part of the TCB and are authorized to a

ess the TPM.
4.3 Trust ManagerOur implementation of the Trust Manager is based on theopen-sour
e TCG Software Sta
k TrouSerS [51℄. In orderto provide remote trusted 
hannels, the Trust Manager 
re-ates on request of a lo
al 
ompartment a private bindingkey whose usage is bound to the requesting 
ompartment's
on�guration and the 
on�guration of the platform's TCB(in
luding the Trust Manager itself). The appropriate 
er-ti�
ate of the publi
 binding key has to be extended su
hthat remote parties 
an verify both 
on�gurations. To a

ess
ontent that is remotely de
rypted with the publi
 bindingkey, the Trust Manager 
he
ks whether the 
on�guration ofthe 
ompartment that want to use the 
orresponding privatebinding key mat
hes the 
on�guration of the 
ompartmentthat has initiated the 
reation of that binding key. Notethat, by extending this 'mat
h' fun
tion, one 
an easily pro-vide property-based attestation/sealing [40, 34, 13℄ on topof the Trust Manager.A

ording to Figure 6, in the following, we give a detailed15However, 
overt 
hannels are still feasible.16www.prose
.rub.de/tgrub.html

des
ription of the proto
ol for establishing a remote trusted
hannel. The proto
ol 
an be de
omposed into three majorsteps, namely 
erti�
ate generation, en
ryption of a sessionkey, and de
ryption of the session key.Certi�
ate Generation: The request of the remote 
om-partment RC for a trusted 
hannel to the lo
al 
ompart-ment LC rea
hes TM via LC. After the mapping of LC's
ompartment identi�er to his a
tual 
ompartment 
on�g-uration comp-confLC using CM, TM invokes the TPM to
reate a asymmetri
 binding key bound to the a
tual TCB
on�guration.17 The TPM then returns the publi
 bindingkey PKBIND and the en
rypted se
ret part SK′

BIND usingTPM's storage root key (SRK). Then TM invokes the TPMto sign over the a
tual TCB 
on�guration, the binding key,and the 
on�guration of LC using an attestation identity key(AIK).18 Finally, TM embeds the re
eived TPM 
erti�
atewithin an X.509 
erti�
ate for use in the TLS handshake,whi
h will be sent together with PKBIND to RC.TCB 
on�guration TCB-confPubli
 binding key PKBINDLo
al 
ompartment 
on�guration comp-confLCTPM Signature =
signAIK ( TCB-conf , PKBIND , comp-confLC )Table 1: Stru
ture of the TPM 
erti�
ate certBIND.En
ryption of Session Key: RC veri�es the 
erti�
atesignature and validates the two embedded 
on�gurations

TCB-conf and comp-confLC by 
omparing them with ref-eren
e values known to be trustworthy. On su

ess, RC en-
rypts a symmetri
 session key to esk using PKBIND anda
knowledges the TLS handshake with esk, that 
an be un-bound by LC only if it provides the stated 
ompartmentand TCB 
on�guration.De
ryption of Session Key: Upon re
eipt of the en-
rypted session key esk, LC requests TM to unbind the ses-sion key. Therefore, TM again maps LC's 
ompartment iden-ti�er to his a
tual 
ompartment 
on�guration comp-confLCusing CM, to validate the 
ompartment 
on�guration statedin the 
erti�
ate with the one requesting the unbind pro-
ess. On su

ess, TM invokes the TPM to unbind the ses-sion key using the en
rypted private part of the binding key
SK′

BIND . The TPM �rst 
ompares the a
tual PCR valueswith ones SKBIND is bound to, before returning the de-
rypted session key to TM. TM �nally, passes the de
ryptedsession key ba
k to LC whi
h uses it for the 
ompletion of theTLS handshake to establish a (one-way) SSL-based trusted
hannel from 
ompartment RC to LC.Performan
e Measurements: We have implemented thedes
ribed proto
ol and run it on TPMs of di�erent vendors.The measurement results with maximum asymmetri
 keylengths (2048 bits) are shown below. Note that the TPM17The a
tual TCB 
on�guration TCB-conf was measuredduring se
ure initialization (
f. Se
tion 4.2).18The attestation identity key (AIK) is a non-migratable keythat has been attested by a priva
y-CA to 
ome from aTCG 
onform platform. An AIK (in 
ontrast to the generalsignature key) 
an be used only to sign other TPM keys orPCR values.
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Figure 6: Proto
ol for establishing a remote trusted 
hannel. The numbers (X) on the arrows refer to theproto
ol steps of Figure 3.
al
ulations dominate the overall 
omputation and networktransfer times. Atmel 1.1b NSC 1.1bCerti�
ate generation 30 � 80 s 52 � 55 sSession key en
ryption (w/o TPM) < 1 s < 1 sSession key de
ryption 2 � 3 s 23 � 24 sTable 2: Trust Manager performan
e measurementresults.
4.4 Storage ManagerThe following se
tion des
ribes the implementation of theStorage Manager SM, that enables other 
ompartments topersistently bound their lo
al states to their a
tual 
on�g-uration while preserving integrity, 
on�dentiality and fresh-ness. We �rst give an short overview and then des
ribe the

realization of se
ure storage that will be extended by an ad-ditional freshness layer to provide also trusted storage. Atthe end of this se
tion, we brie�y des
ribe the proto
ols toinit SM as well as for storing to and loading from trustedstorage using SM.Overview: The Storage Manager is invoked by a 
ompart-ment to store a data obje
t persistently preserving 
on�den-tiality and integrity � optional with additional restri
tions
rest (e.g., freshness, 
ertain user id). SM invokes the Com-partment Manager to retrieve the a
tual 
on�guration ofthe respe
tive 
ompartment to bind the data obje
t to thatorigin 
ompartment 
on�guration cmp-conf . As shown inFigure 7, SM 
reates/updates a metadata entry for the 
or-responding data obje
t data with the data obje
t identi�er
dataID, its freshness dete
tion information f , i.e., the a
tual
ryptographi
 hash value, and all relevant a

ess restri
tions



rest19 within its index indexSM. SM extends the data ob-je
t with an integrity veri�
ation information, syn
hronizesits monotoni
 
ounter cntSM, en
rypts the data obje
t andthe updated index and writes it on untrusted persistent stor-age using keySM. Sin
e indexSM is the base of se
urity for
SM, indexSM is sealed to SM's 
on�guration via the sealed
keySM. Thus only the same, trusted Storage Manager 
on-�guration is able to unseal and use the key again. On a loadrequest, SM again uses the Compartment Manager to 
om-pare the invoking 
ompartment 
on�guration with the onethat afore stored the respe
tive data obje
t. On a su

ess-ful veri�
ation, SM reads and de
rypts the data obje
t fromthe untrusted persistent storage and veri�es its integrity.Before the data obje
t is 
ommitted to the requesting 
om-partment, SM also veri�es possibly existing additional re-stri
tions su
h as freshness or a 
ertain user id.

TCG TPM 1.2

Compartment

data := load[ dataID ]
dataID := store[ data,,rest ]

Compartment 
Manager

Storage Manager

cmp-conf dataID f rest

CP_0 ID_325 0x29... fresh

CP_1 ID_563 0x10... UID = 2

cntSM

keySM

indexSM

Figure 7: SM's metadata index.
Integrity

Confidentiality

Untrusted

Trusted Channel

Trusted

keySMe := encrypt[data ||i ]

data := load[dataID ]dataID := store[data, rest ]

e := read[dataID]
dataID :=write[e]

Plain Channel

data||i := decrypt[e]

i := hash[data ] A/R := verify[data, i ]Hash

Hardware 
Protected

Untrusted StorageFigure 8: Compartment view of SM's se
ure storageimplementation.Se
ure Storage: Figure 8 depi
ts our se
ure storage imple-mentation. Thus, our se
ure storage 
ompartment basi
allyo�ers two trusted 
hannels namely load[] and store[] whileitself uses two untrusted 
hannels namely read[] and write[]from an untrusted storage 
ompartment to persistently writerespe
tively read data while providing at least availability.20If SM re
eives a data obje
t data via store[data, rest ], SM19Further a

ess restri
tions 
an be a 
ertain user id, groupid or date of expiry.20For the realization of availability we suggest solutions basedon high redundan
y, i.e., by the utilization of multiple dis-tributed storage lo
ations (e.g., USB sti
ks or online sites)assisted by an appropriate RAID system. In 
ase of failureof a parti
ular storage devi
e, it is still possible to retrievedata from alternative storage mirrors.

internally 
reates or updates obje
t's metadata21 and 
al
u-lates its hash value i to verify integrity. Then data togetherwith i is en
rypted with the internal 
ryptographi
 se
ret
keySM using the fun
tion e := encrypt[data||i ] (to provide
on�dentiality). The en
rypted data e will afterwards bewritten on untrusted storage using dataID := write[e] thatreturns the obje
t identi�er dataID . Conversely, if e is readfrom the untrusted storage via e := read[dataID ] it will bede
rypted to data and i via decrypt[e] using the internal
ryptographi
 se
ret keySM. Before returning data to load[],
SM veri�es the integrity of data and further a

ess restri
-tions (e.g., a 
ertain user id) based on the 
orrespondingmetadata in SM's index using the fun
tion verify[data , i].Trusted Storage: In order to provide trusted storage, we en-han
e SM by an additional layer for managing freshness ofdata obje
ts. Figure 9 depi
ts SM's extension where the(
urrently abstra
t) fun
tion f := memorize[data ] updatesthe internal data stru
ture FRESH with the freshness value
f . Afterwards, data will be stored persistently ensuring 
on-�dentiality and integrity using se
ure storage. On load fromse
ure storage, the fun
tion verify[data , f] additional veri-�es that the re
eived data obje
t data is the last one beingstored.

Freshness

data := load[dataID ]dataID := store[data, rest ]

f := memorize[data ] A/R := verify[data, f ]

Secure Storage

Trusted channel

Trusted

Untrusted channel

Hardware 
ProtectedFigure 9: Compartment view of SM's trusted storageimplementation.To provide su
h freshness dete
tion, SM uses an additionalmetadata �eld (
f. Figure 7) to store the 
ryptographi
 hashvalue Hash(data) that de�nes the last stored version of data .On load, SM 
al
ulates Hash(data) again and 
he
ks if itmat
hes the hash value on last store. In order to ensurefreshness of these metadata, the index of SM itself has to bestored fresh.We therefore analyzed to what extend TPMs of version 1.1band 1.2 
an be used to realize a fresh index for SM.

• DI-Register: TPMs version 1.1b provide a Data In-tegrity Register (DIR) that 
an persistently store a160 bit value [21, 23℄. Unfortunately, a

ess to thisregister is only authorized by the TPM-Owner se
retimplying that the TPM-Owner 
an always perform re-play atta
ks. The only solution would be to distributeplatforms with an a
tivated TPM and an owner au-thorization se
ret that is unknown to the user. Thissolution does not 
onform to the TCG spe
i�
ationthat demands that TCG-enabled platforms have to beshipped with no owner installed (see [54℄, page 139).
• SRK Re
reation: An alternative way to prevent replayatta
ks based on TPMs version 1.1b would be to 
reate21More details on storage metadata at the end of this se
tion.



a new Storage Root Key (SRK) before the system isshut down. Re
reation of the SRK would prevent thatpreviously 
reated TPM en
ryption keys 
an be usedany more. Unfortunately, a SRK 
an only be renewedby the TakeOwnership fun
tion whi
h itself requires apreviously OwnerClear that itself disables the TPM.Therefore, an online-re
reation of the SRK seems tobe impossible.
• NV-RAM: TPMs version 1.2 provide a limited amountof non-volatile (NV-) RAM to whi
h a

ess is restri
tedto authorized entities. So-
alled NV-Attributes de�newhi
h entities are authorized to write to and/or readfrom the NV-RAM. Thus, data integrity 
an be pre-served by storing a hash value of the data into the NV-RAM and ensuring that only the Storage Manager 
ana

ess the authorization se
ret.
• Se
ure Counter: A TPM version 1.2 supports at leastfour monotoni
 
ounters. Based on this fun
tionality,the freshness of data 
an be dete
ted by se
urely 
on-
atenating it with the a
tual 
ounter value.A result of our previous analysis we showed that TPMsversion 1.1b 
annot be used to provide fresh storage as re-quired to enfor
e stateful li
enses and/or to transfer li
enses.Therefore we de
ided to realize trusted storage based on themonotoni
 
ounter fun
tionality of TPMs version 1.2.A monotoni
 hardware 
ounter allows us to se
urely main-tain versioning of an arbitrary data 
omponent, by keepinga software 
ounter syn
hronized with one (of four guaran-teed) hardware 
ounters of the TPM. As depi
ted in Fig-ure 7, SM manages an internal software 
ounter that, everytime SM updates its index, is in
remented syn
hronouslywith the monotoni
 hardware 
ounter. If both mismat
h atany time, a outdated data is dete
ted, that will be handleda

ording to the a
tual se
urity poli
y.However, in order to employ TPM's monotoni
 
ounters, SMhas to be initialized 
orre
tly. Figure 10 depi
ts the stepsneeded for the �rst initialization of SM on a new platformtogether with the initialization ne
essary for instan
e afterrebooting the platform. On the initial setup SM uses theTPM to 
reate its internal 
ryptographi
 key keySM thatthen will be sealed to the a
tual platform 
on�guration. Toenable freshness dete
tion and thus trusted storage, SM 
re-ates a monotoni
 
ounter cntid with a authenti
ation auth,e.g., a se
ret password. The initial setup �nishes with the
reation of SM's internal metadata index indexSM and thesaving of the sealed key blob and the en
rypted index onuntrusted storage.After a platform reboot, SM reads the key blob from theuntrusted storage and asks the TPM to unseal its internalkey. The TPM is able to unseal keySM if the platform has thesame 
on�guration as it was at the sealing pro
ess, thus pre-venting a modi�ed SM to a

ess keySM. Then SM uses keySMto de
rypt its metadata index read from the untrusted stor-age. Finally, SM veri�es freshness of indexSM by 
omparingthe de
rypted 
ounter of indexSM with the a
tual 
ountervalue of the 
orresponding TPM 
ounter cntid.

Untrusted
Storage

Trusted Platform Module
TPM

write[keyblobSM]

Storage Manager
SM

request-random[]

keySM

read-counter[cntid]

rnd

seal[keySM]

keyblobSM

read[keyblobSM]

unseal[keyblobSM]

decrypt[keySM, read[indexSM]]

create-counter[cntid, auth]

cnt

write[encrypt[keySM, indexSM]]

cnt

keySM:=derive[rnd]

verify[indexSM, cnt]

indexSM:= create[cnt]

Figure 10: Proto
ol view of SM's initialization.Figure 11 depi
ts the proto
ol steps required to bind a 
om-partment's data obje
t persistently to its a
tual 
on�gura-tion. After the mapping of 
ompartment identi�er to thea
tual 
ompartment 
on�guration using CM, SM updates
indexSM with the 
orresponding metadata as well as the in-
remented software 
ounter to enable freshness dete
tion for
indexSM. Afterwards, SM writes both, the data obje
ts andthe updated index, en
rypted on the untrusted storage us-ing keySM. Finally, SM syn
hronizes its software 
ounterwith the TPM's monotoni
 hardware 
ounter and returnsthe data obje
t identi�er.

Comp. Manager
CM

Storage Manager
SM

store[data, rest]

Compartment
X

comp-idX

comp-confx

Untrusted Storage

increment-counter[cntid, auth]

TPM

dataID := write[encrypt[keySM, data]]

write[encrypt[keySM, indexSM]]

dataID

update-index[comp-confx, data, rest]

increment-counter[indexSM]

Figure 11: Proto
ol view of SM's store implementa-tion.We 
omplete the s
enario with Figure 12 that depi
ts theproto
ol steps required to load a 
ompartment's data obje
tagain. After the mapping of requesting 
ompartment iden-ti�er to the a
tual 
ompartment 
on�guration using CM,



SM reads the requested data obje
t from untrusted storageand de
rypts it using keySM. Before returning data to the
orresponding 
ompartment, SM veri�es all a

ess restri
-tions (e.g., freshness, or a 
ertain user id) given on storevia rest based on the 
orresponding metadata in indexSMand veri�es that the requesting 
ompartment has the same
on�guration as it was on store.
Compartment Manager

CM
Storage Manager

SM

load[dataID]

Compartment
X

comp-idX

comp-confx

Untrusted Storage

decrypt[keySM, read[dataID]]

data

verify[data, comp-confx]Figure 12: Proto
ol view of SM's load implementa-tion.
4.5 Secure I/OThe Se
ure I/O 
ompartment re
eives prote
ted 
ontent inplain for rendering. Thus the SO is a se
urity 
riti
al 
om-partment that has to be trusted by user and provider. There-fore SO is exe
uted in parallel, isolated from the a
tuallega
y OS and has to be veri�ed by the DRM 
ontrollerfor trustworthiness. In order to provide a �exible e�
ientimplementation, we used a para-virtualized Linux operat-ing system redu
ed to the essential fun
tionality to renderthe de
rypted 
ontent22 from DC. Moreover, our whole sys-tem ar
hite
ture enfor
es that SO is allowed to 
ommuni
ateonly with devi
es essential for the rendering pro
ess and inturn re
eives 
ommuni
ation only from DC so that de
rypted
ontent 
annot leak into untrusted 
ompartments.
5. SECURITY CONSIDERATIONSIn this se
tion we �rst show why our implementation realizesthe se
urity properties (R1) � (R3) demanded in Se
tion 2.4.We then shortly analyze how we 
an ful�ll the overall se
u-rity obje
tives (O1) � (O6) demanded in Se
tion 2.3.
5.1 Trusted ChannelsThe inter-pro
ess 
ommuni
ation (IPC) provided by the vir-tualization layer enables se
ure 
hannels between lo
al 
om-partments that enfor
e 
on�dentiality and integrity prote
-tion. To provide se
ure 
hannels also between lo
al and re-mote 
ompartments, we suggest the appli
ation of 
ommonestablished me
hanisms for 
ommuni
ation se
urity su
h asSSH [58℄ and TLS [9℄. In order to extend se
ure 
hannelsto trusted 
hannels that enable a party to verify a 
om-partment's 
on�guration, we have implemented the TrustManager (TM) and the Compartment Manager (CM). Bothtogether allow lo
al and remote 
ompartments to determinethe 
on�guration of their 
ommuni
ation 
onta
ts and thusto derive their trustworthiness. Moreover, our ar
hite
ture22Our exemplary SO implementation provides rendering ofseveral audio formats

enfor
es that information bound to the determined 
on�gu-ration 
annot be a

essed by an unauthorized (and poten-tially untrusted) 
on�guration based on the TCG me
ha-nisms sealing and binding. The se
ure initialization pro
ess(
f. Se
tion 4.2) however enfor
es the trustworthiness of
TM, CM and the underlying TCB.
5.2 Strong IsolationIn order to strongly isolate 
ompartments from ea
h other,isolation at runtime as well as isolation in persistent storageis required. Runtime isolation is provided by the small virtu-alization layer that implements only logi
al address spa
es,inter-pro
ess 
ommuni
ation (IPC) and an appropriate in-terfa
e to enfor
e an a

ess 
ontrol management for the un-derlying hardware. Devi
e drivers and other essential op-erating system servi
es, su
h as pro
ess management andmemory management, run in isolated user-mode pro
esses.Thus, the amount of 
ode running in privileged (�ring 0�)pro
essor mode, is 
learly minimized and 
an, in 
ontrastto monolithi
 operating system kernels su
h as Linux or MSWindows, properly be veri�ed for its 
orre
tness. More-over, a failure in one of these servi
es 
annot dire
tly a�e
tthe other servi
es, espe
ially the 
ode running in privilegedmode. Thus, mali
ious devi
e drivers 
annot 
ompromise
ore operating system servi
es as they are all exe
uted inuser-mode. Isolation in persistent storage is provided byour Storage Manager (SM) implementation and the usage oftrusted 
hannels. Sin
e 
onventional 
omputer ar
hite
tures
annot provide a trusted 
hannel to the persistent storagedevi
e, an adversary 
an always arbitrarily 
hange the stateof the storage or a

ess the 
ommuni
ation to and from the
orresponding 
ontroller. We prevent su
h o�ine manipula-tions and replay atta
ks while establishing a trusted 
hannelto SM during the se
ure initialization (
f. Se
tion 4.2) pro-
ess that enables the platform to verify the trustworthinessof SM.
5.3 Trusted StorageOur ar
hite
ture provides se
ure storage, i.e., storage pro-viding integrity and 
on�dentiality, using established 
ryp-tographi
 me
hanisms. However, we improved 
ommon ap-proa
hes while taking advantage of the strong isolation 
apa-bility of our ar
hite
ture that prevents the exposure of 
ryp-tographi
 se
rets to unauthorized or mali
ious pro
esses.We also extended the se
ure storage by a hardware-basedfreshness dete
tion me
hanism that dete
ts outdated persis-tently stored information, i.e., information that indeed 
ouldbe de
rypted and veri�ed for integrity but that was not theinformation written at last. Having a freshness dete
tionme
hanism for persistent storage, our ar
hite
ture is able tomanage for instan
e stateful li
enses while preventing the
orresponding replay atta
ks. In order to provide TrustedStorage, i.e., storage that enables other 
ompartments topersistently bound their lo
al states to their a
tual 
on�g-uration while preserving integrity, 
on�dentiality and fresh-ness, we employ the Storage Manager (SM) together withthe Compartment Mananger (CM). As SM innately enfor
esintegrity, 
on�dentiality and freshness, CM provides trust-worthy measurement of 
ompartments 
on�guration usedby SM to return information requested on load only to 
om-partments with the same 
on�guration as provided on thepre
eding storage request. The se
ure initialization (
f. Se
-tion 4.2) however, again enfor
es the trustworthiness of SM,



CM and the underlying TCB.
5.4 Security ObjectivesIn the following we shortly analyze how we ful�ll the overallse
urity obje
tives (O1) � (O6) of users and providers de-manded in Se
tion 2.3 using the implemented se
urity prop-erties (R1) � (R3).(O1) Li
ense integrity: Trusted 
hannels ensure thatonly mutually trusted 
ompartments 
an modify a li-
ense, whereas strong isolation and trusted storageprevents unauthorized alteration of li
enses at runtimeand while persistently stored.(O2) Li
enses unforgeability: Trusted 
hannels enablea party to verify a 
ompartment's 
on�guration for
orre
t subli
ensing and li
ense transfers.(O3) Li
ense enfor
ement: Trusted 
hannels enable aparty to verify a 
ompartment's 
on�guration for 
or-re
t li
ense enfor
ement whereas strong isolation pre-vents mali
ious impa
ts on the li
ense enfor
ing 
om-partment.(O4) Li
ense availability: Using trusted storage ensuresavailability of li
enses.(O5) Priva
y: User's priva
y is realized by ensuring thatthe se
urity poli
y de�ned by the platform owner re-stri
ts the I/O behavior of every appli
ation. Thus,even if third party appli
ations, like the DRM 
on-troller, 
an lo
ally enfor
e their own se
urity poli
y,they 
annot bypass the platform's se
urity poli
y whilea

essing non authorized information or devi
es. Atthe same time we ensure that the platform owner 
an-not dire
tly a

ess the state of appli
ations to bypassse
urity poli
ies lo
ally enfor
ed by the appli
ations.Moreover, our ar
hite
ture is able to attest (resp. sealto) single 
ompartments su
h that 
ontent providersonly know the 
on�guration of the TCB and theirDRM 
ontroller. The 
ontroller itself 
an 
he
k if allother required servi
es su
h as user management, lo-
al poli
y enfor
ement, or storage are a

ording to the
ontent provider's se
urity poli
y. While not deliveringthe user's overall platform 
on�guration to the 
ontentprovider, our approa
h reveals only information essen-tial to attest the DRM 
ontroller and thus ensuring these
urity property of least privilege. The user in turn
an lo
ally attest23 the DRM 
ontroller and enfor
ethat it 
annot reveal any additional information notessential for li
ense enfor
ement. A possible extensionwould be to add the 
on
ept of property-based attesta-tion [40℄ to the Trust Manager and the CompartmentManager to hide both the (binary) 
on�guration of theTCB and the DRM 
ontroller.(O6) Freshness: Using trusted storage ensures freshnessof arbitrary information, i.e., trusted storage ensuresretrieved information is the last one stored.23The user 
an attest third party appli
ations for instan
eby 
omparing the attestation results with known good val-ues provided by an institution trusted by the user that hassu�
ient expertise and possibly further resour
es.

6. SUMMARYIn this paper, we introdu
ed the design, the realization andimplementation of an open se
urity ar
hite
ture that is 
a-pable to enfor
e stateful li
en
es on open platforms. Parti
-ularly, it allows the transfer of stateful li
en
es, while pre-venting replay atta
ks. Further, the se
urity ar
hite
tureprovides se
urity properties su
h as strong isolation thatare used to enfor
e the user's poli
y, e.g., prote
ting againstspyware. We have shown how to implement this se
urity ar-
hite
ture by means of virtualization te
hnology, an (opensour
e) se
urity kernel, trusted 
omputing fun
tionality, anda lega
y operating system (
urrently Linux).
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