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ABSTRACT

Virtual Private Networks (VPNs) are increasingly used to
build logically isolated networks. However, existing VPN
designs and deployments neglected the problem of traffic
analysis and covert channels. Hence, there are many ways
to infer information from VPN traffic without decrypting it.
Many proposals have been made to mitigate network covert
channels, but previous works remained largely theoretical or
resulted in prohibitively high padding overhead and perfor-
mance penalties.

In this work, we (1) analyse the impact of covert channels
in IPsec, (2) present several improved and novel approaches
for covert channel mitigation in IPsec, (3) propose and im-
plement a system for dynamic performance trade-offs, and
(4) implement our design in the Linux IPsec stack and eval-
uate its performance for different types of traffic and mitiga-
tion policies. At only 24% overhead, our prototype enforces
tight information-theoretic bounds on all information leak-
age. To encourage further research on practical systems, our
prototype is available for public use.
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1. INTRODUCTION

Virtual Private Networks (VPNs) are popular means for
enterprises and organizations to securely connect their net-
work sites over the Internet. Their security is implemented
and enforced by VPN gateways that tunnel the transferred
data in secure channels, thus logically connecting the re-
mote sites in an isolated network. Abstracted this way,
VPNs are increasingly used in scenarios that secure chan-
nels were not designed for: to logically isolate networks,
providing “networks as a service” in virtualized environments
like Clouds, Trusted Virtual Domains, or the Future Inter-
net [8H10]. What is not considered in these scenarios is the
long known problem of covert channels.
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Covert channels violate the system security policy by us-
ing channels “not intended for information transfer at all” |25,
35]. While there is a large body of research on covert chan-
nels, few works have considered the practical implementa-
tion and performance impact of comprehensive covert chan-
nel mitigation in modern networks. We believe such work
is important for a number of reasons, especially regarding
VPNs and network virtualization:

(1) Insider Threat: In contrast to end-to-end secure chan-
nels, where the endpoints are implicitly trusted, VPNs are
also used for logical network isolation and perimeter secu-
rity enforcement. In this context, the members of a VPN
are often not fully trusted, but instead the trust is reduced
to central policy enforcement points, the VPN gateways,
which should prevent undesired information flows. How-
ever, malicious insiders in the LAN may leak information
through the VPN gateways using covert channels, thus cir-
cumventing the security policy. Examples of such insiders
can be actual humans or stealth malware, engaging in indus-
trial espionage, leaking realtime financial transaction data,
or disclosing large amounts of data from physically secured
institutions (e.g., to Wikileaks).

(2) Traffic Analysis: By analysing traffic patterns and
meta-data, it is also possible to infer information about
transferred data without assuming a malicious insider |26}
44]. Such “passive” Man-in-the-Middle (MITM) scenarios
are becoming more prevalent with network virtualization,
allowing co-located, supposedly isolated systems to anal-
yse each other [38]. To mitigate such attacks, a common
approach is to consider the maximum possible information
leakage by a colluding malicious insider. In limiting this
maximum information leakage, covert channel analysis and
mitigation thus also affects traffic analysis [19].

(8) Combination with Detection: Although application-
layer firewalls and intrusion detection systems are widely
deployed, carefully designed covert channels remain hard to
detect [27,/34]. In these systems, the adversary chooses a
weaker signal and mimics the patterns of regular channel
usage. Covert channel mitigation can be useful here to in-
duce noise, forcing the adversary to use a stronger signal
and thus facilitate detection. We expect the combination of
covert channel mitigation and detection to significantly re-
duce the performance penalty of covert channel mitigation
by allowing less intrusive pattern enforcement.

Contributions.
This paper provides for the first time an explicit analysis
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Figure 1: Problem scenario: A VPN with three
LAN sites. The adversary aims to exchange infor-
mation between the MITM and malicious insiders

using covert channels.

of covert channels in IPSec based VPNs and a comprehen-
sive set of techniques and mechanisms to mitigate them. We
identify and categorize the different types of covert chan-
nels and determine their capacity. We develop a framework
for mitigation of these covert channels and describe mech-
anisms and techniques for high-performance covert channel
mitigation. In particular, we propose an algorithm for on-
demand adjustment of traffic pattern enforcement that in-
creases peak network performance while also reducing over-
head during reduced usage. We present a practical instanti-
ation of this framework for the Linux IPSec stack and anal-
yse its performance for different kinds of traffic. In contrast
to previous works, which achieve throughput rates in the
range of modem speed [19,/42] and taunt the performance
impact of proposed mitigation mechanisms [31], our proto-
type achieves 169 Mbit/s in a 200 Mbit/s VPN link at only
24% overhead.

Outline.

After defining the problem of VPN covert channels in
we discuss efficient covert channel mitigation and per-
formance trade-offs in[Section 3] An implementation for the
Linux IPsec stack is presented and evaluated in
We discuss related work in and conclude in
Elon 6l A detailed discussion of the available covert channels
in IPsec is provided in Appendix [A]

2. PROBLEM SETTING AND ADVERSARY
MODEL

In the following we define the problem of covert channels
in VPNs. Note that our definition differs from previous, less
explicit considerations, which consider communication be-
tween legitimate VPN participants and are better described
as steganographic channels [222//24]. Although we limit our-
selves to VPNs in state-of-the-art IPsec configuration [11],
most of our results can be generalized.

2.1 System Model and Terminology

As illustrated in we consider a VPN comprised
of two or more Local Area Networks (LANSs) that are inter-
connected over an insecure Wide Area Network (WAN). In
our scenario, the security goal of the VPN is not only to
provide a secure channel (confidentiality, authenticity, in-
tegrity) but also to confine communication of LAN hosts to
the VPN, i.e., to isolate the protected from the unprotected

domain. VPNs are increasingly used for such logical iso-
lation, to create secure virtualized or overlay networks, or
simply enforce perimeter security in large companies [8-10].
This de-facto security goal of isolating the protected from
the unprotected domain, and its efficient implementation, is
the main focus of this work.

For this purpose, we distinguish legitimate channels that
transfer and protect user data according to the VPN security
policy from covert channels that can be used to circumvent
this policy. Covert channels exist because the legitimate
channel acts as a shared resource between the protected and
unprotected domain, exhibiting certain characteristics that
can be manipulated and measured by different parties. We
denote channels from the protected to unprotected domain
and vice versa as outbound and inbound covert channels,
respectively.

We measure the security of our system using the Shan-
non capacity of the covert channels, i.e., the information
theoretic limit on the amount of information that can be
transferred through them [44]. The covert channel capacity
is given in bits per legitimate channel packet (bpp) or, where
applicable, in bits per second (bps). The capacity of each
covert channel type is denoted as C*¥P°. The capacities are
classified as maximum (m) vs. remaining (r) covert channel
rate for inbound (in) vs. outbound (out) covert channels.

For example, the maximum capacity of the outbound covert
PktSize

channel based on packet size is denoted as Cj, gut ~, O as
C’fj ktSize after countermeasures have been applied. The re-

maining aggregated inbound and outbound covert channel
rates are denoted as Cr i and Ch out, respectively.

2.2 Adversary Model

The adversary controls one or more compromised hosts in
the LAN sites as well as an active MITM in the WAN. We
refer to the LAN hosts controlled by the adversary as (mali-
cious) insiders, regardless of whether they are controlled by
actual humans or stealth malware. The adversary’s goal is to
establish a communication channel between the MITM and
one or more possibly colluding malicious insiders, as illus-
trated in This would allow the adversary to send
instructions to the insiders or to leak information from the
protected to the unprotected domain, breaching the perime-
ter security of the VPN. For this purpose, we assume a state-
of-the-art [Psec configuration with authenticated encryption
using ESP in tunnel mode [11], and the cryptographic prim-
itives and keys of the VPN are securely enforced by the
VPN gateways. However, the legitimate VPN traffic can be
manipulated by malicious parties in the protected and un-
protected domains to exchange information that “survives”
these packet transformation enforced by the VPN gateways.

Unfortunately, no systematic approach is known for iden-
tifying network covert channels apart from exhaustive search,
and the categorization as storage or timing channels can be
ambiguous [35]. We used a comprehensive analysis on the
IPsec specification and related work on covert channels in
network protocols (cf. , as well as source code
analysis and testing'| to identify potential covert channels
in IPsec VPNs. IP-Tunneling and authenticated encryption
by the IPsec gateways greatly simplified this problem, as
none of the protocol headers that the MITM can read or

'Specifically, we examined the IPsec implementations of the
current Linux 2.6.32 to 2.6.38 and OpenBSD 4.7 to 4.8 re-
leases.



Class Type Capacity C,, in bpp
Outbound | Inbound
ECN 2 1
storage | DS 6 6
Flags 1 -
PktSize 8.4 -
timing/ | IPD >1 >1
channel- | PktOrd - > 6.58
logic PktDrop - 1
PMTUD - 5.18
amplify | DestIP log,(N) -

Table 1: Inbound and outbound covert channels ca-
pacities for an IPsec VPN with N + 1 endpoints.

modify (i.e., the outer IP and Encapsulated Security Pay-
load (ESP) header) are directly available to the LAN hosts.

In total, we have identified only eight covert channels. As
shown in the available covert channels comprise
three storage-based channels based on fields in the outer
IP header (ECN, DS, Flags) and five timing-based covert
channels that manipulate Inter-Packet Delay (IPD), packet
order (PktOrd), WAN capacity (PktDrop), and Path MTU
Discovery (PMTUD). The remaining characteristic of the
respective destination LAN of a packet (DestIP) does not
constitute a covert channel in its own right but can act as
amplification of other covert channels. A detailed discus-
sion of the covert channels we identified in IPsec VPNs is
available in the full version [39].

We emphasize that some of these channels are implemen-
tation dependant, e.g., the treatment of ECN header flags or
PMTUD at the VPN gateway, while others (IPD, PktSize,
PktOrd) are generic problems faced by all packet-oriented
channels. While we are confident to have identified all covert
channels, we cannot account for all possible implementations
and interpretations of IPsec. Hence in this paper we limit
our considerations to the identified attack vectors.

3. COVERT CHANNEL-RESILIENT IPSEC

In this section we present the design of a high-perfor-
mance covert channel-resilient IPsec, i.e., a system with
low, known covert channel capacity and high throughput.
We present novel or improved techniques for efficient covert
channel mitigation in [Section 3.1} [Section 3.2| considers the
performance of different mitigation strategies, introducing
on-demand performance trade-offs. Finally, we derive the
remaining aggregated inbound and outbound covert chan-
nel capacities of the system in

3.1 Covert Channel Mitigation

In the following we present and improve efficient mitiga-
tion mechanisms for each of the covert channels identified in

3.1.1 Packet Size (PktSize)

The packet size characteristic is usually addressed by padding

packets to maximum size or assuming them to be of con-
stant size [44]. However, as the product throughput =
pkt_size - pkt_rate is constant for a given link, enforcement
of small packet sizes can reduce the load per packet signifi-
cantly, allowing higher packet rates and more simultaneous
connections.

It was previously proposed to allow multiple alternate
packet sizes |18], but then the ratio between packets of differ-
ent sizes creates another covert channel. Mode Security [7]
was proposed to manage the switching between different en-
forcement modes and audit such a remaining covert chan-
nel. However, real network traffic is often mixed, i.e., packet
streams using different packet sizes are often transmitted at
the same time. Moreover, the enforcement of small packet
sizes is problematic for IP protocols: With Path MTU Dis-
covery (PMTUD), the connection endpoints quickly detect
and adapt to the maximum allowed packet size of an IP
route, but only slowly recover to a larger MTU using a con-
servative trial-and-error approach. This active adaption also
makes it harder for the VPN gateways to estimate the actual
demand for larger packets.

We address these problems by combining packet padding
with transparent fragmentation and multiplexing, mecha-
nisms that were previously only considered for traffic pat-
tern obfuscation [23}/45]. Packet fragmentation within IPsec
allows us to efficiently and transparently enforce various
packet sizes at the gateway without influencing the chan-
nel’s Path MTU (PMTU). This is different from regular IP
fragmentation before or after IPsec processing, which results
in visible fragments either on the LAN or WAN sides that
could again be used as covert channels. The fragmentation
mechanism is complemented by packet multiplexing, which
can be used to reduce packet padding overhead by concate-
nating multiple smaller packets up to the desired packet size.
This also reduces the IPsec encapsulation overhead (ESP,
1P).

When working with mixed traffic, the sender gateway
first fragments large packets and then attempts to multiplex
small packets or fragments into the padding area of previ-
ously processed packets that are still in the packet buffer.
At the receiving gateway, packets are first de-multiplexed
and then defragmented. As this mechanism work transpar-
ently for the LAN sender and receiver, the LAN gateways
can precisely monitor the current demands of the adjacent
LAN site to optimally adjust the enforced packet size.

3.1.2 Inter-Packet Delay (IPD)

The covert channel based on IPDs and its mitigation were
subject of several previous works (e.g., [13}27,/33}/43}/44]).
In theory, it is easily eliminated by enforcing a fixed IPD
at the VPN gateway, inserting dummy packets when no
real packets are available [43]. However, due to the very
high packet rates in modern networks, even short periods
of non-optimal enforcement of IPDs (and thus packet rate)
at the VPN gateway quickly result in packet loss due to
packet buffer overflows or network congestion. This is par-
ticularly critical for Internet protocols, where packet loss
triggers congestion avoidance, degrading overall throughput
independently of the packet rate enforced by the VPN gate-
ways. The effect can be partly mitigated with large packet
buffers; however, large buffers can also create high packet
delays, degrading network responsiveness [16]. Also, the
optimal enforced packet rate can be very large in modern
networks, creating a high computational overhead for the
time-synchronous packet processing. For example, to sat-
urate a 100 Mbit/s link with 200 byte packets, an average
IPD of % = 2us should be enforced. Finally, one
must consider inaccuracies in the timing enforcement that
appear at high system loads [13||15]: Since high activity



on the LAN interface can influence the system load of the
gateway, a LAN host may induce inaccuracies in the IPD en-
forcement of the gateway that can again be measured by the
Man-in-the-Middle (MITM), yielding CI*®" = 0.16 bps [19].

We have implemented the traffic reshaping inside the Linux
kernel, using the modern High-Precision Event Timer (HPET)
infrastructure for packet scheduling with nanosecond reso-
lution. This substantially reduces the overhead of context
switching and buffering, allowing an IPDs in the range of
microseconds rather than several milliseconds (e.g., [19,/42])
and noticeably improves throughput and responsiveness. To
maintain good system performance at even higher packet
rates we use packet bursts, i.e., we translate very low IPDs
into bursts of multiple packets at correspondingly larger de-
lays. For optimal packet buffering our system adjusts the
buffer size depending on the currently enforced IPD. This
prevents long delays at low rates while allowing generous
buffering at high rates.

To address the problem of timing inaccuracies, we use the
high resolution of the HPET timers to monitor and actively
compensate for timing inaccuracies in randomized IPD en-
forcement. Specifically, we exploit the fact that determining
timing inaccuracies during randomized IPD enforcement is
harder for the remote MITM than for the local system. The
adversary always requires significantly more measurements
to first detect the variance of the random IPD enforcement
and then the inaccuracy in the enforced variance |13], while
the VPN gateway itself can directly compare the intended
versus actual packet sending time. Hence, the gateway can
approximate the current inaccuracy faster, requiring less
measurement samples. Given this knowledge of unintended
change in IPD variance, we let the VPN gateways compen-
sate for the enforcement inaccuracy by dynamically compen-
sating the variance of the IPD enforcement. This prevents
the adversary from ever measuring the actual inaccuracy,
eliminating the timing channel (CXFP = 0). However, fur-
ther evaluation with specialized network hardware is needed
to confirm (the non-existance of) this effect.

3.1.3  Packet Order (PktOrd)

Sequence numbers in protocol headers have been used be-
fore to create a covert or steganographic channel based on
packet reordering |12,/24]. However, in contrast to previous
works we can eliminate this channel in the VPN scenario us-
ing the IPsec anti-replay window and secure sequence num-
bers in Encapsulated Security Payload (ESP).

IPsec implementations maintain a bitmap of the last r
seen and unseen sequence numbers so that replay attacks
within the window size can be detected and older packets
discarded. To eliminate communication through packet re-
ordering, we propose to implement this window as a packet
buffer, where new packets are inserted sorted by their ESP
sequence number and leave the buffer as the window ad-
vances. As a result, all packets forwarded from the VPN
gateway into the LAN are ordered and the covert channel is
eliminated: ijl{fbord =0.

Unfortunately, the approach is problematic for low packet
rates, since the window may advance slowly and individual
packets are not forwarded fast enough. We solve this issue
by establishing a certain maximum IPD (e.g., 50ms) at the
sender and assure that at least » dummy packets are sent by
a gateway before a connection is stopped. These constraints
are necessary in any case to assure network responsiveness

and hide short periods of inactivity.

3.1.4  Packet Drops (PktDrop)

In general, it appears impossible to eliminate covert chan-
nels based on packet dropping in the WAN. Mitigation with
error correction codes is expensive and easily defeated by
dropping even more packets. Instead, we propose to miti-
gate the channel by injecting noise, by increasing packet loss
proportionally to the actual packet loss.

Specifically, let the gateways maintain a buffer D of size
[. At the sender gateway, packets are buffered in D and
their order is randomized before encapsulation. At the re-
ceiver gateway, the packets are again collected in D and the
number of dropped packets i in a sequence of | packets is
determined based on their ESP sequence number. If i > 0,
the gateway drops another j packets from the current buffer,
such that i + 7 = 27, for 1 < z < log,(l), and forwards the
remaining packets after randomizing their order once again.
As a result, the MITM can choose the overall number of
packets to be dropped for the receiving LAN client but can-
not select which packets to drop, resulting in a symbol space
of log, (1) + 1 packets per | packets. The remaining covert
channel capacity is then C:?;Dmp = 1-log, (log, (1) +1) bpp.

Similar to the packet re-ordering mitigation in|Section 3.1.3|
the inbound packet buffer D at the receiving gateway is
problematic for very low traffic rates and requires similar
restrictions to assure a steady stream of (dummy) packets.

Note that an optimized implementation could combine the
packet sorting or IPD enforcement with the packet dropping
facility to accumulation of delays through multiple queues.

3.1.5 Path MTU Discovery (PMTUD)

To our knowledge, no previous work considered the pos-
sibility of covert channels based on PMTUD, in particular
with respect to VPNs. Since PMTUD is critical for good
network performance, we do not disable it but instead mit-
igate the channel by enforcing limits on the rate and values
that are propagated by the VPN gateways into the LAN.

In particular, we limit the possible PMTU values by main-
taining a list of common PMTU values and only propagate
the respective next lower PMTU to the LAN. Such com-
mon PMTUs values can be established on site or can be de-
rived from previously proposed performance optimizations
for PMTUD |[32]. The rate limitation of PMTU propagation
is problematic in general, as a lack of MTU adaption will
lead to packet loss. However, in our case the current PMTU
is always known to the trusted VPN gateways, which can
then use the transparent fragmentation feature from PktSize
enforcement to translate between LAN and WAN packet
sizes. Considering the 10 most common PMTU values and
an average interval of, e.g., 2 minutes [32] between propa-
gation of PMTU changes, our measures reduce the covert
channel rate to less than CE?/TILTUD = 0.03 bps.

3.1.6 Storage-based Channels (ECN, DS, Flags)

The storage-based covert channels exploiting the Explicit
Congestion Notification (ECN), Differentiated Services (DS)
and IPv4 Flags handling of IP/IPsec are easily eliminated
by resetting the respective fields of the outer IP header at
encapsulation and ignoring them during decapsulation. Nor-
malizing the IPv4 Flags field is unproblematic as en-route
fragmentation is deprecated in IP. However, eliminating the
ECN and DS covert channels disables these performance op-



timizations in the WAN.

3.2 Mitigation Policies and Performance

In this section, we discuss different covert channel mitiga-
tion policies that can be enforced using the techniques de-
scribed in We start by discussing the problems
of previously proposed Fully Padded Channel and Mode Se-
curity approaches, and then propose a new system for on-
demand, dynamic adaption of the enforced channel charac-
teristics. We focus on the IPD and PktSize enforcement
mechanisms, since they have by far the highest performance
impact.

3.2.1 Fully Padded Channel

When applied without any performance trade-offs, the
mitigation mechanisms described in result in
a fully padded channel: The WAN packet stream is con-
stantly padded to the maximum desired throughput rate
and packet size. However, this mitigation policy has several
disadvantages: (1) The system must compromise between
high throughput and responsiveness, likely opting to enforce
maximum packet sizes to reduce fragmentation overhead;
(2) the maximum (desired) network load is constantly en-
forced in both directions, reducing overall performance due
to network congestion; (3) TCP/IP congestion avoidance al-
gorithms do not work, since any rate throttling is compen-
sated by additional channel padding. In case of temporary
reductions in WAN capacity, this leads to repeated packet
loss and throttling, until the network is not usable anymore.
Hence, the fully padded channel policy is unfit for practical
use, except in private/dedicated physical infrastructures.

3.2.2 Mode Security

Mode Security is a generic scheme for trading covert channel-

resilience against system performance. This is done by or-
ganizing system operation in a set of alternative operation
modes that can be switched at a certain rate [7]. The cur-
rent operation mode is then selected such that performance
penalty and/or overhead produced by the covert channel
mitigation is minimized. Since the operation mode is typ-
ically adapted depending on the actually required usage,
the adaption itself may be exploited as a covert channel.
In this case, the covert channel capacity can be given as
CModeSee — R.Jog, (M), where M is the number of operation
modes and R is the maximum rate at which the operation
mode can be changed (transition rate).

Mode Security was used to estimate the theoretic net-
work overhead and covert channel capacity [44]. However,
this assumes an algorithm that can determine the optimal
operation mode to switch to. To the best of our knowledge,
no practical implementation and evaluation of this mecha-
nism exists; in particular, no strategies have been proposed
to automatically determine and apply the optimal operation
mode in the face of often unpredictable traffic, with expo-
nential rate increases and congestion avoidance algorithms.
In fact, our attempts to directly apply Mode Security to on-
demand covert channel mitigation resulted in poor perfor-
mance, with TCP throughput benchmarks becoming stuck
at very low packet rates or completely losing the connection.

3.2.3 On-Demand Mode Security Management

An algorithm for on-demand adaptation in network covert
channel mitigation must accommodate multiple conflicting

constraints. It must quickly react to changes in channel us-
age to elude congestion avoidance algorithms, yet the amount
of possible mode changes should be minimal. Moreover, the
employed packet queue should buffer packet bursts at vari-
ous average packet rates, yet react quickly when the current
average rate is overused by dropping individual packets. We
address these conflicts using the following regulation mech-
anisms:

Token Bucket Filter.

We generalize the transition rate R of the Mode Security
paradigm to a token bucket filter [47]. Tokens are generated
at a fixed rate R and each mode transition consumes a token
from the token bucket. This allows us to “save up” unused
mode transitions in form of tokens and consume them on de-
mand, at temporarily higher rates than R. The amount of
cached tokens is limited by the token bucket size and the av-
erage transition rate R is bound by the rate R at which new
tokens are generated. Thus, the token bucket filter allows
us to immediately react to changes in network usage, before
connection throttling kicks in or network delays become no-
ticeable. Further, the token bucket status may influence and
optimize decisions on the operation mode to be enforced.

Aggressive Increase.

Network throughput is scaled mainly based on its packet
rate r, with typically exponential rate increase until the first
network bottleneck is detected. While the optimum WAN
packet rate ropt is easily calculated based on the currently
observed LAN rate rian, fragmented and multiplexed pack-
ets (Ttrag, Tmplex ), the derivation of the next enforced packet

rate Thew is more involved, as shown in

Algorithm 1: Simplified pseudo-code for dynamic
packet rate adjustment in steps of rquant-

while true do
(FLAN, Ttrag, Tmplex) <— get-stats()
Topt <= TLAN + Tfrag — Tmplex
Tavg < 0.1 - 7opt + 0.9 - ravg
case Topt > 0.9 - Trow
Tamp <— (rmax - Topt)/tnum
Tnew 4= Topt + 3Tquant + Tamp
end

case Tnow > 1.1 Tavg A tnum > tdec
| Tnew < Tavg

end

Tnew $— quantatize(Tnew, I'quant)
sleep(ival)

end

To adequately consider exponential rate increases with-
out requiring too frequent changes to rnow, Our rate increase
phase is designed to constantly overestimate the current op-
timal packet rate ropt, by increasing rpow as soon as it is
approached by 7opy (cf. [Algorithm 1] Line 5). Combined
with buffering and short monitoring intervals ival &~ 200ms,
this approach successfully eludes congestion avoidance algo-
rithms and prevents undesired throughput throttling. How-
ever, the overestimation should also not be too large, as it
directly affects the padding overhead and can also reduce
the inbound traffic rate due to the imposed network load.



Moreover, all stored tokens may be used up before a reason-
ably high packet rate rnow = Tmax is reached, resulting in
bad performance until new tokens are generated. Hence we
also include an amplification mechanism that increases the
rate ropy in larger steps Tamp, depending on the currently
available amount of tokens rnum (Line 6f.). This prevents
the system from becoming “stuck” at low packet rates, at
the cost of potentially high padding overhead in cases where
such amplification was not required.

Conservative Slowdown.

When putting the WAN channel in a state of decreased
performance, we must take care that sufficient transition
tokens are available to adequately adapt to a possible sub-
sequent usage increase as outlined above. In contrast to
the aggressive rate increase policy, any reduction in the en-
forced traffic rate is therefore delayed until a certain amount
of tokens tqec have been collected in the token bucket. More-
over, to reduce the impact of short-term fluctuations in the
packet rate, the rate is only reduced based on the longer-
time average traffic rate 7avg, as shown in Line
8f. Overall, the described approach saves up tokens in the
“slowdown” phases while aggressively spending them in the
“increase” phase, creating an equilibrium around tgec and
Tavg-

Dynamic Queue Size with RED.

When dynamically adjusting the overall throughput of the
WAN channel, we must also adjust the size of the packet
queue accordingly. At small rates, a lot of packets may
build up in a large queue, leading to large delays and time-
outs. Similarly, a small queue is not effective at supporting
a channel with high packet rates. Hence, we dynamically
adapt the queue size based on the desired maximum buffer-
ing delay and the currently enforced packet rate. Eventu-
ally, the WAN channel or its enforcement policy may also
reach a point where further rate increases are not possible.
In this case, the endpoints should be notified of the cur-
rent throughput limit as quickly as possible, without drop-
ping several packets at once due to full buffers. We achieve
this by deploying Random Early Detection (RED) [5] as the
packet queue’s dropping policy, so that packets are randomly
dropped with increasing queue usage.

We implemented several variations of this approach and
evaluated the effect of different parameters on the short-term
and long-term usage adaption. The achieved performance

and adaptation behavior is presented in
3.3 Remaining Covert Channel Capacity

In the following we summarize the identified covert chan-
nels and derive the aggregated remaining covert channel ca-
pacity of our covert channel-resilient VPN.

Unfortunately, it is not possible to give all the covert chan-
nel rates in a closed form and with comparable units. Sev-
eral covert channels also depend on additional parameters
like network PMTU or minimum WAN packet rate. To pro-
vide a reasonable overview of the overall effectiveness of the
covert channel mitigation, we have used the capacity esti-
mations derived in the examples of [Section 3.1} assuming a
state-of-the-art IPsec VPN configuration (cf. [Section 2J).

lists the individual covert channel capacities for
the unmitigated (Cp,) and mitigated (C,) case. Consider-
ing that today’s networks easily transmit several thousand

Type Max. Capacity Rem. Capacity
Cy in bpp C) in bps
Outbound | Inbound || Outbound | Inbound
ECN 2 1 0 0
DS 6 6 0 0
Flags 1 - 0 -
PktSize 8.4 - 0 -
IPD >1 >1 0 0
PktOrd - > 6.58 - 0
PktDrop - 1 - <5
PMTUD - 5.18 - 0.03
DestIP | log,(N) - log,(N) -
Overall > 18.4 > 20.76 0 <5.03

Table 2: Maximum and remaining covert channel
capacities for VPNs with N + 1 endpoints.

packets per second, i.e., 1 bpp > 1 bps, our system results
in significant improvements over standard IPsec. In fact,
all outbound covert channels are completely eliminated, ex-
cept for the DestIP channel. However, as explained in
tion 2.2] the DestIP characteristic does not by itself con-
stitute a covert channel but can only be used to amplify
other channels. Hence, the overall remaining covert channel
capacity is given by ér,out = (ModeSec | oDestIP

For the less critical inbound covert channels (e.g., control
channels for stealth malware), only the channels based on
PMTUD and PktDrop remain. The PktDrop covert channel
has the highest impact with Cf MDror < 5 bps and is easy
to exploit. Since the PMTUD channel could be exploited at
the same time, their capacities must be added up: C in =

CPktDrop + CPMTUD = 5.03 bpS-

M M

4. PRACTICAL COVERT CHANNEL MIT-
IGATION WITH LINUX

In this section we describe the instantiation of our system
based on the Linux IPsec stack and analyse the achieved
network performance and behavior.

In our prototype implementation and evaluation we only
consider the mitigation of outbound covert channels, since
information leakage from the protected to the unprotected
domain is usually considered more critical (e.g., consider
Bell-LaPadula [3]). Moreover, from our discussions in
tion 3| it is clear that outbound covert channel mitigation
is more efficient, as it requires less buffering and processing
but is more effective in reducing the covert channel capacity.

4.1 Architecture and Implementation Details

We have implemented our design as an extension to the
IPsec stack of the Linux kernel, called High-Performance Co-
vert Channel Mitigation (HPCM). The implementation and
is based on the Traffic Flow Confidentiality (TFC) project,
a system for probabilistic traffic flow obfuscation and re-
routing in IPsec [23]. We revised and extended TFC to
support High-Precision Event Timers (HPETS), fragmenta-
tion, multiplexing, dummy packet generation that is indis-
tinguishable from real traffic payloads, elimination of storage-
based covert channels in the encapsulation headers and, most
importantly, an interface for monitoring packet processing
statistics and flexible configuration of the traffic pattern en-
forcement via userspace. The resulting architecture is il-
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Figure 2: Architecture of our Linux prototype.

lustrated in In kernelspace, the HPCM Engine
processes packets as part of the IPsec subsystem, rewriting
problematic header fields and enforcing the currently de-
sired size and IPD constraints as described in
In userspace, the HPCM Manager collects processing statis-
tics from the enforcement engine and combines them with
the observed inbound LAN traffic to determine the optimal
enforcement parameters, as presented in

Packet processing.

Packet resizing is done on a best-effort basis to minimize
processing delays. Packets that are too large are iteratively
fragmented until the last remaining fragment is smaller or
equal than the remaining packet size.

Packet multiplexing is performed based on two config-
urable thresholds, the flagging and the multiplexing thresh-
old. Packets smaller than the flagging threshold are deemed
to contain relatively large amounts of padding and are flagged
as candidates for multiplexing before they are put into the
outbound packet queue. Packets smaller than the multi-
plexing threshold are first considered for multiplexing, by
searching the current packet queue for previously flagged
packets with sufficient padding space and merging the cur-
rent packet into such a previously processed packet. Only if
no suitable candidate can be found in the outbound queue,
packets smaller than the multiplexing threshold follow the
regular size padding (and flagging) path.

This approach ensures that packet multiplexing has no ad-
verse effect on the packet processing delays and avoids keep-
ing extra state and timeouts for multiplexing candidates. In
particular, the approach avoids cases where candidate pack-
ets for multiplexing are held up in a separate queue while
the packet queue is empty, which would result in sending of
dummy packets and negate any performance gained through
packet multiplexing.

Since the resulting multiplexed packets typically contain
a recent as well as an older packet that was temporarily
exempted from the (concurrently running) packet sending
process, they are inserted at the start of the packet queue
to facilitate their fast sending.

We use the Linux sysfs filesystem to configure the ker-
nelspace HPCM engine and report realtime processing statis-
tics back to userspace. In particular, the HPCM engine
exports counters for fragmented, padded and multiplexed
packets as well as the amount of sent real and dummy pack-
ets. The counters can be periodically reset from userspace
to yield average processing rates.

IP | ESP | TFC | Payload ESP-Trailer
e Fragmented Multiplexed " "treo.
0 8 16 31
Next Hdr | Reserved [F]M| Length
Security Parameter Index (SPI)
Fragment ID ‘ | |'¥'| Offset
i

More Fragments

Figure 3: TFC encapsulation protocol.

Protocol Format.

For flexible packet padding and rerouting, we deploy our
own encapsulation protocol based on TFC [23] as shown
in While the length field is sufficient to recog-
nize and remove padding, we require two additional flags to
mark packets as using fragmentation or multiplexing. TFC
payloads are flagged as multiplexed if they are followed by
another payload, and TFC payloads containing fragments
are flagged as fragmented. Fragments payloads are accom-
panied with a 4 byte fragmentation extension header com-
patible with TPv4, which allows us to reuse the existing 1P
defragmentation support in the Linux kernel.

The resulting protocol overhead is relatively large, espe-
cially due to the additional Security Parameter Index (SPI)
field which is used in IPsec to associate the stateless packet
stream with some previously negotiated state at the VPN
gateways, such as the encryption and authentication algo-
rithms to be employed. However, in case of outbound traffic
normalization such stateful processing at the receiver is not
actually required. A more optimized implementation could
integrate the encapsulation protocol into Encapsulated Se-
curity Payload (ESP), requiring only the two flags for mark-
ing fragmented and/or multiplexed packets and the optional
4 byte fragmentation extension header

4.2 Testbed and Raw Performance

In this section we describe the performance achieved by
our prototype in terms of network throughout, transaction
rate (i.e., roundtrip time) and protocol overhead. Our testbed
corresponds to the VPN scenario in [Figure 1] except that we
use only two LAN sites with one physical host per LAN. The
Man-in-the-Middle (MITM) is implemented as an Ethernet
bridge between the two VPN gateways, allowing reliable ob-
servation of all transmitted packets. For our evaluation, the
MITM is completely passive and only used to provide inde-
pendent performance measurements of the WAN. All hosts
are 3.2 Ghz Intel Core i5-650 machines, equipped with two
Intel PClIe GBit network cards and 4GB system memory. All
network links are established at full-duplex GBit/s speed.

We have used the Netperﬂ benchmarks TCP_STREAM and
TCP_RR to measure the maximum TCP throughput and trans-
action rate between the LAN sites. By comparing LAN and
WAN throughput, we can determine the protocol overhead
of the covert channel mitigation, including dummy packets
and packet padding.

2Note that the ESP specification already discusses facili-
ties for traffic normalization but only supports basic packet
padding and considers fully padded channels as too costly.
Shttp://www.netperf .org
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Benchmarks

No Padding

| Fully Padded | On-Demand

IP | ESP | TFC || 1422 | 800 R=10"1s
LAN Throughput (Mbit/s) 570 | 201 175 58 75 169
TCP Transaction Rate (Hz) | 1756 | 1462 || 1364 || 611 740 532
LAN/WAN Overhead (%) 0 10 13 || (73) | (61) ~24
Relative Throughput (%) 283 100 87 28 37 84

Table 3: Throughput and transaction rate for regular and modified IPsec VPN.

We list the overall performance results in The
first two columns show the testbed performance for raw 1P
(plain-text) transmission and IPsec ESP tunneling. With
570 Mbit/s, the raw transmission does not reach the ex-
pected GBit throughput, likely due to deficient hardware
or drivers. As the LAN hosts and the MITM measure the
same IP payloads, there is no LAN/WAN overhead. With
201 Mbit/s, the throughput of a standard IPsec ESP tunnel
is already notably slower due to 10% protocol overhead but
mainly computational constraints of the VPN gateways. As
our covert channel mitigation is an extension of this ESP
tunnel configuration, we normalize the relative throughput
to 100%.

For reference and confirmation of the expected implemen-
tation overhead of our prototype, we next evaluated the raw
performance of our HPCM Engine compared to the standard
IPsec ESP tunnel. The third column “TFC” of [Table 3l lists
the achieved network performance when tunneling TFC in-
side ESP with with all covert channel mitigation techniques
disabled. The overall LAN/WAN overhead of 13% (or 3%
when compared with the ESP tunnel) is the result of the 8
to 12 byte TFC protocol encapsulation plus some computa-
tional overhead.

4.3 Covert Channel Mitigation Performance

We now describe the behavior and performance of differ-
ent mitigation policies.

The fourth and fifth column of show the perfor-
mance of a “fully padded channel”, enforcing packet sizes of
1422 and 800 bytes at the maximum possible packet rate.

For this purpose, we first measured the maximum bi-directional

throughput of the VPN channel (201 Mbit/s per direction)
and then selected the desired packet rate (inverse IPD) such
that the bidirectional channel capacity is almost|*|saturated.

We then again measured the maximum (uni-directional) through-

put and roundtrip time. As shown in the fully
padded channel configuration achieves rather poor perfor-
mance in both configurations, reaching only 37% and 28% of
the ESP tunnel throughput. Observe that the enforcement
of 800 byte packet size achieves higher transaction rate as
well as higher throughput. We believe this is due to the
overhead of padding TCP acknowledgements to maximum
packet size.

We have also implemented and tested an instantiation
of our on-demand mode security management scheme pre-
sented in [Section 3.2.30 As shown in the last column of [Tad
[ble 3] the employed mode adaption heuristics reach almost
the same maximum throughput as the raw TFC encapsula-
tion without time/size padding (169 Mbit/s vs. 175 Mbit/s).
The LAN/WAN overhead is slightly higher (24% vs. 13%)
and the transaction rate rather low. The high throughput

4As explained in [Section 3.2.1] it is critical that the link is

not fully saturated since congestion leads to packet loss and
congestion avoidance does not work.
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Figure 4: WAN adaption to repeated TCP load.
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Figure 5: HTTP request delay in mixed traffic.

despite relatively high overhead is explained by the mode
adaption behavior: As shown in the WAN chan-
nel adapts to the maximum possible throughput, but suffers
overhead in the rate increase and especially rate decrease
phases. As desired by our design in the main
impact of reduced token regeneration rates R < 15 's in
is the increased overhead in the intervals between
TCP loads, when the rate is not decreased to save tokens.
Finally, we have investigated the ability of our on-demand
mode security management to adapt to random, highly het-
erogeneous traffic patterns one would expect from a VPN
with many users. We used Tsung, a traffic load testing tooﬂ
to record several HTTP sessions in our network, partly also
including larger (= 60 MB) HTTP downloads. We then con-
figured one of our testbed LANSs to act as Internet gateway
for the other LAN and used Tsung to replay the recorded
HTTP sessions in a pseudo-random fashion with 60 to 80
simultaneous users. shows how the WAN traf-
fic enforcement for four different token regeneration rates
R dynamically adapts to the LAN usage (grey filled). For
R < 1571s, only the larger peaks in LAN usage influence
the WAN traffic enforcement, reducing information leakage

®http://tsung.erlang-projects.org
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Figure 6: WAN adaption to pseudo-random web traffic and downloads.

at the cost of padding overhead. As shown in the
mean duration of responding to individual HTTP requests
is kept within reasonable limits. However, in contrast to un-
padded traffic (grey filled) the accumulated request delays
become noticeable to the user.

In the presented configuration, our mode adaption algo-
rithm switches packet sizes in steps of 100 bytes and packet
rates in steps of 1000 packets per second. Considering the
maximum WAN packet rate of about 250.000 packets/s, we
can derive CModeSec = R . log, (1200 . 250000) — R . 11.87
and an overall outbound covert channel capacity of, e.g.,
CA’T,DM = 0.6 bps for R=20"'sand N = 1.

5. RELATED WORK

Several works consider the problem of covert channels and
covert channel mitigation in Internet protocols [28l|46], yet
we know of no works that specially discuss the problem of
covert channels in IPsec. The covert channels we identify in
IPsec are generally known, but we found no previous discus-
sion of the PMTUD channel. Additionally, the PktSize 18],
PktSort [12,34] and DestIP [18] characteristics have different
impact in IPsec, and the discussion of storage-based covert
channels in the IPsec specification [22] proved to be inaccu-
rate.

Although the IPD-based covert channel is generally well-
known [18}[201/27,/33,/44], the problem of inaccuracies in tim-
ing enforcement during increased system load remained un-
solved [13,[19]. We consider this complication in our de-
sign in [Section 3.1.2]and present a compensation mechanism
that detects and compensates unintended timing inaccura-
cies. Also, while most works simply assume that packets
are of constant size [43] or padded to the maximum desired
size [18]/46], our adoption of multiplexing and fragmentation
enables flexible packet size enforcement. The combination
of different mitigation techniques makes our implementation
the first prototype for comprehensive covert channel mitiga-
tion.

Regarding performance trade-offs, Mode Security was pro-
posed as a general approach to adapt to resource usage by
switching between different operation modes |7]. A simi-
lar approach called Traffic Stereotyping was proposed for
networks [18]. To our knowledge, there is only one system
that uses Mode Security to optimize covert channel miti-
gation, which aims to provide sender anonymity based on
dynamic re-routing and IPD enforcement [43,/44]. They as-
sume a trusted network stack on each network endpoint and
a periodic global negotiation to achieve an equalized traf-

fic matrix [43]. A performance analysis was done based on
statistics collected from a medium-sized network [42]; how-
ever, no actual performance measurements of their system
have been provided and the problem of determining the op-
timal enforcement mode was left unsolved. Alternatively,
NetCamo [20] requires its endpoints to explicitly request
their delay and throughput demands beforehand. We ex-
tend on these works by proposing a practical algorithm to
determine the optimal operation mode on-demand. As we
do not aim for sender-anonymity, we do not require mix-
networks and various attacks on mixes do not apply to our
approach (e.g., |1Lj41]).

In contrast to probabilistic traffic obfuscation schemes
such as HTTPOS [30] or Traffic Morphing [45], our frame-
work enforces an information-theoretic boundary for the max-
imum information leakage. As argued in covert
channel detection schemes such as [4l{17] are complementary
to our work and should be used where mitigation is costly,
e.g., for the PktSort and PktDrop characteristics.

While we know of no practical performance measurements
for comprehensive covert channel elimination, an overhead
of 45%-56% was reported solely for obfuscating the packet
size in website traffic [26}/45].

6. CONCLUSION AND FUTURE WORK

We have motivated the problem of covert channels in Vir-
tual Private Networks (VPNs) and presented the design, im-
plementation, and performance of a covert channel-resilient
VPN. We identified several covert channels and presented
new countermeasures. We have investigated the problem of
on-demand adaption of operation modes and presented an
implementation for comprehensive, high-performance covert
channel mitigation in the Linux IPsec stack. Our evalu-
ation shows that on-demand rate adaption is feasible and
practical even for highly unpredictive traffic. In more pre-
dictable throughput benchmarks, our system achieves re-
markable 169 Mbit /s in a 201 Mbit/s VPN connection (84%).

As part of our future work, we will consider the effec-
tiveness of alternative trade-off and normalization strategies.
Furthermore, we aim to investigate the impact of inaccura-
cies in IPD enforcement.
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APPENDIX
A. COVERT CHANNELS IN IPSEC

In general, for a channel characteristic to be exploited as a
covert channel, it must be measurable after transformation
by the VPN gateway. An outbound covert channel requires

that certain characteristics of packets remain measurable
when they are encapsulated and encrypted when travers-
ing from the LAN to the WAN side. Similarly, inbound
covert channels require packet characteristics to survive the
decapsulation from the WAN to the LAN side.

In this section we review the impact of covert channels on
VPNs that apply to the setup described in Many
of the channels are known, however, their impact is different
in VPNs and other mitigations are possible.

Unfortunately, no systematic approach exists for identify-
ing covert channels besides systematic exhaustive search [35].
The following results are based on such examination of the
IPsec specification [22], which standardizes the process of en-
capsulation and decapsulation at the VPN boundary, and re-
lated work. We then examined recent Linux and OpenBSD
implementations to validateﬂ exposing notable deviations
from the specification.

A.1 Storage Channels

Several storage-based covert channels have been identified
in TCP/IP networks [28]29|46]. Storage-based covert chan-
nels are usually easy to eliminate, but create reliable and
efficient channels when left undetected.

A.l.1 Differentiated Services (DS)

The 6 bit DS field in the IP header is used to signal ser-
vice requirements, such as realtime VolP traffic. Hence it
may leak information about the type of the transmitted data
even if not actively exploited by an insider. The IPsec spec-
ification recognizes this problem, however, countermeasures
are only described for inbound covert channels [22]. The
proposed countermeasure is to discard the DS field of the
outer IP header during defragmentation, unless explicitly
configured to do otherwise. Indeed, the examined Linux im-
plementation honors this recommendation, while OpenBSD
always discards the outer header’s DS field during decapsula-
tion. Hence we get C’,]?L’Sout = 6 bpp in both cases (and likely
also for most other IPsec implementations) while the op-
tional decapsulation of the DS field opens another inbound
channel of the same capacity Cﬁ?m =6 bpp.

A.1.2  Explicit Congestion Notification (ECN)

ECN uses two bits of the IP header to let routers signal
network congestion to the endpoints. As such, ECN be-
tween WAN routers and LAN endpoints may directly vi-
olate the VPN policy. Originally, a “limited functional-
ity” mode was supplied to eliminate such covert channels in
IPsec, which effectively precludes the WAN from ECN sig-
naling [37]. However, the current revision of IPsec specifies
that the ECN field should be copied during encapsulation,
and one bit is copied back to the inner header on decapsu-
lation, if ECN is enabled on the inner IP header [22]. As
such, the specification enables covert channels with a capac-
ity of C’Tlicﬁ =1 and Cgfolit = 2 bpp. The ECN treatment
was refined and unified in [6]. After discussing the trade-
off between covert channels and ECN, an updated scheme
is defined with Cﬁ?olit = 2 bpp and CESIE = 1.5 bpp. Fur-

thermore, a legacy-compatible mode with C’Eﬁ}it = 0 but
C’Elclﬁ = 1.5 is specified. The inbound covert channel is

deemed insignificant [6].

5We examined IPsec implementations of recent Linux 2.6.36
and OpenBSD 4.8.



The examined Linux and OpenBSD systems both im-
plement the original ECN specification [37]. They can be
configured to use “limited functionality” mode, eliminating
ECN-based covert channels. However, Linux does not drop
packets where the outer ECN field was invalidly set to Con-

gestion Experienced (see also|Section A.2.4).

A.1.3  IPv4 Flags (Flags)

The IPv4 Flags field consists of one unused bit (Reserved)
and two bits for fragmentation, Don’t Fragment (DF) and
More Fragments (MF). The IPsec specification discusses
the problem of fragmentation at great length, but refers to
standard IP-IP encapsulation 36| for the exact treatment of
inner and outer header fields. In general, the [Psec gateway
must copy the DF bit if set by the sender to enable Path
MTU Discovery (PMTUD) along the route. Otherwise, if
the sender allows fragmentation, the IPsec gateway is is ad-
vised to still use PMTUD but fragment the original packet
before encapsulation. If the advise is followed, no outbound
covert channel is created by the Flags field. During decapsu-
lation, any WAN fragments must first be reassembled, elim-
inating any option for the adversary to encode information
for the final recipient of the packet.

The examined OpenBSD implementation correctly resets
the DF and MF bits on encapsulation and decapsulation, but
copies the Reserved bit as a side-effect of this normalization.
The Linux implementation copies the DF bit by default un-
less PMTUD has been disabled by configuration. However,
in this case a compatibility issue leads to a repeated in-
crementation of the IP ID field for fragmentable packets.
Hence, both implementations leak information about the
Flags field settings on the inner header, creating an out-
bound covert channel with CanlZgjt =1 bpp.

A.1.4 Destination IP (DestIP)

The destination IP address can be used as a covert chan-
nel [18]. Although the insider in a VPN cannot directly
modify the destination address visible in the WAN, the des-
tination IP can be modified indirectly if more than to LAN
sites are connected in the VPN, by addressing the packet
to one or the other LAN site. However, and assuming that
other covert channels are eliminated, the MITM cannot dis-
tinguish the (time and size padded) stream of packets for
each VPN channel to determine which channel is being pre-
ferred by the insider. Hence, the characteristic only acts as
an amplifier for an existing outbound covert channel, mul-
tiplying the symbol space of the existing covert channel by
the number of alternate destination LANs N.

A.2 Timing Channels
A.2.1 Packet Size (PktSize)

Information can also be encoded in the size of packets [18].
In IPsec VPNs, the created covert channel is a limited out-
bound channel since (1) the MITM cannot covertly mod-
ify the packet size and (2) the symbol space is reduced by
ESP payload alignment and block cipher padding [21]. To
estimate the available symbol space, consider that the max-
imum and minimum possible packet length is reduced by
protocol headers. The remaining possible packet lengths
are then partitioned due to ESP padding and alignment.
For example, the maximum packet size in standard Eth-
ernet LAN is limited by the 1500 byte Maximum Trans-

mission Unit (MTU), minus 40 bytes inner and outer IP
headers and two times ~ 12 bytes for the ESP header with
cipher block padding and ESP MAC, respectively. Hence
lmaz =~ 1500 — 2 -20 — 2 - 12 = 1436 bytes and lpmin ~
2-204+2-12 = 64D Considering the 4 byte alignment of
ESP we get Cﬂlff,iife = logQ(l‘Bii_M) = 8.4 bpp.

A.2.2 Inter-Packet Delay (IPD)

Several previous works discuss exploitation and mitigation
techniques for covert channels based on the relative delay
between packets (IPD) [41/18}/20127}/33]. The characteristic
can be used for both, outbound and inbound covert channels
and is not significantly affected by IPsec processing. The
channel capacity generally depends on the accuracy of the
timing measurements on the receiver [33]. However, when
approximating it as simple binary channel that either delays
a packet or not, it achieves a capacity of CEP = 1 bpp.
Previously, a throughput of 0.98 bpp was reported on an
intercontinental Internet connection [27].

A.2.3  Packet Order (PktOrd)

Information can also be encoded by changing the order
of packets [12,[24]. In IPsec VPNs, the MITM cannot dis-
tinguish the order of IPsec payloads. However, the MITM
may reorder WAN packets to send information to an in-
sider, creating an inbound covert channel. The receiving
IPsec gateway can optionally maintain a partial anti-replay
window, a bit mask that marks the last r received packets
based on the Encapsulated Security Payload (ESP) or AH
sequence number field. If used, a typical replay window of,
e.g., r = 32 packets leaves an inbound covert channel capac-
ity of Cf,?ffgrd = 1/r - log,(r!) = 3.67 bpp.

A.2.4  Packet Drops (PktDrop)

Packet dropping was proposed in [40] to create covert
channels. However, since the MITM in a VPN cannot dis-
tinguish secure channel packets, the outbound version of
this channel is equivalent to the IPD-based covert channel.
When used as an inbound covert channel, one LAN client
may generate a stream of enumerated packets from which
the WAN MITM adversary may drop some at will. Hence,
a reliable covert channel with at most C’:ﬁf P =1 bpp
(drop/no drop) can be created.

A.2.5 Path MTU Discovery (PMTUD)

PMTUD is a mechanism to dynamically detect the Path
MTU (PMTU), the maximum allowed packet size along an
IP path [32]. By setting the Don’t Fragment (DF) flag in
the IP header, the sender asks intermediate routers to not
fragment packets on demand but to drop it and instead re-
port the MTU of their network segment as an ICMP error
(PMTU error). The sender notes the respective smallest re-
ported MTU towards a particular destination as the PMTU
and adjusts the size of emitted packets accordingly. The
sender will also periodically test by trial&error if a larger
PMTU is possible, e.g., if the routing was changed (PMTU
aging).

While the size of VPN packets cannot be manipulated
directly, the MITM may artificially limit the MTU of his
network segment to inject information via PMTUD. Specif-
ically, when using PMTUD in the WAN, the MITM may

"Excluding the block cipher’s initialization vector (IV).



inject ICMP errors to reduce the PMTU perceived by the
IPsec gateways. Upon receiving a packet that is larger than
the known PMTU for the respective WAN destination, and
if that packet has the DF bit set, IPsec gateways will prop-
agate the smaller PMTU to the respective LAN client by
synthesizing the appropriate PMTU error |22].

Since the PMTU is unlikely to change frequently, the
IPsec specification recommends that gateways follow the
PMTU aging process described in the PMTUD specifica-
tion [32]. There, a periodic timeout of ¢ = 2 minutes is rec-
ommended before attempting to increase the PMTU, and
immediately increasing further if the attempt was success-
ful, until the new PMTU is discovered. Since only smaller
PMTU values are propagated to LAN clients, this limits the
rate of PMTU errors that the MTIM can usefully inject.

For example, if we assume possible MTU range from the
minimum IP packet size (768 bytes) to the maximum Eth-
ernet MTU minus IPsec overhead (= 1500 — 20 — 35 = 1445
bytes), with changes in 4 byte steps due to ESP padding and
alignment, there are M ~ 144578 ~ 169 different packet
sizes that could be reported by the IPsec gateway to the
LAN client. Furthermore, the adversary can mitigate the
delay imposed by the PMTU aging timeout ¢ by partition-
ing the symbol space such that at most M/2 = 169/2 =
84 subsequent 1 bit symbols can be sent, achieving up to
CEPMTUD — M/2 _ 843 .60 = 5.18 bps.

A.3 Active Probing

The MITM may infer information on the LAN status by
actively probing the IPsec gateways and evaluating their re-
sponse behavior, an approach that was introduced as active
traffic analysis [13,|14]. In particular, a LAN client could
cause high load on the LAN interface of the IPsec gateway.
The resulting change in the gateway’s system load can then
be measured by how it responds to legitimate service re-
quests by the MITM, such as ICMP pings [13].

Note that, contrary to the previous channel characteris-
tics, this attack actually exploits a side channel at the gate-
way: Its capacity does not depend on the usage of the VPN
channel but on the frequency at which the insider can in-
duce high and low system loads at the gateway as well as on
the rate at which the MITM is able to probe the gateway to
measure its system load with sufficient accuracy.

It was previously proposed to either normalize the (seem-
ingly uncritical) responses by the gateway. We also believe
that the attack can be prevented by combining the IPsec
gateway with a second physical firewall on the WAN side,
to filter invalid requests and act as key negotiation server
on behalf of the VPN gateway. However, such side-channels
are outside the scope of this work.
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