ROPdefender: A Detection Tool to Defend Against
Return-Oriented Programming Attacks

Lucas Davif, Ahmad-Reza Sadeghit, Marcel Winandy:

TSystem Security Lab
Technische Universitat Darmstadt
Darmstadt, Germany

ABSTRACT

Modern runtime attacks increasingly make use of the pow-
erful return-oriented programming (ROP) attack techniques
and principles such as recent attacks on Apple iPhone and
Acrobat products to name some. These attacks even work
under the presence of modern memory protection mecha-
nisms such as data execution prevention (DEP). In this pa-
per, we present our tool, ROPdefender, that dynamically de-
tects conventional ROP attacks (that are based on return in-
structions). In contrast to existing solutions, ROPdefender
can be immediately deployed by end-users, since it does not
rely on side information (e.g., source code or debugging in-
formation) which are rarely provided in practice. Currently,
our tool adds a runtime overhead of 2x which is comparable
to similar instrumentation-based tools.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security

Keywords

return-oriented programming, detection, binary instrumen-
tation

1. INTRODUCTION

Runtime attacks on software aim at subverting the execu-
tion flow of a program by redirecting execution to malicious
code injected by the adversary. Typically, the control-flow
of a program is subverted by exploiting memory vulnera-
bilities. Despite extensive research and many proposed so-
lutions in the last decades, such vulnerabilities (e.g., stack
overflow [4], heap overflow [5], integer overflow [6], format
string [27]) are still the main source of vulnerabilities in to-
day’s applications. Figure 1 shows that the number of buffer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASIACCS ’11, March 22-24, 2011, Hong Kong, China.

Copyright 2011 ACM 978-1-4503-0564-8/11/03 ...$10.00.

tHorst Gortz Institute for IT-Security

Ruhr-Universitat Bochum
Bochum, Germany

overflow vulnerabilities (according to the NIST! Vulnerabil-
ity database) continues to range from 600 to 700 per year.

Operating systems and processor manufactures provide
solutions to mitigate these kinds of attacks through the
W & X (Writable XOR Executable) security model [49, 43],
which prevents an adversary from executing malicious code
by marking a memory page either writable or executable.
Current Windows versions (such as Windows XP, Vista, or
Windows 7) enable W @ X (named data execution preven-
tion (DEP) [43] in the Windows world) by default.

Return-oriented Programming.

Return-oriented programming (ROP) attacks [53], bypass
the W & X model by using only code already residing in
the process’s memory space. The adversary combines short
instruction sequences from different locations in memory,
whereas each sequence ends with a return instruction that
enables the chained execution of multiple instruction se-
quences. The ROP attack method has been shown to be
Turing-complete and its applicability has been demonstrated
on a broad range of architectures: x86 [53], Atmel AVR [24],
SPARC [8], ARM [38], Z80 [12], and PowerPC [41].

ROP attacks are increasingly used in practice, in particu-
lar, the recent ROP-based attacks on well-established prod-
ucts such as Adobe Reader [36, 50], Adobe Flashplayer [3],
or Quicktime Player [28]. Moreover, ROP has been also
adapted to kernel exploits: Hund et al. [32] presented a
ROP-based rootkit for the Windows operating system which
bypasses kernel integrity protection mechanisms. ROP at-
tacks have been also launched on Apple iPhone to perform a
jailbreak [30] or to steal a user’s SMS database [35]. Finally,
tools have been developed enabling the automatic identifi-
cation of instruction sequences and gadgets [32, 38, 22].

However, ROP can not bypass address space layout ran-
domization (ASLR), a well-known memory protection mech-
anism available for Linux [49] and Windows [31]. Basically,
ASLR randomizes the base addresses of memory and code
segments so that the adversary can no longer predict start
addresses of instruction sequences. However, recent attacks
show that ASLR is often vulnerable to information leakage
attacks [57, 52, 60] allowing adversaries to gain useful infor-
mation on the memory layout of the running process. This in
turn allows the adversary to calculate the start addresses of
the instruction sequences. Moreover, several ASLR instanti-
ations do not randomize all memory segments of a process,
or are unable to randomize several dynamic libraries, be-

!National Institute of Standards and Technology

400
350
300
250 224

Number of Vulnerabilities

O other Buffer Overflows (not
further specified)

O stack Overflow

[Integer Overflow

@ Heap Overflow

B Format String

2005 2006 2007

200
255
230 232
188
200 » o o
150 128
107 o 06 109 126 112
90
100 &6
50 26 20— 22 28
1 5
0

2008 2009

Figure 1: Buffer overflow vulnerabilities from 2005 to 2009

cause these are not ASLR compatible. Hence, the adversary
still has a large enough code space to mount a ROP attack
as shown in [51, 39].

Existing Tools and Countermeasures.

We already mentioned that ROP bypasses W ® X and can
be also applied to ALSR protected programs (e.g., [51, 39]).
On the other hand, there exists a large number of proposals
that aim to detect corruption of return addresses. These so-
lutions can be categorized in compiler-based solutions [19,
59, 15, 40, 48]; instrumentation-based solutions [37, 16, 1, 2,
29, 55]; and hardware-facilitated solutions [26, 25]. However,
as we discuss in detail in related work (Section 6), the exist-
ing solutions suffer from various shortcomings and practical
deficiencies: They either cannot provide complete detection
of ROP attacks [16, 29, 37], or require side information such
as debugging information [1, 2] or source code [19, 59, 15, 40,
48], which are rarely provided in practice. Moreover, many
of the instrumentation-based tools suffer from false positives
because they do not handle exceptional cases such as C++
exceptions, Unix signals, or lazy binding. Finally, compiler-
based solutions are from end-user’s perspective not always
sufficient, because they will only be effective if all software
vendors really employ these compilers. However, in practice,
software vendors often focus on performance rather than on
security, and thus, many applications still suffer from various
memory errors (see Figure 1) allowing ROP attacks.

Our Contributions.

We present the design and implementation of ROPde-
fender, a practical tool that enforces return address protec-
tion to detect ROP attacks. We improve existing proposals
by detecting unintended return instructions issued in a ROP
attack without requiring any side information. Our tool is
built on top of the Pin framework [42], which provides just-
in-time (jit) binary instrumentation. Pin is typically used for
program analysis such as performance evaluation and profil-
ing®. However, we developed a new Pintool, ROPdefender,
that enforces return address checks at runtime. One of our
main design goals was to create a practical tool that can
be used without the need to change hardware. Hence, we
aimed to adopt already existing techniques such as shadow
stack [15, 59, 26] for return addresses, and the concept of
binary instrumentation as used in taint tracking [47, 17] or
return address protection [29, 16, 37]. In particular, our
contributions are:

*Moreover, it has been used in [61] for a checksum-aware
fuzzing tool and in [17] as dynamic taint analysis system.

e Defense technique: ROPdefender detects sophis-
ticated ROP attacks (based on return instructions)
without requiring specific side information. As proof
of concept we show in Section 5.2 that ROPdefender
detects recent ROP-based exploits in Adobe Reader.

e Flexibility and interoperability: ROPdefender can
be applied to complex multi-threaded applications such
as Adobe Reader or Mozilla Firefox. It can be deployed
on Windows and Linux for Intel x86 based systems re-
quiring no new hardware features. As we will discuss in
Section 4, ROPdefender is able to handle a wide range
of exceptions which violate the calling convention.

e Performance: ROPdefender induces an overhead by
a factor of about 2x. In Section 5.1 we discuss that
comparable jit-based instrumentation tools add higher
or comparable performance overhead and discuss how
the performance of ROPdefender could be improved.

Our reference implementation of ROPdefender detects all
ROP attacks based on returns. Further, it detects any attack
that is based on corrupting a return address, e.g., conven-
tional stack smashing [4] or return-into-libc [56]. Lastly, it
should be mentioned that our current implementation does
not detect the recent ROP attack [11] which uses indirect
jumps rather than returns. We will discuss in Section 5.3
how such ROP attacks can be addressed in the future.

Outline.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview to ROP attacks. We present the
main idea of our approach and the architecture of ROPde-
fender in Section 3. We describe the details of our imple-
mentation in Section 4 and evaluate its performance and
security in Section 5. We discuss related work in Section 6
and conclude the paper in Section 7.

2. BACKGROUND

Return-oriented programming (ROP) is basically a gen-
eralization of return-into-libc [56, 44] attacks. It allows an
adversary to induce arbitrary program behavior without in-
jecting any malicious code. Rather than returning to func-
tions in libc, ROP returns to short instruction sequences
each terminating in a return instruction. The return in-
struction ensures that one sequence is executed after the
other: It pops the address of the subsequent instruction se-
quence from the stack and transfers control to it. Multiple
instruction sequences can be combined to a gadget which
represents a particular atomic task (e.g., load, store, add,

@ Corrupt CS
—> Control Structures (CS)

| ! Return Address 3 |
| neturn Address 9 |

| Return Address 2 @ Move
@ ! Return Address 1 : Stack pointer
Data

Return to next
sequence

Pop next
return address

Libraries (lib)

| Instruction

‘ Return }

®®

7% Instruction Sequence ‘Relurn }»—

Code

Program Memory

Figure 2: A general ROP attack

etc.). The attack technique is considered Turing-complete,
if the adversary is able to construct gadgets for all basic
operations: memory operations, arithmetic and logical op-
erations, (un)conditional jumps, and system calls.

2.1 High-Level Idea of ROP

Figure 2 illustrates the general ROP attack. It shows a
simplified version of a program’s memory layout consisting
of a code section, libraries (lib), a data section and a control
structure section (CS). In order to mount a ROP attack, the
adversary exploits a memory-related vulnerability of a spe-
cific program, e.g., a buffer overflow. Hence, the adversary is
able to overwrite control-flow information on the CS section
(the stack), e.g., the return address of a vulnerable func-
tion (step 1). The adversary injects several return addresses
each pointing to an instruction sequence in the lib section.
In step 2, the stack pointer (SP) is moved to the first return
address. If the adversary uses conventional stack smashing
techniques [4] (i.e., overwriting the return address of a func-
tion), the value of SP will be automatically changed to this
position. This is because return address 1 is injected at the
place where the original return address was located. Upon
function return, execution is not redirected to the original
calling function but instead to an instruction sequence in the
lib section (step 3). This sequence is terminated by another
return instruction which pops return address 2 from the CS
section (step 4) and redirects execution to the next instruc-
tion sequence (step 5). This procedure is repeated until the
adversary terminates the program.

As shown above, instruction sequences are chained to-
gether via return instructions. In general, the ROP attacks
presented so far are all based on this principle [53, 8, 24, 38,
41, 12, 32, 51]. A new ROP attack has been recently pre-
sented in [11] that is solely based on indirect jumps rather
than returns. However, in this paper, we focus on conven-
tional ROP attacks (based on return instructions), but we
discuss in Section 5.3 how this new class of attacks can be
addressed in the future.

Unintended Instruction Sequences.

On Intel x86, ROP attacks are in particular dangerous
due to the presence of the so-called unintended instruction
sequences. These can be issued by jumping in the middle of
a valid instruction resulting in a new instruction sequence
never intended by the programmer nor the compiler. These
sequences can be easily found on the x86 architecture due to
variable-length instructions and unaligned memory access.

Consider for instance the following x86 code with the given
intended instruction sequence:

b8 13 00 00 00
e9 c3 8 ff ff

mov $0x13,%eax
jmp 3aae9

If the interpretation of the byte stream starts two bytes
later, the following unintended instruction sequence would
be executed by an Intel x86 processor:

00 00 add %al,(%eax)

00 e9 add %ch,%cl
c3 ret

In particular, solutions only securing returns in function epi-
logues are not able to detect ROP attacks that are based on
these sequences. We will describe in the next section how to
instantiate a ROP attack that is only based on unintended
instruction sequences.

2.2 Why Protecting Returns in Function Epi-
logues Does Not Help

There exists several compiler and instrumentation-based
solutions that aim to detect return address attacks [15, 26,
59, 16, 29, 55]. The main idea of these proposals is to
keep copies of return addresses in a dedicated memory area,
referred to as shadow stack. Upon function return, they
check if the return address has been modified. We show in
the following that countermeasures (integrated in compilers
or based on instrumentation techniques) checking only in-
tended returns can not prevent ROP attacks that are based
on unintended instruction sequences.

As mentioned in Section 2.1, the first steps of a ROP
attack include: (Step 2) moving the stack pointer (SP) to
the first return address and (Step 3) redirecting execution
to the first instruction sequence, i.e., changing the instruc-
tion pointer (IP) to the first instruction of instruction se-
quence 1. However, return address checkers like [15, 26, 59,
16, 29] can prevent the ROP attack if these two steps are
performed by overwriting the return address of a vulnera-
ble function, because these tools perform a return address
check in the function epilogue. In order to avoid detection
by such countermeasures, these two steps have to performed
without using a return instruction in an intended function
epilogue. Further, the instruction sequences executed must
be unintended to bypass checks for intended return instruc-
tions. Unintended sequences can be often found on Intel x86
as shown in [53].%

There exists several attack techniques for gaining control
over SP (Step 2) and IP (Step 3) without using intended re-
turns. For instance, the well-known vulnerabilities such as
heap overflows [5], integer overflows [6] or format strings [27]
allow an adversary to write arbitrary integer values into a
program’s memory space. Instead of overwriting a return
address, the adversary could overwrite pointers, e.g., func-
tion pointers or entries of the Global Offset Table (GOT)*.
If an adversary overwrites such a pointer, and the pointer is
used as a jump target afterwards, the execution will be redi-
rected to code of the adversary’s choice. Hence, such pointer
manipulations allow an adversary to take control over IP.
However, the adversary has also to ensure that SP points
to return address 1. In general, this can be performed by a

3The instruction sequence search algorithm (GALILEO)
proposed in [53] avoids intended function epilogues.

4In Unix-based systems the GOT holds absolute virtual ad-
dresses to library functions.

stack-pivot sequence allowing to change SP to an arbitrary
value [20]. For instance, on Intel x86 this can be achieved
by pointing IP to the following (unintended) sequences:

xchg %esp,%eax; ret
mov %ecx , %esp; ret

Since the first sequence exchanges (xchg) the contents of
%eax and %esp (SP), it requires the %eax register to con-
tain the desired value of SP. The second sequence moves the
content of %ecx to %esp. Therefore, the adversay has to
load the desired value of SP into %ecx before. The final re-
turn instruction of both sequences has the effect that return
address 1 is popped from the stack and execution is redi-
rected to instruction sequence 1. Note that both sequences
must be unintended to bypass countermeasures that check
(intended) returns in function epilogues. Note that further
attack techniques on how to instantiate a ROP attack with-
out using a return instruction are also discussed in [11].

3. OUR SOLUTION

In this section we present our security architecture to de-
tect and defeat ROP attacks using return instructions.

3.1 Assumptions

In the following we briefly discuss the main assumptions
in our model.

1. Adversary: The adversary is able to launch a ROP
attack which cannot be detected by compiler or instru-
mentation based solutions that only secure returns in
function epilogues (see Section 2.2 for an example).

2. Side information: We assume that we have no ac-
cess to side information (e.g., source code or debugging
information) while defeating ROP. This information is
rarely provided in practice, impeding users to deploy
defenses against ROP attacks.

3. Security measures: We assume that the hardware
and the operating system enforce the W @ X security
model. Modern processors and operating systems al-
ready enable W & X by default.

4. Trusted Computing Base: The adversary cannot
tamper with our tool itself or the underlying operat-
ing system kernel. If the adversary would be able to
do so, any detection method could be circumvented or
even disabled. Hence, we rely on other means of pro-
tection of the underlying trusted computing base, e.g.,
hardening the kernel, verification or extensive testing
as well as load-time integrity checking of the software
components belonging to our tool.

3.2 High-Level Description

Since we assume no access to source code (Assumption 2),
we make use of instrumentation. Basically, it allows to add
extra code to a program to observe and debug the program’s
behavior [45]. We use a shadow stack to store a copy of the
return address once a function is called. We instrument all
return instructions that are issued during program execu-
tion and perform a return address check. Our approach is
similar to existing shadow stack approaches, e.g., [15, 59].
However, in contrast to existing approaches, ROPdefender
(i) checks each return instruction issued to the processor,

I : 3 SV i

2a__[pushTOS onto | Retum4 | = Rotum4 | |

Is Call? ! i

Shadow Stack ! ' Saved 1

Return 3 | " |Retun 3 |

12b | Feaved | |

3 [c TOS of R Reme | |

Is Return? }——{ ompare ° :

both Stacks Return 1 Faaved] ‘

3b L ;

Fetch next Shadow Stack
Instruction

Figure 3: Our high-level approach

which detects even unintended instruction sequences, and
(ii) it handles various special cases that are necessary for a
practical defense tool.

Our high-level solution for detecting ROP attacks is de-
picted in Figure 3. Before an instruction is executed by the
processor, our solution intercepts the instruction and exam-
ines the instruction’s type. First, we check if the current
instruction is a call. If this is the case, we store a copy of
the pushed return address in a shadow stack (transition 2a
in Figure 3).

Otherwise, if the instruction is a return instruction, we
check if the top return address on the shadow stack equals
the return address on top of the program stack (transition
2b and 3a in Figure 3). If there is a mismatch, the return
address has been corrupted or a calling exception occurred.

Our solution detects any return address violations: It does
not only prevent ROP attacks. It also provides detection of
all buffer overflow attacks which overwrite return addresses.

According to the Intel x86 calling convention [33], re-
turn addresses have to be stored on the stack. A function
call is performed through the call instruction, which au-
tomatically pushes the return address onto the top of the
stack (TOS). After the called function has completed its
task, it returns to the caller through a ret instruction, which
pops the return address from the stack and redirects execu-
tion to the code pointed to by the return address. However,
there are a few exceptions that violate the traditional calling
convention and the function returns elsewhere. We discuss
and categorize these exceptions in Section 4. For the mo-
ment, we assume that a function always returns to the ad-
dress originally pushed by the call instruction. Nevertheless,
our prototype implementation of ROPdefender also handles
the exceptions as we detail in Section 4.

3.3 Tools and Techniques

As mentioned above, we use instrumentation to detect
ROP attacks. Generally, instrumentation can be performed
at runtime or at compile-time. For our purpose we focus on
dynamic binary instrumentation at runtime to avoid access
to side information. Generally, there are two classes of dy-
namic binary instrumentation frameworks: (i) probe-based
and (ii) just-in-time (jit) compiler-based.

Probe-based instrumentation used in Dynlnst [9], Vul-
can [23] or DTrace [10] enforces instrumentation by replacing
instructions with the so-called trampoline instructions in or-
der to branch to instrumentation code. DTrace, for instance,
replaces instrumented instructions with special trap instruc-
tions that, once issued, generate an interrupt. Afterwards
the instrumentation code is executed.

Jit-based instrumentation frameworks like Valgrind [46],
DynamoRIO [7], and Pin [42] use a just-in-time compiler.
Unlike to probe-based instrumentation no instructions in the
executable are replaced. Before an instruction is executed
by the processor, the instrumentation framework intercepts
the instruction and generates new code that enforces instru-
mentation and assures that the instrumentation framework
regains control after the instruction has been executed by
the processor.

We use jit-based instrumentation since it allows us to de-
tect sophisticated ROP attacks based on unintended instruc-
tion sequences: It allows to intercept each instruction before
it is executed by the processor, whether the instruction was
intended by the programmer or not. In contrast, probe-
based instrumentation frameworks rewrite instructions ahead
of time with trampoline instructions and consequently in-
strumentation is only performed if the trampoline instruc-
tion is really reached.

3.4 General Architecture

We incorporate ROPdefender directly into the dynamic
binary instrumentation (DBI) framework. The DBI frame-
work as well as the operating system are part of our trusted
computing base (see Assumption 4). Figure 4 depicts our
proposed architecture.

! Dynamic Binary Instr ion (DBI) F K

ROPdefender
4{ Process J

el 2]

Thread 1 Thread 2 Thread n 1

Figure 4: General architecture of ROPdefender

The general workflow is as follows: The program is loaded
and started under the control of the DBI framework. The
DBI framework ensures that (i) each instruction of the pro-
gram is executed under control of the DBI and (ii) all in-
structions are executed according to the ROPdefender spe-
cific instrumentation code which then enforces the return
address check.

ROPdefender consists of several shadow stacks and a de-
tection unit. The detection unit pushes/pops return ad-
dresses onto/from the connected shadow stacks. Further,
the detection unit is responsible for enforcing the return ad-
dress check. The reason why ROPdefender maintains mul-
tiple shadow stacks is that a process may launch several
execution threads. If all threads would share one shadow
stack, false positives would arise, since the threads would
concurrently access the shadow stack.

4. IMPLEMENTATION DETAILS

For our implementation we used the jit-based binary in-
strumentation framework Pin (version 2.8-33586) and the
Linux Ubuntu OS (version 10.04). We also implemented
our tool on Windows XP, but we describe our implemen-
tation details and exception handling in the following for
the Linux Ubuntu OS. Further, our implementation of the
ROPdefender detection unit is one C++ file consisting of
165 lines of code.

The motivation behind using Pin [42] was that in [42]
Cohn et al. benchmarked well-known jit-based DBI frame-
works and concluded that Pin achieves the best performance
among them. Pin [42] is typically used for program analysis
such as performance evaluation and profiling.® Intel uses
Pin in the Intel Parallel Studio [34] for memory and thread
checking or bottleneck determination. However, we use this
binary instrumentation framework for the purpose of detect-
ing ROP attacks.

4.1 Binary Instrumentation Architecture

Figure 5 shows the instantiation of our architecture con-
sisting of the Pin Framework and the Pintool ROPdefender.
Pin itself has mainly two components: (i) a code cache and
(ii) a Virtual Machine (VM) which contains a JIT compiler
and an emulation unit. A program instrumented by Pin is
loaded into the VM. The JIT compiler enforces instrumenta-
tion on the program at runtime. The resulting instrumented
code is stored in the code cache in order to reduce perfor-
mance overhead if code pieces are invoked multiple times.

Program
Binary

Pintool: ROPdefender JIT-Based Instrumentation Fr k (Pin
" Detection Unit _ Virtual Machine
0 3
Analyse |I3 Instrumenta!ion}i - a
Routinen Routinen ! <
N emuiE] Code
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -]
fu 1 14 Iu 8 Cache
Shad, g
Stack 1 J [S‘ack 2 }{Slack n] > | Thread 1 Thread 2 Thread n
3 i 15
= | Emulation .
Unit JIT-Compiler
¥ 16 ¥ 12

‘ Operating System ‘
‘ Trusted Computing Base (TCB):

Figure 5: Implementation of ROPdefender within
the binary instrumentation framework Pin

Pin is configured by Pintools. Basically, Pintools allow
to specify own instrumentation code. The JIT compiles in-
structions according to the Pintool. Pintools can be written
in the C/C++ programming language. Effectively, here is
the place where we implement our ROPdefender. After Pin
is loaded and initialized, it initializes the ROPdefender de-
tection unit. Then the program which we want to protect
is started under the control of Pin. When a program is
started, Pin intercepts the first trace of instructions and the
JIT compiles it into new instructions in order to incorporate
instrumentation code. A trace is a sequence of instructions
terminated by an unconditional branch. Trace instrumen-
tation allows to instrument an executable one trace at a
time. The trace consists of several basic blocks, whereas
each block is a single entry and a single exit (any branch)
sequence of instructions. Instrumenting blocks is more effi-
cient than instrumenting each instruction individually. Af-
terwards, the compiled code is transferred to a code cache
over the interface I5 that finally forwards the compiled in-
structions to the operating system through interface 12. If
a sequence of instructions is repeated, no recompilation is
necessary and the compiled code can directly be taken from
the code cache. The emulation unit is necessary for those

®Pin has been also used as fuzzing tool [61] and as dynamic
taint analysis system [17].

instructions that cannot be executed directly (e.g., system
calls). Such instructions are forwarded to the operating sys-
tem over interface I6.

Instrumentation and Analysis Routines.

According to Figure 3 in Section 3.2, we specified two in-
strumentation routines that check if the current instruction
is a call or a return instruction. Further, we defined two
analysis routines that perform the actions and checks ac-
cording to the steps 2a and 3a in Figure 3. To implement a
shadow stack for each thread we additionally use the C++
stack template container. To avoid that one thread accesses
the shadow stack of another thread, we use the thread lo-
cal storage (TLS) from the Pin API, whereas each thread
must provide a key (created at thread creation) to access
its TLS. Elements can be pushed onto and popped off the
shadow stack as for the usual stack in program memory.
The instrumentation routines of our ROPdefender use the
inspection routines Ins_IsCall(INS ins) and Ins_IsRet(INS
ins) provided by the Pin API to determine if the tail in-
struction of the current basic block is a call or a return
instruction. If the instruction is a call instruction, then we
invoke an analysis routine (step 2a) that pushes the return
address onto the appropriate shadow stack. Otherwise, if
the instruction is a return instruction, then a second anal-
ysis routine checks if the return address the program wants
to use equals to the address at the top of the corresponding
shadow stack (step 3a).

4.2 Handling Exceptions

As mentioned in Section 3, the common calling conven-
tion assumes that an invoked function will always return
to the address pushed onto the stack by the calling func-
tion. However, our experiments have shown that there are
a few exceptions violating this calling convention. These
exceptions can be categorized into three classes: (Class 1)
A called function does not return, i.e., the control is trans-
ferred out of the function before its return instruction has
been reached. (Class 2) A function is invoked without ex-
plicitly using a call instruction. (Class 3) A different return
address is computed while the function is running.

Due to all these exceptions, developing an efficient and
also practical return address protection tool is not straight-
forward. Although many proposals address the first class of
exceptions (e.g., [15, 16, 29, 55, 37]), there exists no proposal
addressing Class 2 and 3. In contrast, our ROPdefender
handles all above mentioned classes of exceptions. Note that
the exceptions described below are the most well-known ones
(for instance, ROPdefender does not raise any false positive
for a whole SPEC CPU benchmark run), and there may be
further exceptions in practice which may raise false positives.
However, we believe that additional exception handling can
be easily integrated into ROPdefender based on the tech-
niques discussed below.

Class 1: Setimp/Longjmp.

For the first class consider a chain of various function
calls: A calls B, B calls C, and C calls D. According to
the calling convention, all functions must return explicitly
after completing their task: D returns to C, C to B, and B
to A. However, the system calls setjmp and longjmp allow
to bypass multiple stack frames, which means that before
the return instruction of D has been reached, execution is

redirected back to A, although B, C, and D have not yet
returned. Hence, ROPdefender expects the return of D, but
the program issues the return of A. To avoid a false positive,
ROPdefender uses a strategy similar to RAD [15] popping
continuously return addresses off the shadow stack until a
match is found or until the shadow stack is empty. The
latter case would indicate a ROP attack.

Class 2: Unix signals and lazy binding.

A typical example for the second class are Unix signals.
Generally, signals are used in Unix-based systems to no-
tify a process that a particular event (e.g., segmentation
fault, arithmetic exception, illegal instruction, etc.) have
occurred. Once a signal has been received, the program
invokes a signal handler. If such a signal handler is imple-
mented through the signal function, then execution is redi-
rected to the handler function without a call instruction.
Hence, if the signal handler returns, ROPdefender would
raise a false positive, because the return address of the han-
dler function has not been pushed onto the shadow stack.
However, the relevant return address is on top of the pro-
gram stack before the signal handler is executed. To avoid a
false positive, we use a signal detector (provided by the Pin
API) in order to copy the return address from the program
stack onto our shadow stack when a signal is received.

Another typical example for Class 2 is lazy binding which
“misuses” a return instruction to enforce a jump to a called
function. Lazy binding is enabled by default on UNIX-based
systems. It decreases the load-time of an application by de-
laying the resolving of function start addresses until they are
invoked for the first time. Otherwise, the dynamic linker has
to resolve all functions at load-time, although they may be
never called. On our tested Ubuntu system, lazy binding is
enforced by a combination of the functions _dLrtld_di_serinfo
and _dl_make_stackezecutable, which are both part of the dy-
namic linker library linuz-ld.so. After _dl_rtld_di_serinfo re-
solves the function’s address, it transfers control to the code
of _dl_make_stackexecutable by a jump instruction. Note
that _dl_make_stackezrecutable is not explicitly called. How-
ever, _dl_make_stackexecutable redirects execution to the re-
solved function through a return instruction (rather than
through a jump/call). To avoid a false positive, we push
the resolved function address onto our shadow stack before
the return of _dl_make_stackexecutable occurs. Our experi-
ments have shown that the resolved address is stored into the
Y%eax register after _dl_rtld_di_serinfo returns. Hence, we let
ROPdefender push the %eax register onto our shadow stack
when _dlrtld_di_serinfo returns legally.

Class 3: C++ Exceptions.

Another type of exceptions are those where the return ad-
dress is computed while the function executes, whereas the
computed return address completely differs from the return
address pushed by the call instruction. A typical example
for this are GNU C++ exceptions® with stack unwinding.
Basically, C++ exceptions are used in C++ applications to
catch runtime errors (e.g., division by zero) and other ex-
ceptions (e.g., file not found). A false positive would arise
if the exception occurs in a function that cannot handle the

5 Although we focus on the implementation of C++ excep-
tions with the GNU compiler, we believe that our solution
can be also adopted to operating systems using a different
compiler.

exception. In such case, the affected function forwards the
exception to its calling function. This procedure is repeated
until a function is found which is able to handle the ex-
ception. Otherwise the default exception handler is called.
The invoked exception handler is responsible for calling ap-
propriate destructors’ for all created objects. This process
is referred to as stack unwinding and is mainly performed
through the GNU unwind functions _Unwind_Resume and
_Unwind_RaiseEzception. These functions make a call to
_Unwind_RaiseEzception_Phase2 that computes the return
address and loads it at memory position -0xc8(%ebp), i.e.,
the %ebp register minus 200 (0xc8) Bytes points to the re-
turn address. In order to push the computed return ad-
dress onto our shadow stack, ROPdefender copies the re-
turn address at -0xc8(%ebp) after _Unwind- RaiseExcep-
tion_Phase2 returns legally.

S. EVALUATION

In this section we evaluate the performance of ROPde-
fender, show how it detects a recent exploit, and finally, we
discuss ROP attacks without returns.

5.1 Performance

To evaluate the overall performance, we have measured
the CPU time of ROPdefender. We compare our results to
normal program execution and to execution with Pin but
without instrumentation. Our testing environment was a
3.0 GHz Intel Core2 Duo E6850 machine running Ubuntu
10.04 (i386) with Linux kernel 2.6.28-11 and Pin version 2.8-
33586. We ran the integer and floating-point benchmarks
from the SPEC CPU2006 Suite [58] using the reference in-
puts. Figure 6(b) and 6(a) depict our benchmark results.

Pin without Instrumentation.

The Pin framework itself induces an average slowdown
of 1.58x for integer computations and of 1.15x for floating
point computations. The slowdown for integer computations
ranges from 1.01x to 2.35x. In contrast, for floating point
computations the slowdown ranges from 1.00x to 1.64x.

Pin with ROPdefender.

Applications under protection of our ROPdefender run
on average 2.17x for integer and 1.49x for floating point
computations slower than applications running without Pin.
The slowdown for the integer benchmarks ranges from 1.01x
to 3.54x, and for the floating point from 1.00x to 3.60x.
ROPdefender adds a performance overhead of 1.49x for in-
teger and 1.24x for floating point computations in average
compared to applications running under Pin but without
instrumentation. We compared ROPdefender with other
known tools such as the dynamic taint analysis systems DY-
TAN [17] (also based on Pin) or TaintCheck [47] (based on
Valgrind). According to the results in [17, 47], applications
running under these tools are from 30x to 50x times slower
which is enormously higher compared to ROPdefender. Also
DROP [13] causes an average slowdown of 5.3x.

To increase the performance of ROPdefender, we can ei-
ther improve the Pin framework or optimize the ROPde-
fender detection unit. The Pin developers are mainly con-
cerned to optimize their framework in order to achieve bet-

"Destructors free the memory and resources for class objects
and members.

ter performance. Hence, we believe that performance of Pin
will be continuously improved. Our detection unit avoids
to check whether each instruction issued is a call/return by
using trace instrumentation (see Section 4). Hence, we only
check if the tail instruction of the current basic block is a
call or return.

Our experiments also show that it is possible to apply
ROPdefender to large applications used in everyday life such
as Morzilla Firefox. We were able to browse websites and
watch Internet videos with an acceptable time delay with-
out ROPdefender raising a false positive. Moreover, we
compared ROPdefender (running in the user space) to the
kernel-level instrumentation tool DTrace [10]. Tracing sys-
tem calls with DTrace induced such a high overhead that
the Mozilla Firefox browser was not usable anymore.

5.2 Case Study

ROPdefender is able to detect and prevent available real-
world ROP exploits. As a use-case, we apply it to a recent
Adobe Reader exploit [36]. Generally, the attack in [36] ex-
ploits an integer overflow in the libtiff library, which is used
for rendering TIFF images. The attack works as follows: By
means of ROP it allocates new memory marked as writable
and executable in order to bypass W @& X. Afterwards, the
memcpy function is called to copy malicious code (stored
in the PDF file itself) into the new memory area. Finally,
execution is redirected to the malicious code, which could,
for instance, launch a remote shell to the adversary. The ex-
ploit could not be recognized by virus scanners because its
signature was not yet available. Since ROPdefender does
not rely on such side information, it can immediately detect
the attack.

In practice, an adversary will send the malicious PDF file
to the victim user via an e-mail. The user opens the PDF
file and thus, a remote shell is launched to the adversary.
In order to apply ROPdefender, we adapted it to Windows.
Instead of opening the file directly, we opened the file un-
der the control of ROPdefender. Since the attack triggers
an integer overflow and afterwards uses ROP instruction se-
quences (ending in returns), ROPdefender successfully de-
tects the attack at the moment the first sequence issues a
return. Afterwards ROPdefender immediately terminates
the application and informs the user.

In total, it takes 31 seconds until ROPdefender detects
the attack. Table 1 shows a snapshot of ROPdefender’s
output when it is applied to the exploit. The function from
where the return instruction originated and the value of the
instruction pointer (%eip) are shown in column 1 and 2.
Sometimes Pin is not able to identify the precise function
name. In such case, the default function name .text is as-
signed. The expected return address (placed on top of the
shadow stack) and the malicious return address (used by
the adversary) are shown in column 3 and 4. The first re-
turn address mismatch occurs at address 0x070072F7. The
expected return address at that time is 0x7C921E29. How-
ever, Adobe Reader aims to return to address 0x20CB5955.
ROPdefender now has to check if either a return address
attack or a setjmp/longjmp exception (see Section 4) oc-
curred. Hence, ROPdefender pops continuously return ad-
dresses from the shadow stack until a match is found. Since
the malicious return address 0x20CB5955 is not part of our
shadow stack, ROPdefender will report the return address
attack (see first row in Table 1). To show that ROPdefender

Slowdown

36
34
1,2 126 132 1,25
. 1,06 1,04 101 1,07 1,06
0’5 I I I I I I
0

416.gamess 434.zeusmp 436.cactusADM 444.namd

H pin
B ROPdefender

1,96
1,51
116 1,13 ; ' 1I’29

465.tonto 481.wrf

450.soplex 454.calculix

410.bwaves 433.milc 435.gromacs 437.leslie3d 447.dealll 453.povray 459.GemsFDTD 470.lbm 482.sphinx3
(a) Floating Point Benchmarks
4
3,54
35 33
3 2,64
? 2,54
2,42 i 2,39
25 2,19
c 2 N
% 1,67 H Pin
2 s 143 48 1,37 B ROPdefender
% 1,05
1
" I
0
401.bzip2 429.mcf 456.hmmer 462. an 483.
400.peribench 403.gcc 445.gobmk 458.sjeng 464.h264ref 473.astar
(b) Integer Benchmarks
Figure 6: SPEC CPU2006 Benchmark Results
Function Name Instruction | Expected | Malicious quence that acts as a trampoline after each instruction se-
Pointer Return Return I der to defend inst ROP without ret
nce. In order n in i return
_text 0x070072F7 0x7C921E29 | 0x20CB5955 quence order 1o delend agains W 0‘?f eturns,
unnamedimageEntryPoint | 0x070015BB NOLL 0%070072F8 ROPdefender would have to decide at runtime if an indi-
text 0x0700154D NULL 0x070015BC rect jump is a legal one or not. Since there exists no con-
-text 0x070015BB NULL 0x0700154F vention regarding the target of an indirect jump (in con-
-text i 0x07007FB2 NULL 0x070015BC trast to returns), it seems impossible to defend against such
unnamedImageEntryPoint | 0x070072F7 NULL 0x07007FB4 ROP Kk ith havi inf . b h
toxt 0%070015EB NULL 0%070015BC attacks without having some information about the
, o .
BIBLockSmithAssert 0x0700ABAC NULL 0x0700A8BO program’s structure. However, indirect jumps do not oc-
NoLocksTmpl cur as frequently as returns and the concrete implementa-
tion presented in [11] makes even use of two indirect jumps

Table 1: Detection of ROP Attack on Adobe Reader

detects all malicious returns, we temporarily allow the ex-
ploit to continue. As can be seen from Table 1, ROPde-
fender also detects the subsequent malicious returns. All
following expected return addresses are NULL, because the
shadow stack is empty after the first mismatch.

5.3 Discussion

ROPdefender detects all ROP attacks based on returns
and any attack that is based on corrupting a return address,
e.g., conventional stack smashing [4] or return-into-libc [56].
Recently, Checkoway et al. [11] presented a new ROP at-
tack that is only based on indirect jump instructions rather
on returns. Since ROPdefender does currently only check
return instructions, it can not detect this attack. ROP at-
tacks without returns simulate the return instruction by a
pop-jump sequence which pops the address of an instruction
sequence from the stack and afterwards redirects control to
it by an indirect jump instruction. Since such pop-jump
sequences (even not unintended) rarely occur in practice,
the attack uses the following technique: Each instruction
sequence ends in an indirect jump to a single pop-jump se-

within three instructions (jmp *x; pop *y; jmp *y). Thus,
frequency analysis against ROP attacks based on indirect
jumps can be deployed as first ad-hoc solution. However,
if the adversary issues a longer instruction sequence in be-
tween, he might be able to bypass such a defense. Moreover,
the adversary might be also able to use other return-like in-
structions such as indirect calls and thus bypass a solution
that looks only for returns and indirect jumps.

In parallel work, Chen et al. [14] extended ROPdefender’s
return address protection and showed first techniques to de-
feat ROP without returns based on jit-instrumentation. The
main idea of their approach is that an indirect jump must
remain within the boundaries of the function from where it
has been issued. Hence, the adversary can no longer enforce
a jump from one library function to another one. However,
he is still able to jump to an arbitrary instruction within
the current function. Moreover, as mentioned in [14], there
are a few exceptions where an indirect jump targets an in-
struction outside of the current function, e.g., tail calls or
indirect jumps used in the PLT (Procedure Linkage Table)
to redirect execution to the GOT (Global Offset Table). In
our future work we aim to address these problems and aim
to extend ROPdefender allowing it to efficiently detect ROP

attacks without returns. In particular, we aim to detect any
misuse of an indirect jump instruction to completely pre-
vent ROP without returns. For this we plan to integrate
ROPdefender into a control-flow integrity framework.

6. RELATED WORK

In the following we explore countermeasures against re-
turn address attacks and discuss their shortcomings.

6.1 Randomization

Address Space Layout Randomization (ASLR) [49, 31]
aims to prevent return-into-libc attacks by randomizing base
addresses of code segments. Since the adversary has to know
the precise addresses of all instruction sequences, this ap-
proach seems to effectively prevent ROP attacks. However,
it has been shown that ASLR can be bypassed by mount-
ing brute-force attacks [54] or through information leakage
attacks [57, 52, 60] allowing adversaries to gain useful infor-
mation on the memory layout. Moreover, some libraries or
parts of the code segment may not be ASLR-compatible
allowing adversaries to find enough useful instruction se-
quences to launch a ROP attack [51, 39]. Roglia et al. [51]
also propose to encrypt function addresses contained in the
Global Offset Table (GOT) to prevent their ROP attack.
However, their solution does not support lazy binding and
cannot detect return address attacks beyond exploiting the
GOT. In contrast, ROPdefender can detect all ROP-based
attacks even if adversaries are able to bypass ASLR.

6.2 Compiler-Based Solutions

Below we discuss different compiler-based approaches that
alm to mitigate return address attacks. One problem they
all have in common is that they require recompilation and
access to source code. Further, they are not able to detect
ROP attacks based on unintended instruction sequences.

StackGuard [19] places a dummy value, referred to as ca-
nary, below the return address on the stack. A more general
approach, called PointGuard [18], encrypts all pointers and
only decrypts them when they are loaded into CPU reg-
isters. Hence, the adversary has only access to encrypted
pointers stored on memory. Close to our approach, Stack
Shield [59] and Return Address Defender (RAD) [15] guard
return addresses by holding copies of them in a safe memory
area (i.e., on the shadow stack).

Finally, two compiler-based solutions were developed in
parallel to our work that specifically address ROP attacks [40,
48]. Liet al. [40] developed a compiler-based solution against
return-oriented kernel rootkits [32]. First, all unintended
return instructions are eliminated through code transforma-
tion. Second, the intended return instructions are protected
by a technique referred to as return indirection: Call in-
structions push a return index onto the stack which points
to a return address table entry. The return address table
contains valid return addresses the kernel is allowed to use.
The solution in [40] is complementary to our work, because
it provides protection at the kernel-level, whereas ROPde-
fender targets ROP attacks on the application-level. How-
ever, ROPdefender requires no access to source code and
also addresses exceptional cases which might occur during
ordinary program execution.

A noteworthy compiler-based approach is G-Free [48] that
defeats ROP attacks through gadget-less binaries. In con-
trast to the aforementioned approach and to ROPdefender,

G-Free also addresses ROP attacks without returns. Ba-
sically, G-Free guarantees during compilation that the re-
sulting binary does not contain unintended instruction se-
quences. Intended return instructions are encrypted against
a random cookie created at runtime. Moreover, (intended)
indirect jumps (and calls) are only allowed if the function
(from where the indirect jump originates) has been entered
through a valid entry point. This prevents an adversary
from executing indirect jumps outside the currently execut-
ing functions. As proof of concept, G-Free has been applied
to GNU libc. However, to provide full protection against
ROP attacks, each linked library and the original program
code have to be compiled with G-Free, which might in prac-
tice result in false positives if a library is not compatible
to G-Free. Although G-Free already prevents ROP attacks
without returns, ROPdefender does not need programs and
libraries to be recompiled.

6.3 Instrumentation-Based Solutions

Securing Function Epilogues.

There exist two works [29, 16] that aim to detect ma-
licious changes of return addresses by using probe-based
instrumentation techniques. Both approaches instrument
function prologues and epilogues to incorporate a return ad-
dress check on each function return. However, as we already
described in Section 2.2, both approaches are not able to de-
tect ROP attacks that use unintended instruction sequences
because they only instrument intended function epilogues.

Control-Flow Integrity.

XFI [2] enforces control-flow integrity (CFI) [1] which
guarantees that program execution follows a Control-Flow
Graph (CFG) created at load-time. It disassembles the bi-
nary in order to find all branch instructions (such as return
instructions) and afterwards rewrites the return instructions
with additional instrumentation code to enforce return ad-
dress protection. While XFI only instruments intended re-
turn instructions, it also checks whether indirect jumps or
calls follow a valid path in the CFG. This makes it hard, if
not impossible, for an adversary to launch the attack even
with unintended instructions. However, XFI mainly suf-
fers from practical deficiencies: The binary instrumentation
framework Vulcan [23] used by XFI is not publicly avail-
able and is restricted to Windows. More importantly, to
build the CFG, XFI requires some information on the pro-
gram’s structure which are extracted from Windows debug-
ging information files (PDB files). These are not provided
by default. In contrast, our ROPdefender requires no side
information and is based on an open source framework.

Measuring Frequency of Returns.

Chen et al. [13] and Davi et al. [21] exploit jit-based in-
strumentation to detect ROP attacks. Both solutions count
instructions issued between two return instructions. If short
instruction sequences are issued three times in a row, they
report a ROP attack. To bypass such a defense, an adversary
could enlarge the instruction sequences or enforce a longer
sequence after, e.g., each second instruction sequence.

Just-in-Time Instrumentation.
Program Shepherding [37] is based on the jit-based instru-
mentation framework DynamoRIO and monitors control-

flow transfers to enforce a security policy. It instruments
direct and indirect branch instructions with the goal to pre-
vent execution of malicious code. As part of its restricted
control-flow policy it also provides return address protection:
It guarantees that a return only targets an instruction that
is preceded by a call instruction. Hence, the adversary can
only invoke instruction sequences where the first instruction
is preceded by a call instruction. Although this prevents
basic ROP attacks, it is still possible to construct ROP at-
tacks and to manipulate return addresses because Program
Shepherding does not ensure that a return really targets
its original destination (e.g., the calling function). Since
each library linked into the program’s memory space con-
tains various call instructions, the adversary can still return
and invoke instruction sequences without being detected by
Program Shepherding. In contrast, ROPdefender detects
any return address manipulation and therefore completely
prevents the conventional ROP attacks that are based on
returns. Moreover, Program Shepherding only handles the
special case of setjmp/longjmp, whereas ROPdefender also
handles exceptions of Class 2 and 3 (see Section 4).

TRUSS (Transparent Runtime Shadow Stack) [55] is an-
other tool based on DynamoRIO. Similar to our approach,
return addresses are pushed onto a shadow stack and a re-
turn address check is enforced upon a function return. Due
to jit-based instrumentation, TRUSS is also able to detect
unintended sequences issued in a ROP attack. However,
the DynamoRIO framework does not allow to instrument a
program from its very first instruction. It depends on the
LD_PRELOAD variable which is responsible for mapping the
DynamoRIO code into the address space of the application.
Further, similar to Program Shepherding, TRUSS does not
handle exceptions of Class 2 and 3.

Taint Tracking.

Dynamic taint analysis based on jit-based instrumentation
(e.g., [47, 17]) marks any untrusted data as tainted. Tainted
data could be user input or any input from an untrusted
device or resource. After marking data as tainted, taint
analysis tracks the propagation of tainted data, and alerts
or terminates the program if tainted data is misused. Misuse
of the tainted data is, for instance, using the tainted data as
jump/call or return target. This mechanism induces a high
performance overhead (30x to 50x for TaintCheck [47] and
DYTAN ([17]). However, we believe that ROPdefender can
be incorporated into existing taint analysis systems.

6.4 Hardware-Facilitated Solutions

In [25] an embedded microprocessor is adapted to include
memory access control for the stack, which is split into data-
only and call/return addresses-only parts. The processor
enforces access control that does not allow to overwrite the
call/return stack with arbitrary data. This effectively pre-
vents ROP attacks. However, the approach is only demon-
strated on a modified microprocessor and cannot be trans-
ferred easily to complex instruction CPUs like x86 architec-
tures. Moreover, we do not expect CPU-integrated protec-
tion against ROP to appear in the near future. In contrast,
our solution is software-based and works with general pur-
pose CPUs and operating systems.

StackGhost [26] is another hardware-facilitated solution,
but available on SPARC systems. StackGhost is based on
stack cookies that are XORed against return addresses. The

design of StackGhost also includes a return address stack
(similar to our shadow stack), but to the best of our knowl-
edge, this has not been implemented and benchmarked. Note
further that StackGhost depends on specific features which
are unique to SPARC and which, according to [26], cannot
be easily adopted to other hardware platforms.

7. CONCLUSION AND FUTURE WORK

Return-oriented programming (ROP) is a powerful at-
tack that bypasses current security mechanisms widely used
in today’s computing platforms. It enables the adversary
to perform Turing-complete computation without injecting
any new code and executing instruction sequences never in-
tended by the original programmer.

The main contribution of our work is to present a prac-
tical countermeasure against ROP attacks (based on return
instructions) without requiring access to side information
such as source code or debugging information. In this pa-
per, we presented our ROPdefender that fulfills accurately
this requirement and that is able to detect and prevent even
ROP attacks that are based on unintended instruction se-
quences. For this, we exploited the idea of duplicating return
addresses onto a shadow stack and the concept of jit-based
binary instrumentation to evaluate each return instruction
during program execution. In addition, we showed how to
handle various exceptional cases that can occur during pro-
gram execution in practice.

ROPdefender induces a performance overhead by a factor
of 2x which cannot be expected by time-critical applications.
Further, we need also protection against return address at-
tacks targeting the operating system that ROPdefender re-
lies on. However, we still need to have measures against
ROP without returns. Currently, we are working on coun-
termeasures against ROP attacks without returns and on a
countermeasure against ROP for embedded systems.

8. ACKNOWLEDGMENTS

We thank Hovav Shacham and Stephen Checkoway for the
fruitful discussions on return-oriented programming attacks
based on indirect jumps. The first author was supported by
EU FP7 project CACE.

9. REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.
Control-flow integrity: Principles, implementations,
and applications. In CCS ’05: Proceedings of the 12th
ACM Conference on Computer and Communications
Security, pages 340-353. ACM, 2005.

[2] M. Abadi, M. Budiu, U. Erlingsson, G. C. Necula, and
M. Vrable. XFI: software guards for system address
spaces. In OSDI ’06: Proceedings of the 7th symposium
on Operating systems design and implementation,
pages 75-88. USENIX Association, 2006.

[3] Adobe Systems. Security Advisory for Flash Player,
Adobe Reader and Acrobat: CVE-2010-1297.
http://www.adobe.com/support/security/
advisories/apsal0-01.html, 2010.

[4] Aleph One. Smashing the stack for fun and profit.
Phrack Magazine, 49(14), 1996.

[5] Anonymous. Once upon a free(). Phrack Magazine,
57(9), 2001.

[6]

7]

[14]

[15]

[16]

[17]

[18]

[19]

blexim. Basic integer overflows. Phrack Magazine,
60(10), 2002.

D. L. Bruening. Efficient, transparent, and
comprehensive runtime code manipulation.
http://groups.csail.mit.edu/cag/rio/
derek-phd-thesis.pdf, 2004. PhD thesis, M.I.T.

E. Buchanan, R. Roemer, H. Shacham, and S. Savage.
When good instructions go bad: Generalizing
return-oriented programming to RISC. In CCS "08:
Proceedings of the 15th ACM Conference on Computer
and Communications Security, pages 27-38. ACM,
2008.

B. Buck and J. K. Hollingsworth. An API for runtime
code patching. Int. J. High Perform. Comput. Appl.,
14(4):317-329, 2000.

B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal.
Dynamic instrumentation of production systems. In
Proceedings of USENIX 2004 Annual Technical
Conference, pages 15-28. USENIX Association, 2004.
S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented
programming without returns. In CCS ’10:
Proceedings of the 17th ACM Conference on Computer
and Communications Security, pages 559-572. ACM,
2010.

S. Checkoway, A. J. Feldman, B. Kantor, J. A.
Halderman, E. W. Felten, and H. Shacham. Can
DREs provide long-lasting security? The case of
return-oriented programming and the AVC advantage.
In Proceedings of EVT/WOTE 2009, 20009.

P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and

L. Xie. DROP: Detecting return-oriented
programming malicious code. In A. Prakash and

I. Gupta, editors, Fifth International Conference on
Information Systems Security (ICISS 2010), volume
5905 of Lecture Notes in Computer Science, pages
163-177. Springer, 2009.

P. Chen, X. Xing, H. Han, B. Mao, and L. Xie.
Efficient detection of the return-oriented programming
malicious code. In Sizth International Conference on
Information Systems Security (ICISS 2010), volume
6503 of Lecture Notes in Computer Science, pages
140-155. Springer, 2010.

T. Chiueh and F.-H. Hsu. RAD: A compile-time
solution to buffer overflow attacks. In International
Conference on Distributed Computing Systems, pages
409-417. IEEE Computer Society, 2001.

T. Chiueh and M. Prasad. A binary rewriting defense
against stack based overflow attacks. In Proceedings of
the USENIX Annual Technical Conference, pages
211-224. USENIX Association, 2003.

J. Clause, W. Li, and A. Orso. Dytan: A generic
dynamic taint analysis framework. In Proceedings of
the 2007 International Symposium on Software
Testing, pages 196206, 2007.

C. Cowan, S. Beattie, J. Johansen, and P. Wagle.
Pointguard TM: protecting pointers from buffer
overflow vulnerabilities. In SSYM’03: Proceedings of
the 12th conference on USENIX Security Symposium,
pages 91-104. USENIX Association, 2003.

C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and

20]

(21]

(22]

23]

24]

(25]

(26]

27]

(28]

29]

(30]

(31]

(32]

33]

Q. Zhang. StackGuard: automatic adaptive detection
and prevention of buffer-overflow attacks. In SSYM’98:
Proceedings of the Tth conference on USENIX Security
Symposium, pages 63—78. USENIX Association, 1998.
D. Dai Zovi. Practical return-oriented programming.
SOURCE Boston 2010, Apr. 2010. Presentation.
Slides: http://trailofbits.files.wordpress.com/
2010/04/practical-rop.pdf.

L. Davi, A.-R. Sadeghi, and M. Winandy. Dynamic
integrity measurement and attestation: Towards
defense against return-oriented programming attacks.
In Proceedings of the 4th ACM Workshop on Scalable
Trusted Computing (STC’09), pages 49-54. ACM,
2009.

T. Dullien, T. Kornau, and R.-P. Weinmann. A
framework for automated architecture-independent
gadget search. In Proceedings of the 4th USENIX
Workshop on Offensive Technologies (WOOT), 2010.
A. Edwards, A. Srivastava, and H. Vo. Vulcan binary
transformation in a distributed environment.
Technical Report MSR-TR-2001-50, Microsoft
Research, April 2001.

A. Francillon and C. Castelluccia. Code injection
attacks on harvard-architecture devices. In CCS ’08:
Proceedings of the 15th ACM Conference on Computer
and Communications Security, pages 15-26. ACM,
2008.

A. Francillon, D. Perito, and C. Castelluccia.
Defending embedded systems against control flow
attacks. In Proceedings of the 1st Workshop on Secure
Ezecution of Untrusted Code (SecuCode’09), pages
19-26. ACM, 2009.

M. Frantzen and M. Shuey. StackGhost: Hardware
facilitated stack protection. In SSYM’01: Proceedings
of the 10th conference on USENIX Security
Symposium, pages 55-66. USENIX Association, 2001.
gera. Advances in format string exploitation. Phrack
Magazine, 59(12), 2002.

D. Goodin. Apple quicktime backdoor creates
code-execution peril. http://www.theregister.co.
uk/2010/08/30/apple_quicktime_critical_vuln/,
2010.

S. Gupta, P. Pratap, H. Saran, and S. Arun-Kumar.
Dynamic code instrumentation to detect and recover
from return address corruption. In WODA ’06:
Proceedings of the 2006 international workshop on
Dynamic systems analysis, pages 65-72. ACM, 2006.
J. Halliday. Jailbreakme released for apple devices.
http:
//www.guardian.co.uk/technology/blog/2010/aug/
02/jailbreakme-released-apple-devices-legal,
Aug. 2010.

M. Howard and M. Thomlinson. Windows vista isv
security. http://msdn.microsoft.com/en-us/
library/bb430720.aspx, Apr. 2007.

R. Hund, T. Holz, and F. C. Freiling. Return-oriented
rootkits: Bypassing kernel code integrity protection
mechanisms. In Proceedings of the 18th USENIX
Security Symposium. USENIX Association, 2009.
Intel Corporation. Intel 64 and ia-32 architectures
software developer’s manuals. http:
//www.intel.com/products/processor/manuals/.

[34]

[35]

Intel Parallel Studio. http://software.intel.com/
en-us/intel-parallel-studio-home/.

V. Iozzo and R.-P. Weinmann. Ralf-Philipp
Weinmann & Vincenzo Iozzo own the iPhone at
PWN20OWN. http://blog.zynamics.com/2010/03/
24/ralf-philipp-weinmann-vincenzo-iozzo-own-
the-iphone-at-pwn2own/, Mar 2010.

[36] jduck. The latest adobe exploit and session upgrading.

[37]

[38]

[39]

[40]

http://blog.metasploit.com/2010/03/
latest-adobe-exploit-and-session.html, 2010.

V. Kiriansky, D. Bruening, and S. P. Amarasinghe.
Secure execution via program shepherding. In
Proceedings of the 11th USENIX Security Symposium,
pages 191-206. USENIX Association, 2002.

T. Kornau. Return oriented programming for the
ARM architecture. http://zynamics. com/downloads/
kornau-tim--diplomarbeit--rop.pdf, 2009. Master
thesis, Ruhr-University Bochum, Germany.

L. Le. Payload already inside: data re-use for ROP
exploits. In Black Hat USA, July 2010.

J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram.
Defeating return-oriented rootkits with “return-less”
kernels. In Proceedings of the 5th European conference
on Computer systems, FEuroSys '10, pages 195-208.
ACM, 2010.

F. Lindner. Developments in Cisco IOS forensics.
CONFidence 2.0. http://www.recurity-1labs.com/
content/pub/FX_Router_Exploitation.pdf, Nov.
20009.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and

K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In PLDI
’05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and
implementation, pages 190-200. ACM, June 2005.
Microsoft. Data Execution Prevention (DEP).
http://support.microsoft.com/kb/875352/EN-US/,
2006.

Nergal. The advanced return-into-lib(c) exploits: PaX
case study. Phrack Magazine, 58(4), 2001.

N. Nethercote. Dynamic binary analysis and
instrumentation.
http://valgrind.org/docs/phd2004.pdf, 2004. PhD
thesis, University of Cambridge.

N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation.
SIGPLAN Not., 42(6):89-100, 2007.

J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature
generation of exploits on commodity software. In
Proceedings of the Network and Distributed Security
Symposium, 2005.

(48]

(49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

[59]

(60]

(61]

K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and
E. Kirda. G-Free: defeating return-oriented
programming through gadget-less binaries. In
ACSAC’10, Annual Computer Security Applications
Conference, Dec. 2010.

PaX Team. http://pax.grsecurity.net/.

S. Ragan. Adobe confirms zero-day - rop used to
bypass windows defenses. http://wuw.
thetechherald.com/article.php/201036/6128/,
2010.

G. F. Roglia, L. Martignoni, R. Paleari, and

D. Bruschi. Surgically returning to randomized lib(c).
In Proceedings of the 25th Annual Computer Security
Applications Conference (ACSAC 2009). IEEE, 2009.
H. Security. Pwn20wn 2009: Safari, IE 8 and Firefox
exploited. http://www.h-online.com/security/
news/item/Pwn20wn-2009-Safari-IE-8-and-Firefox
-exploited-740663.html, 2010.

H. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In CCS ’07: Proceedings of the 14th ACM
Conference on Computer and Communications
Security, pages 552-561. ACM, 2007.

H. Shacham, E. jin Goh, N. Modadugu, B. Pfaff, and
D. Boneh. On the effectiveness of address-space
randomization. In CCS ’04: Proceedings of the 11th
ACM Conference on Computer and Communications
Security, pages 298-307. ACM, 2004.

S. Sinnadurai, Q. Zhao, and W. fai Wong. Transparent
runtime shadow stack: Protection against malicious
return address modifications. http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.120.5702,
2008.

Solar Designer. "return-to-libc” attack. Bugtraq, 1997.
A. Sotirov and M. Dowd. Bypassing browser memory
protections in Windows Vista.
http://wuw.phreedom.org/research/
bypassing-browser-memory-protections/, Aug.
2008. Presented at Black Hat 2008.

SPEC Standard Performance Evaluation Corporation.
http://www.spec.org.

Vendicator. Stack Shield: A ”stack smashing”
technique protection tool for Linux.
http://www.angelfire.com/sk/stackshield.

P. Vreugdenhil. Pwn20wn 2010 Windows 7 Internet
Explorer 8 exploit. http://vreugdenhilresearch.nl/
Pwn20wn-2010-Windows7-InternetExplorer8.pdf,
2010.

T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A
checksum-aware directed fuzzing tool for automatic
software vulnerability detection. In Proceedings of the
81st IEEE Symposium on Security & Privacy
(Oakland’10). IEEE Computer Society, 2010.

