Short Paper: Lightweight Remote Attestation
using Physical Functions

Ahmad-Reza Sadeghi
TU Darmstadt (CASED)
& Fraunhofer SIT
Darmstadt, Germany
ahmad.sadeghi@trust.cased.de

ABSTRACT

Remote attestation is a mechanism to securely and verifiably
obtain information about the state of a remote computing
platform. However, resource-constrained embedded devices
cannot afford the required trusted hardware components,
while software attestation is generally vulnerable to network
and collusion attacks.

In this paper, we present a lightweight remote attestation
scheme that links software attestation to remotely identifi-
able hardware by means of Physically Unclonable Functions
(PUFs). In contrast to existing software attestation schemes,
our solution (1) resists collusion attacks, (2) allows the at-
testation of remote platforms, and (3) enables the detection
of hardware attacks due to the tamper-evidence of PUF's.

Categories and Subject Descriptors

K.6.5 [Security and Protection]: Physical security, inva-
sive software (e.g., viruses, worms, Trojan horses)

General Terms
Design, Security

Keywords

Remote Attestation, Software-based Attestation, Physically
Unclonable Functions (PUFs), Embedded Devices

1. INTRODUCTION

One of the major challenges in computer security is how
to gain assurance that a local or remote computing plat-
form behaves as expected. Various approaches have been
proposed that aim to assure the correct and secure oper-
ation of computer systems (attestation) [15]. Common to
all existing approaches is that the platform to be evaluated
(prover) sends a status report of its current configuration
to a wverifier to demonstrate that it is in a known and thus

*Full version available upon request.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WiSec’11, June 14-17, 2011, Hamburg, Germany.

Copyright 2011 ACM 978-1-4503-0692-8/11/06 ...$10.00.

Steffen Schulz
TU Darmstadt (CASED)
& Macquarie University (INSS)
Darmstadt, Germany
steffen.schulz@cased.de

Christian Wachsmann
TU Darmstadt (CASED)
Darmstadt, Germany
christian.wachsmann@cased.de

trustworthy state. Since malicious hard- or software on the
prover’s platform may forge this report, its authenticity is
typically assured by a secure co-processor |5} [12] or trusted
software [1].

A recent industrial initiative towards the standardization
of attestation was brought up by the Trusted Computing
Group (TCGQG) by specifying the Trusted Platform Module
(TPM) [22] as a trust anchor for authentic reporting of a
platform’s software state. Today, TPMs are typically im-
plemented as secure co-processors and are available in many
PCs, laptops, and server systems. The TCG also specifies
the Mobile Trusted Module (MTM) [23], which is a TPM for
mobile and embedded devices. However, the integration of
security hardware in low-cost embedded devices (e.g., wire-
less sensor nodes) is often infeasible. in this context, soft-
ware attestation |20] was proposed, requiring neither trusted
hardware nor a secure software core.

Software attestation exploits the computational limits of
the prover to ensure that only a specific algorithm can be ex-
ecuted within a certain time frame. Within this algorithm,
the prover computes a checksum of its software state, e.g.,
its program memory content, and sends it to the verifier.
The verifier computes a reference checksum using a reference
software state and accepts the prover only if (1) the check-
sum reported by the prover matches the reference checksum
and (2) the prover answered within the same time an hon-
est device would have needed. The first check guarantees
that the expected software is present at the prover, while
the second ensures that the prover has not performed addi-
tional computations, e.g., to hide malicious software.

Unfortunately, software attestation schemes require addi-
tional assumptions to be secure, namely (1) the prover can-
not be impersonated by or collude with other, potentially
more powerful, devices, and (2) the hardware of the prover
was not modified to increase its performance. As a result,
the existing software attestation schemes are unsuitable for
remote attestation or in scenarios where the adversary can
modify the prover’s hardware, such as sensor networks.

To overcome these problems the checksum must be linked
to the prover’s platform. One possible solution links the
checksum computation to hardware-specific side-effects, such
as CPU states and caching effects that are considered to be
expensive to simulate [9]. However, it has been shown that
these side-effects are not appropriate to achieve a strong
link to the underlying hardware |21} [L1] as they only bind
the software computation to classes of devices instead of
individual provers.

ahmad.sadeghi@trust.cased.de
steffen.schulz@cased.de
christian.wachsmann@cased.de

Contribution.

In this paper, we propose a lightweight remote attesta-
tion scheme that combines software attestation with device-
specific hardware functions. Specifically, we show how Phys-
ically Unclonable Functions (PUFs) can be integrated into
the software attestation s.t. a compromised device is unable
to efficiently outsource the software checksum computation
to colluding parties and propose practical optimizations to
facilitate the verification of the PUF.

In contrast to plain software attestation, our scheme (1)
is secure against a collusion of malicious provers, (2) allows
for the authentication and attestation of remote provers, and
(3) enables the detection of hardware attacks on the prover.
We present different solutions for the efficient and practical
verification of PUFs by the verifier and discuss their trade-
offs. The proposed scheme is applicable to any current (and
likely future) software attestation protocol.

2. Physically Unclonable Functions (PUFs)

A Physically Unclonable Function (PUF) is a noisy func-
tion that is embedded into a physical object, e.g., an inte-
grated circuit |14]. Today, there are already several PUF-
based security products aimed for the market, e.g., PUF-
enabled RFID chips and proposals for IP-protection and
anti-counterfeiting solutions [26| [8]. When queried with a
challenge x, a PUF generates a response y < PUF(z) that
depends on both, x and the unique device-specific intrinsic
physical properties of the object containing PUF. Since PUF's
are subject to noise (e.g., thermal noise), they typically re-
turn slightly different responses when queried with the same
challenge multiple times. However, these output variations
can be eliminated by using fuzzy extractors [4], which can be
efficiently implemented on resource-constrained devices [24].
Hence, PUFs can be used as deterministic functions.

Based on |2} [18], we consider PUF's that have the following
properties, where PUF and PUF’ are two different PUFs:

e Robustness: When queried with the same challenge z,
PUF always returns the same response y.

o Independence: When queried with the same challenge
x, PUF and PUF’ return different responses y and 3’.

e Pseudo-randomness: It is infeasible to distinguish a
PUF from a pseudo-random function PRF.

e Tamper-evidence: Any attempt to physically access
the object containing PUF irreversibly changes PUF, i.e.,
PUF cannot be evaluated any more but is turned into
a random PUF’ # PUF.

Independence and pseudo-randomness imply that A can-
not predict PUF responses to unknown challenges, which
means that A cannot simulate a PUF based on its challenge-
response behavior. Moreover, tamper-evidence ensures that
A cannot obtain any information on the PUF by physical
means, e.g., hardware attacks. Hence, A cannot simulate or
clone a PUF.

3. PUF-BASED ATTESTATION

Our PUF-based attestation scheme extends existing soft-
ware attestation protocols. A software attestation protocol
is a two-party protocol between a prover P and a verifier
V, where V should be convinced that P is in a trusted soft-
ware state S. Typically, P is an embedded device with con-
strained computing capabilities (e.g., a sensor node), whereas
V is a more powerful computing device (e.g., a base station).
On a high level, all known software attestation protocols ex-
ploit the computational limits of P to assure that nothing
else than a specific trusted algorithm can be executed within
a specific time frame.

In contrast to existing software attestation schemes, our
solution assures the verifier V that the attestation result
has actually been computed by the original hardware of a
specific prover P. We propose to use a hardware checksum
based on PUFs to include device-specific properties of P’s
hardware into the attestation protocol. Our design exploits
the limited throughput of external interfaces to prevent an
adversary from outsourcing the computation of the software
checksum to a more powerful computing device.

Trust model and assumptions.

The adversary A controls the communication between the
verifier V and the prover P, i.e., A can eavesdrop, manip-
ulate, reroute, and delete all messages sent by V and P.
Moreover, A knows all algorithms executed by P and can
install malicious software on P. However, due to the un-
clonability of the PUF , A cannot simulate the
hardware checksum, while the tamper-evidence of the PUF
ensures that A cannot physically access or manipulate the
internal interfaces between CPU, memory, and PUF of P.
Further, we assume that external interfaces of P are sig-
nificantly slower than the internal interface that is used by
the CPU to access the hardware checksum. All provers P
are initialized in a secure environment before deployment.
The verifier V is trusted to behave according to the proto-
col. Moreover, V can simulate any algorithm that can be
executed by P in real time and maintains a database D
containing the identity I and the exact hard- and software
configuration of each P.

Protocol description.

shows the proposed PUF-based attestation proto-
col, consisting of a generalized software-attestation protocol
with additional inclusion of a device-characteristic hardware
checksu
at the verifier V. By careful integration of this hardware
checksum into the software attestation algorithm, we bind
the software attestation to the respective hardware platform,
enabling true remote attestation.

The main protocol is the generalization of a typical soft-
ware attestation protocol: The verifier V starts the proto-
col by sending a random challenge r to the prover P and
then measures the time P takes to reply with the check-
sum o} computed over its current software state S (e.g.,
its program memory). In detail, on receipt of r, P sets up
the initial checksum value o¢ and Pseudo-Random Num-
ber Generator (PRNG) state r as required by the under-

'For the purpose of this paper, we consider HwSum() to be a
PUF to gain tamper evidence, however, simpler implemen-
tations are possible, e.g., an HMAC with a hard-wired key.

function HwSum() at the prover P and EmulateHwSum()

Verifier V
Stores D ={...,(I,S1,Cr,61),...}

Prover P
Stores (1, .5)

Choose random challenge r

Save current time ¢

rh T

o(< InitSwSum(rg)

fori=1to k do
Yy, < EmulateHwSum(Cy,0}_)
(af,7}) < GenMemAddr(r_,,v})
o} + suSum(o}_,, Syla}])

end

Save current time ¢’

if (¢’ —t) < ¢; and o, = g}, then accept P

else reject P

TO < T

00 < InitSwSum(ro)

for i =1 to k do
y; < HwSum(o;_1)
(ai,r;) GenMemAddr(r;_1,Yy:)
o < SwSum(o;—1,S[a;])

end

Figure 1: Remote attestation based on physical functions

lying software attestation scheme. P then iteratively com-
putes o by taking ¢ random measurement samples out of S.
Specifically, in each iteration ¢ of the checksum computation
P invokes three procedures: GenMemAddr(), SwSum(), and
HwSum(). GenMemAddr(r;—1,¥;) is used to generate an out-
put r; and a memory address a;, which determines the next
memory block S[a;] of S to be included into the software
checksum as o; < SwSum(o;—1, S[a;]). Note that SwSum()
is the same function as in plain software attestation, while
we require only a minor modification of GenMemAddr() to in-
clude the hardware checksum output y;. Typically, modern
software attestation schemes implement GenMemAddr() as a
Pseudo-Random Number Generator (PRNG) to prevent ef-
ficient pre-computation or memory mappings attacks. How-
ever, neither the PRNG nor the SwSum() are required to be
cryptographically strong [20]. Hence, it is usually straight-
forward to integrate y; into GenMemAddr() by using it as an
additional seed to the PRNG.

In contrast to plain software attestation, our attestation
scheme integrates a hardware checksum HwSum() into each
iteration i, yielding the previously mentioned additional in-
put y; + HwSum(o;) to the GenMemAddr() procedure. As a
result, every iteration of the software checksum additionally
depends on the result of the device-characteristic hardware
checksum, thus binding the attestation response oy to the
prover’s hardware. Similarly, each iteration of HwSum() de-
pends on the previous intermediate software checksum o;_1,
s.t. HwSum() cannot be executed independently of SwSum().
However, we emphasize that the depicted algorithm can be
optimized to execute HwSum() and SwSum() in parallel in all
but the very first iteration.

After every memory block S[a;] has been included into
the checksum at least once, P sends o, to V. While waiting
for the response of P, ¥V can compute a reference checksum
o} by simulating the computation of P using the known
trusted software state S; recorded in database D and em-
ulate HwSum() using EmulateHwSum() with some verification
data C7, which is secret information only available to V. V
accepts only if (1) P replied within a certain time frame
dr and (2) o matches o). The first check ensures that P
computed o in about the same time 0; an honest device
would have needed and has not performed additional com-
putations, e.g., to hide the presence of malware. The second

check verifies whether the software state S measured by P
corresponds to the known trusted software state Sy. If ei-
ther of these checks fails, P is assumed to be in an unknown
software state and is rejected.

Note that the verification of the PUF-based hardware
checksum by V is not straightforward: V must be able to
predict the outputs of the PUF, while this must be infeasi-
ble for A. This is further complicated by the large amount
of hardware checksum responses required by our construc-
tion and the closely parallelized execution of software and
hardware checksum. Hence, the integration of PUFs into
software attestation requires careful consideration and we

discuss possible instantiations in [Section 4

Security objectives.

In contrast to existing software attestation schemes, our
PUF-based attestation scheme additionally achieves the fol-
lowing security goals:

e Correctness: A prover in a known trusted state must
always be accepted by the verifier.

e Unforgeability: A prover in an unknown state must be
rejected by the verifier. Note that this also includes
attacks, where the adversary makes the sensor node to
collude with more powerful devices to forge the attes-
tation.

e Prover authentication: A prover pretending to be an-
other prover must be rejected by the verifier.

e Prover isolation: A prover colluding with other (mali-
cious) provers must be rejected by the verifier.

e Tamper-evidence: A prover that is not in its original
hardware state must be rejected by the verifier.

4. INSTANTIATION

In this section, we show how existing software attesta-
tion schemes can be used to instantiate software checksum
SwSum() and the memory address generator GenMemAddr()
with only minor modifications. Moreover, we discuss differ-
ent instantiations of the hardware checksum HwSum() and,
in particular, the corresponding secret verification data Cy
and EmulateHwSum() algorithm.

4.1 Memory Address Generation
and Software Checksum

The memory address generator GenMemAddr() and the soft-
ware checksum SwSum() components of our PUF-based attes-
tation scheme can be instantiated using any of the existing
software-based attestation schemes (e.g., [19] 27, [3]) with
only minor modifications to GenMemAddr() for the integra-
tion of the hardware checksum HwSum(). In all modern soft-
ware attestation designs, GenMemAddr() is implemented as a
PRNG with internal state r that is used to generate pseudo-
random outputs a;. We can thus integrate the output y; of
HwSum() simply by merging it with the current state r in
each iteration. Due to the unpredictability property of the
PUF , this is equivalent to (partly) reseeding the
PRNG, which effectively prevents the PRNG from repeating
its sequence.

4.2 Hardware Checksum

We present two alternative instantiations of the hardware
checksum HwSum() based on emulatable and non-emulatable
PUFs. In general, emulatable PUF's yield more efficient pro-
tocols. However, since PUF's are not expected to be emulat-
able by design , we focus on solutions for different

approaches based on non-emulatable PUF's.

4.2.1 Emulatable PUFs

One approach to implement HuSum() are emulatable PUF's,
which allow the manufacturer of the PUF to set up a mathe-
matical model that enables the prediction of PUF responses
to unknown challenges [13] |16]. Typically, the creation of
this model requires extended access to the PUF hardware,
which is only available during the manufacturing process of
the PUF and permanently disabled before deployment [13].

More detailed, during the production of the hardware of
prover P, the trusted hardware manufacturer sets up a se-
cret mathematical model Cr of PUF(). Before deployment of
P, the interface for modelling the PUF() is then disabled s.t.
any attempt to reactivate it leads to an irreversible change
of PUF(). During deployment of P, C; and an algorithm
EmulateHwSum() for emulating HwSum() is given to the veri-
fier V. In the attestation protocol, P computes HwSum(-) =
PUF(-), whereas V emulates HwSum(-) = EmulateHwSum(C7, -).

In practice, emulatable PUFs can be realized by most
delay-based PUFs (e.g., Arbiter PUFs [10, |7] and Ring Os-
cillator PUFs [6]), which allow for creating precise mathe-
matical models based on machine learning techniques [17].
However, the security properties of practical instantiations
of emulatable PUFs still need further evaluation. Hence, in
the following section, we present different solutions based on
non-emulatable PUFs.

4.2.2 Non-emulatable PUFs

For non-emulatable PUF's, the verifier V typically main-
tains a secret database D of PUF challenges and responses,
called Challenge Response Pair (CRP) database. Note that
our attestation scheme requires PUFs that ideally have an
exponentially large CRP space, such that an adversary A
with direct access to the PUF cannot create a complete CRP
database and then emulate the PUF. However, this means
that the verifier V can also store a subset of the CRP space.
We thus have to deterministically limit the CRP subspace
used during attestation without allowing the adversary to
exploit this to simulate the PUF in future attestation runs.

In the following, we describe two different approaches of
how non-emulatable PUF's can be used to instantiate HwSum().

Commitment to procedure.

One approach is creating a database D of attestation chal-
lenge messages (g, 7) and the corresponding checksums oy, in
a secure environment before the prover P is deployed. In the
attestation protocol, the verifier V can then use D to obtain
the reference checksum oy, instead of emulating the PUF.

Specifically, before deployment, V runs the attestation
protocol several times with P. For each protocol run, V
records in D the attestation challenge (r,¢q) sent to P and
the corresponding checksum o}, returned by P. When run-
ning the attestation protocol after deployment, V chooses a
random set (I, (r,q),0%) € D and sends (7, q) to P, which
then computes o} using HwSum(-). V accepts P only if P
replied with o) = o, in time §;.

The solution allows for very efficient verification of o) by
V, however, the number of attestation protocol runs of each
P is limited by the size of D. Moreover, this approach does
not allow to update the software state of P after deployment,
e.g., to fix bugs that allow runtime compromise.

Commitment to challenge.

Since updates to the software of the prover P are usually
developed after deployment of P, the software state S and
thus the inputs to HwSum() are not known before deployment
of P and the final checksum value o) cannot be computed
in advance.

Our solution to this problem is to reduce the amount of
challenges z; generated by the intermediate checksum re-
sults oy, s.t. it becomes feasible to create a CRP database
independently of o;, and thus S. To prevent the adversary
from exploiting this to simulate the attestation procedure,
we use a random offset ¢ to determine this reduced CRP
space within the overall CRP space of HwSum(), such that
the adversary cannot generate the required CRPs before the
actual attestation protocol starts. The offset ¢ is sent from
the verifier V to P together with the random attestation
challenge r in the first message of the attestation protocol
(Figure 1.

More detailed, we chose f(-) to be a function that maps
intermediate checksum results o; to bitstrings of length n
and derive the challenges as x; < HwSum(q||f(0s)). Before
deployment, the verifier V then evaluates y; < HwSum(g||j)
for j € {0,...,2" —1}, and records (g, yo,...,y2n—1) in Cr 4
for a number of randomly chosen offsets gq.

After deployment,)V chooses a random nonce r and an off-
set ¢ € C to start an attestation. The prover P then com-
putes the checksum oy, using HwSum(g||o;—1). While waiting
for the response of P, V computes the reference checksum
o7, using EmulateHwSum(C7) and the current reference soft-
ware state S;. V accepts only if P replied with or = o}, in
time ;.

In this approach, the number of attestations are limited
by the amount of random offsets ¢ for which a CRP subspace
has been generated in advance and by the storage available
at the verifier V. The offsets cannot be re-used since they
cannot be encrypted and are potentially disclosed to the
adversary.

On-demand CRP generation.

As a final modification, we propose a method to reduce
the storage requirements at the verifier V and to allow a
theoretically unlimited number of attestation protocols runs,
by generating additional CRP subspaces on demand once an
attestation succeeded.

Specifically, V and P can establish a mutually authenti-
cated and confidential channel after successful attestation to
exchange additional CRPs for future attestation runs. For
this purpose, oy is treated as a common shared secret and
the last message shown in the attestation protocol in
is replaced with explicit key confirmation.

V can then send a new random offset ¢ to P, who responds
with a response vector y; < PUF(¢||j) for j € {0,...,2" -1}
sorted by j. Finally, P deletes ¢ and y; from its memory
and V updates C7 < (¢, o, - .., Y2n—1) accordingly.

Note that this approach doubles the computational load
of P and increases the communication load, so that it may
not be suitable for, e.g., sensor networks.

S. SECURITY CONSIDERATIONS

In the following, we show that our PUF-based attestation
protocol presented in achieves prover authentica-
tion and prover-isolation. Hereby, we assume the underlying
software attestation schemes and PUF's to fulfill their secu-
rity properties.

Correctness and unforgeability of attestation.

Our solution preserves the security of existing software at-
testation schemes, consisting of the GenMemAddr() and SwSum()
procedures. Our modifications are limited to GenMemAddr(),
where we add the pseudo-random PUF responses y; as an
additional input to the PRNG state update procedure. Done
properly, additional input to the PRNG state update will, in
the worst case, not increase but keep the entropy of the in-
ternal PRNG state when compared with the regular PRNG
state update. The required modifications thus do not affect
correctness and unforgeability since the output distribution
of the original and the modified GenMemAddr() procedure re-
main computationally indistinguishable as long as the orig-
inal PRNG is secure.

Prover identification.

The main security goal of our design is to link the check-
sum to the hardware of the prover P. Our solutions achieves
this goal by identifying P based on the outputs of the hard-
ware checksum HwSum(). The implementation of this require-
ment is straightforward: We must ensure that a sufficient
amount of identifying information is generated by HwSum()
and incorporated into the attestation checksum oy to pre-
vent simple guessing attacks.

Prover isolation.

Our design runs the software and hardware checksums
SwSum() and HwSum() in parallel and creates a strong algo-
rithmic dependence on the output of both checksums in the
respective previous iteration. To detach the computation of
SwSum() from the hardware of the prover P, the adversary
A must thus simulate the function y;—1 + HwSum() for each
iteration i of the software checksum to generate the correct
input to the memory generator GenMemAddr(). Furthermore,
the intermediate checksum results o; are used as input to

the next iteration of HwSum(). Hence, there are three ma-
jor obstacles for A: (1) the performance of HwSum() cannot
be increased due to the tamper-evidence of the PUF, (2) A
must involve the original hardware of P due to the unclon-
ability of the PUF, and (3) the minimum additional delay
incurred by transferring the HwSum() input and output bytes
to a remote device is dictated by the throughput of the ex-
ternal communication interfaces of P, since A cannot access
the significantly faster internal interface between the CPU
and HwSum(), which can be protected by the PUF.

Hence, any attempt to run HwSum() and SwSum() on sepa-
rate devices will significantly increase the time required for
all HwSum() iterations, regardless of the gained performance
improvement on the SwSum() computation.

6. CONCLUSION

We presented a novel approach to attest both the soft-
ware and the hardware configuration of a remote platform
for embedded devices, which do not possess trusted hard-
ware components. Our solution combines existing software
attestation with cost-efficient physical security primitives,
Physically Unclonable Functions (PUFs). In contrast to ex-
isting software attestation protocols, our scheme does not
require an authenticated channel between the prover and
the verifier and reliably prevents remote provers from col-
luding with other systems to forge the software checksum.
We are currently working on an prototype implementation.

Acknowledgement

This work has been supported in part by the European Com-
mission under grant agreement ICT-2007-238811 UNIQUE
and ICT-2007-216676 ECRYPT NoE phase II.

7. REFERENCES

[1] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A
secure and reliable bootstrap architecture. In
Proceedings of the IEEE Symposium on Research in
Security and Privacy, pages 65-71, Oakland, CA, May
1997. IEEE Computer Society, Technical Committee
on Security and Privacy, IEEE Computer Society
Press.

[2] F. Armknecht, R. Maes, A.-R. Sadeghi, B. Sunar, and
P. Tuyls. Memory leakage-resilient encryption based
on physically unclonable functions. In M. Matsui,
editor, Advances in Cryptology - ASIACRYPT 2009,
volume 5912, chapter 40, pages 685-702. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

[3] Y.-G. Choi, J. Kang, and D. Nyang. Proactive code
verification protocol in wireless sensor network. In
Computational Science and Its Applications — ICCSA
2007, pages 1085-1096. Springer, August 2007.

[4] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors:
How to generate strong keys from biometrics and
other noisy data. In Advances in Cryptology —
EUROCRYPT ’2004, Lecture Notes in Computer
Science. Springer-Verlag, Berlin Germany, 2004.

[5] J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van
Doorn, S. W. Smith, and S. Weingart. Building the
IBM 4758 Secure Coprocessor. IEEEC, 34(10):57-66,
2001.

[6]

[14]

[15]

[16]

[17]

[18]

[19]

B. Gassend, D. Clarke, M. van Dijk, and S. Devadas.
Silicon physical random functions. In ACM Conference
on Computer and Communications Security, pages
148-160, New York, NY, USA, 2002. ACM Press.

B. Gassend, D. Lim, D. Clarke, M. van Dijk, and

S. Devadas. Identification and authentication of
integrated circuits: Research articles. Concurr.
Comput. : Pract. Ezper., 16(11):1077-1098, 2004.
Intrinsic ID. Intrinsic id — product page.
http://www.intrinsic-id.com/products/, November
2010.

R. Kennell and L. H. Jamieson. Establishing the
genuinity of remote computer systems. In Proceedings
of the 12th USENIX Security Symposium, pages
295-308. USENIX, Aug. 2003.

J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van
Dijk, and S. Devadas. A technique to build a secret
key in integrated circuits for identification and
authentication application. In Proceedings of the
Symposium on VLSI Circuits, pages 176—159, 2004.
Y. Li, J. McCune, and A. Perrig. SBAP:
Software-based attestation for peripherals. In

A. Acquisti, S. Smith, and A.-R. Sadeghi, editors,
Trust and Trustworthy Computing, volume 6101 of
Lecture Notes in Computer Science, chapter 2, pages
16-29. Springer Berlin / Heidelberg, Berlin,
Heidelberg, 2010.

J. Nick L. Petroni, T. Fraser, J. Molina, and W. A.
Arbaugh. Copilot - a coprocessor-based kernel runtime
integrity monitor. In Proceedings of the 18th USENIX
Security Symposium [25], pages 179-194.

E. Oztiirk, G. Hammouri, and B. Sunar. Towards
Robust Low Cost Authentication for Pervasive
Devices. In Proceedings of the 2008 Sixth Annual
IEEE International Conference on Pervasive
Computing and Communications (PERCOM’08).
IEEE Computer Society, March 2008.

R. S. Pappu, B. Recht, J. Taylor, and N. Gershenfeld.
Physical one-way functions. Science, 297:2026-2030,
2002.

B. Parno, J. M. McCune, and A. Perrig.
Bootstrapping Trust in Commodity Computers. In
Proceedings of the IEEE Symposium on Research in
Security and Privacy, pages 414-429, Oakland, CA,
May 2010. IEEE Computer Society, Technical
Committee on Security and Privacy, IEEE Computer
Society Press.

U. Rithrmair. SIMPL systems: On a public key
variant of physical unclonable functions. Cryptology
ePrint Archive, Report 2009/255, 2009.

U. Rithrmair, F. Sehnke, J. Solter, G. Dror,

S. Devadas, and J. Schmidhuber. Modeling attacks on
physical unclonable functions. In ACM CCS 2010,
2010.

A .-R. Sadeghi, C. Wachsmann, and I. Visconti.
PUF-Enhanced RFID Security and Privacy. In 2nd
Workshop on Secure Component and System
Identification (SECSI 2010), Cologne, Germany, April
26-27, 2010, April 2010.

A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and

P. Khosla. SCUBA: Secure code update by attestation
in sensor networks. In WiSe ’06: Proceedings of the

20]

21]

(22]
23]

(24]

25]

(26]

27]

5th ACM workshop on Wireless security, pages 8594,
New York, NY, USA, 2006. ACM.

A. Seshadri, A. Perrig, L. van Doorn, and P. K.
Khosla. SWATT: SoftWare-based AT Testation for
embedded devices. In Proceedings of the IEEE
Symposium on Research in Security and Privacy,
pages 272—, Oakland, CA, May 2004. IEEE Computer
Society, Technical Committee on Security and Privacy,
IEEE Computer Society Press.

U. Shankar, M. Chew, and J. D. Tygar. Side effects are
not sufficient to authenticate software. In Proceedings
of the 13th USENIX Security Symposium [25], page 7.
Trusted Computing Group (TCG). TPM Main
Specification, Version 1.2, February 2005.

Trusted Computing Group (TCG). Mobile Trusted
Module (MTM) Specifications, May 20009.

P. Tuyls and L. Batina. RFID-Tags for
Anti-Counterfeiting. In Proceedings of the
Cryptographers’ Track at the RSA Conference 2006
(CT-RSA’06), volume 3860 of LNCS, pages 115-131.
Springer Verlag, February 2005.

USENIX. Proceedings of the 13th USENIX Security
Symposium, Berkeley, CA, USA, Aug. 2004.

Verayo, Inc. Verayo website — product page.
http://www.verayo.com/product/products.html,
November 2010.

Y. Yang, X. Wang, S. Zhu, and G. Cao. Distributed
software-based attestation for node compromise
detection in sensor networks. In SRDS ’07:
Proceedings of the 26th IEEE International Symposium
on Reliable Distributed Systems, pages 219-230,
Washington, DC, USA, 2007. IEEE Computer Society.

http://www.intrinsic-id.com/products/
http://www.verayo.com/product/products.html

	Introduction
	Physically Unclonable Functions (PUFs)
	PUF-based Attestation
	Instantiation
	Memory Address Generation and Software Checksum
	Hardware Checksum
	Emulatable PUFs
	Non-emulatable PUFs

	Security Considerations
	Conclusion
	References

