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Abstract

Ontology learning is regarded as an important step towards semantic infor-
mation search in Web 2.0. This thesis presents a combined approach of NLP
and machine learning to learn a domain dependent ontology from weblog and
Wiktionary in terms of distributional similarity, lexico-syntactic patterns and
folksonomy. Higher F-measure is achieved by our lexico-syntactic pattern based
algorithm compared to the state of art text based ontology learning method.
To overcome the shortage of folksonomy, a novel approach is proposed to derive
a tag ontology from weblog corpus and extend it with our automatic tagging
system. Efficient processing of large scale NLP application is also discussed and
solutions are provided to overcome the performance bottleneck.



Chapter 1

Introduction

“Web 2.0” is one of most popular catch-up all buzzword recently that people use
to describe a wide range of online applications and technologies like Wikipedia!,
weblog, social bookmarking and BitTorrent. Tim O’Reilly outlines common
characteristics of Web 2.0 in (OReilly, 2005) by comparing typical examples of
Web 1.0 and Web 2.0. From his point of view, Web 2.0 is a business embracing
the web as a platform of applications and services, on which a software is just
a single device. It has a “architecture of anticipation” that encourages users
to contribute content and add value to the application in order to harness the
collective intelligence. The success of Google and Overture demonstrates the
collective power of a large amount of small sites by leveraging customer -self
service and algorithmic data management.

The surveys of Pew Internet & American Life Project? show statistically an
intensive usage of Web 2.0 applications. More than half of all online American
youths use online social networking sites to find new friends or reinforce existing
friendships. More than 36% of online American adults have looked up informa-
tion from Wikipedia, whose audience grew especially dramatically in the past
year from 4.0% to 20.81%. 26% Internet users have shared photos, stories and
videos etc. online. 8% Internet surfers have created their own weblogs or online
journals.

As more and more users are active in generating new data and sharing data with
each other, it becomes a big challenge to locate and retrieval user-interested in-
formation from the web communities. Traditional Information Retrieval (IR)
systems, which are based on vector space model (Salton et al., 1975), regard each
document as a bag of words and find relevant documents by comparing the co-
sine similarity between a query and documents in question. Such a literal term
matching strategy has severe drawbacks in real-word application. The ambiva-
lence and synonymy of words as well as personal style and individual differences
in word usage lead to unsatisfied results of document retrieval. People fail to
get the most related information just because they use a synonym or another
expression in query other than those in relevant documents. Latent Semantic
Analysis (LSA) is an approach to overcome the problems by projecting queries

Lwww.wikipedia.com

2http://www.pewinternet.org



CHAPTER 1. INTRODUCTION 2

and documents into a low-dimensional latent semantic space, in which the simi-
larities between documents or between documents and queries are more reliably
estimated by mapping co-occurred terms to the same dimensions. Probabilistic
Latent Semantic Indexing (Hofmann, 1999) (PLSA) provides a more solid statis-
tical foundation as opposed to LSA. It allows to deal with polymous words and
differentiation between different meanings and word usages. The performance of
an IR system is improved in terms of better modelling of documents and queries.
Another approach is closed related to Semantic Web since its emergence in late
1990’s. Researchers in this area try to improve the performance of an IR system
by means of an existing knowlege base or heterogeneous information sources. It
allows to explore not only the co-occurrence information of terms as LSA and
PLSA, other semantic relatedness can be also taken into account. KIM (Popov
et al.) is a plattform capable of automatic document annotation and document
retrieval based on its internal ontology. The ontology can be further enriched
by named entities recognized in documents. (Castells et al., 2007) proposed a
novel ontology-based information retrieval model based on an adaptation of the
classic vector space model. A new scalable disambiguation algorithm proposed
in (Khan et al., 2004) improves the performance of a keywords-based search
system by automatically pruning irrelevant concepts and associating only the
relevant ones with documents. Their works show that IR performance can be
strongly improved in case of the existence of a comprehensive domain specific
ontology. However, the main drawback is a lack of an domain specific ontology
with high coverage, because manual ontology building demands huge amount
of human efforts. So the focus of this thesis is to explore effective methods to
automatically learn a domain-dependent ontology. It is especially important to
exponentially growing Web 2.0 based digital assets. In this thesis, the state
of art ontology learning methods are improved to learn concepts and relations
from weblog posts and Wiktionary? glosses and higher performance is achieved
by our modified approaches. Because weblog corpus is large in size, new meth-
ods are designed to be applicable to a standard workstation PC.

New Web 2.0 techniques find their own way towards better information man-
agement. Since the population of Flickr?, del.icio.us® around 2004, folksonomy
(also known as social classification, collaborative tagging) has been quickly gain-
ing around as a new paradigm for web information filtering, organization and
retrieval. It is a practice and method to allow web content creators and users
to annotate and categorize content by means of freely chosen keywords called
tags. As reported by Pew Internet & American Life Project, 28% of internet
users have tagged or categorized web content such as photos, news stories or
blog posts. Other than ontology, which is considered as hierarchical organized
metadata created by information specialists, folksonomy is “metadata for the
Masses” that has no hierarchy and no vocabulary control . Shirk (Shirky, 2005)
points out that a large collection of individual classification schemes show a lot
of strengths over traditional ontological classification in large-scale informal in-
formation sources such as World Wide Web, where most of the users are uncoor-
dinated and amateurs. The social classification tolerates the individual catego-
rization differences and encourages users to annotate content using their own vo-

Swww.wiktionary.org

4http://www.flickr.com
Shttp://del.icio.us
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cabularies. Compared to the full content of a web digital asset, the information
loss by tagging is compensated as the size of folksonomy growing large because
an online object can be described by various keywords from different points of
view. It is especially beneficial for serendipity of browsing web content according
to (Mathes, 2004) because the interlinked related tag sets are helpful to discov-
ery unexpected web content, since tags pave different ways towards the desired
content as oppose to only quite limited paths or possibilities of finding things
in a static hierarchical categorized system. In a typical Web 1.0 application,
people may find “Google” only through organization — company — Google,
while in a tagging system, “Google” can be found by search engine — Google,
web 2.0 — Google and so on.

Although folksonomy gains its strength by free chosen set of textual keywords,
lack of a controlled vocabulary leads to several weaknesses like synonymy, homonymy
and polysemy. For example, “mac”, “apple”, “macintosh” are all used to de-
scribe materials related to Apple computers. The existence of “Blog” and
“Blogs” indicates that there is no collapsing of different word forms like plurals.
Therefore, a set of web materials of similar content can be tagged with differ-
ent keywords. In contrast with that, the same term may be used to annotate
different objects. The items tagged with “engineer” varies from reverse engi-
neering of mdb hashes to a recipe website “Cooking For Engineers”. There also
other problems associated with tags. After analysis of tag distribution, (Rossi,
2006) found that 40% of flickr tags and 28% of del.icio.us tags could not be
found in their multilingual dictionary software. They were either misspelt, from
a language not available in the dictionary, or compound words that are com-
posed of unknown words, numbers and symbols. In addition, there are words
of particular interest like “toread”, “me” that reflect only users’ intention of
web content usage. These drawbacks hamper the performance of an informa-
tion search and retrieval system incorporating such user created vocabularies.
To overcome these problems, some already ongoing reseaches trying to reorga-
nize tags according to their correlation. (Begelman et al., 2006) find clusters
of strongly correlated tags by considering their co-occurrences. (Heymann and
Garcia-Molina) derive a navigable hierarchical taxonomy of tags from a social
tagging system using graph centrality in a similarity graph of tags. A taxonomy
of Flickr tags is induced by Schmitz (Schmitz, 2006) in terms of a subsumption-
based model based on co-occurrence statistics of tags. However, their works
try to overcome only one weakness of tags. In this thesis, by noticing that the
relations between two tags can be essentially categorized as “topic-related”, var-
ious semantic relatednesses are explored in order to build a comprehensive tag
ontology. The ontology is further enhanced by keywords extracted from weblog
posts to improve the coverage.

1.1 Data Overview

In this thesis, “Web 2.0” application weblog and Wiktionary are the target infor-
mation sources for analysis and ontology learning, which has different density of
semantic relations. The following sections give an overview of the two corpora.
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1.1.1 Weblog Corpus

The weblog corpus is released by ICWSM conference 2006, which is a complete
set of weblog posts collected by Nielsen BuzzMetrics for May 2006. It consists
of 14 million posts from 3 million weblogs and is given in form of 24 XML files.
The collected posts are written in various languages, a list of them is given here:

Language | Percent
English 51%
Chinese 14%
Japanese | 14%
Russian 6%
Spanish 3%
French 2%
Italian 2%
unknown | 3%

Because we are only interested in the English posts containing tags, so we use
TextCat(Cavnar and Trenkle) to filter out the posts written in other languages
and collect posts with tag information. As a result, we get 58,617 annotated
English posts. The majority of them are short and middle-sized documents.
The distribution of post length in words is shown in figure 1.1.
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Figure 1.1: The distribution of post length in words, which is collected from all
annotated English posts.

Shttp://www.icwsm.org/data.html
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1.1.2 Wiktionary

Wiktionary is a multilingual online dictionary written collaborately by volun-
teers using wiki software. It is available in over 150 languages. There are millions
of entries with definitions, etymologies, pronunciations, sample quotations, syn-
onyms, antonyms and so on. In this thesis, we extract English noun definitions
from the dump of English-language Wiktionary’ to build a small gloss corpus.
It contains 106,037 word definitions, which comprise 112,956 sentences. It worth
noticing that the English Wiktionary contains about 8,400 synonyms and 1,200
antonyms but other semantic relations like hyponymy, meronymy are hardly
given partly because the main online tutorial gives instruction only on how to
add synonymy and antonymy. So it is a motivation of us to mine the other
semantic relations from word glosses in order to overcome the weakness.

1.2 Outlines

Learning a domain-dependent ontology is our main approach to improve in-
formation search in Web 2.0. Chapter 2 covers the recent works on ontology
learning from text. It shows effective methods for learning a domain depen-
dent ontology in terms of distributional similarity and lexico-syntactic patterns.
Based on that, new methods are proposed in chapter 3 to adapt the state of
art methods to learn ontology from both weblog and Wiktionary. A new lexico-
syntactic pattern based method is proposed to learn various semantic relations
with higher performance compared to the state of art method (Snow et al.,
2006). To overcome the shortage of folksonomy, a novel approach is presented
in section 3.3.1 to derive a tag ontology from weblog corpus, which is enriched
by our automatic tagging mechanism. The details of implementation are stated
in chapter 4, which covers mainly preprocessing of data, procedural description
of methods and performance issues. The evaluation of the methods and exper-
imental results showing characteristics of Web 2.0 are presented in chapter 5.
The last Chapter gives a review of the current work and an outlook of the future
works.

"http://en.wiktionary.org



Chapter 2

Ontology Learning

“An ontology is an explicit specification of a shared conceptualization.“ ex-
plained Tom Gruber in (Gruber, 1993), which implies that an ontology is a for-
mal representation of knowledge shared by a group or community. It is further
suggested that ontology should be domain specific according to an application
or a particular task. In this way, an ontology formalizes the intensional aspects
of a domain which are not contained in a common knowledge base.

In the early time, most of the work focused on how to build a coherent, sharable
and clearly defined ontology. RDF, OWL standardize expressions and formats
to edit machine and human readable ontologies since the population of Semantic
Web. Besides the ontologies in standard formats, there are other widely used
manually built common-sense ontologies like WordNet (Miller, 1995) and Cyc!.
As the ontologies growing large, ontology engineering becomes a painful work
and the development can’t catch up with the emergence of new concepts and re-
lations. So a lot of works are carried out to build ontologies (semi-)automatically.
In literatures the (semi-)automatic support of ontology development is referred
as ontology learning.

In (Buitelaar et al., 2005) a layer cake model is presented to describe ontology
development. As figure 2.1 shows, the building process is divided into several
subtasks, which are ordered from bottom to top according to increasing com-
plexity. Term extraction is the prerequisite of all tasks since terms are linguistic
realizations of concepts. Synonym acquisition address the term variants in and
between languages. The third level represents concept definition, which is one
of the main concern of ontology learning. A concept has its own intensinal def-
inition, instances and linguistic realizations, which is on Semantic Web basis.
However, most works consider a concept as a collection of closely related terms
as in (Lin and Pantel, 2002) due to the difficulty of automatic learning. Section
2.1 covers more details of recent works in this area.

Is-a serves as the backbone of the taxonomy hierarchy. Other relations may
more or less depend on it. For instance, (Girju et al., 2003) finds patterns of
part-whole relations with help of WordNet taxonomy. However, it is argurable,

Thttp:/ /research.cyc.com
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Rules
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Concepts

Synonyms

Terms

Figure 2.1: Ontology Learning Layer Cake

if it is worth to treat them separately. Let U be the set of all objects in a
domain, a k-ary relation R over the sets X7, ..., Xy, X C U is a subset of their
cartesian product, written R C X; X ... X Xi. We call r; a instance of R, if
r; € R. A function sim(rq,...,7,) is applied to address the degree of corre-
spondence between relation instances. Such a function is utilized in (Turney,
2006a) to measure the semantic similarity of relation instances. If r; and ro
are two l-ary relation instances that describe an object O with properties like
“O is small and” “O is big”, the similarity between them is called attributional
similarity, because they consider 1-ary relations as predicates taking only one
argument just as attributes of the object O. When two words have a high degree
of attributional similarity, they are called synonyms. If the arity of a relation is
higher than one, the similarity between involved relation instances is relational
similarity. For example, (“carpenter”, “wood”) and (“mason”, “stone”) are two
instances sharing high relational similarity. By taking this point of view, the
task of relation learning is to find relation instances of high similarity. And on-
tology learning becomes a problem of finding clusters of relation instances with
high similarity because tasks like synonym discovery are considered as finding
1-ary relation instances of high attributional similarity. So an ontology is a tuple
(U, %, F), where U is a set of unique terms or term sets and ¥ are all relation
instances in the domain. F is a set of similarity functions sim : ¥ — R™, which
assigns each relation a real number indicating the degree of similarities.

2.1 Synonym and Concept Discovery

If we view a concept as a bag of similar terms, the task of concept discovery is to
find terms sharing high attributional similarity. Previous works show that the
attributional similarity depends on the context of words, because semantically
similar words are likely used in similar contexts, which is called distributionally
similar. “beer” and “pepsi” are used frequently as the objects of “drink”, so
“drink [object]” provides a local semantic context to the two nouns. Hindle
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(Hindle, 1990) shows that noun similarity can be effectively measured by their
verb context, which consists of verbs taking nouns as their subjects or objects.

In (Lin, 1998a), the verb context is extended to allow any words that directly
depend on the words in discussion. The dependency relationships? are iden-
tified by a broad-coverage parser PRINCIPAR (Lin, 1994). The local context
of a word W is therefore a set of pairs (r,w), where w is the head or modifier
of W according to the relation r. A more simple approach is introduced in
(Ravichandran et al., 2005) that the local context for web corpus is restricted
to two words to the left and right of each noun.

Feature Space

Despite of the different representation of the context, the co-occurrence counts
of words and their local context units are taken as the basis of the features to
describe each word in question. Pointwise mutual information (PMI) is calcu-
lated based on co-occurrence statistics for a better representation of data. Let
fw(c) be the co-occurrence count of a local context feature f. and a noun n,,
the PMI is defined as:

fw]\(lc)
Iy.= ; - (2.1)
5, Tl 5 T
PMI,.. =log(Ly,.) (2.2)

where N = 3.5 ; fi(y) if the total frequency count of all words and their
features. PMI is derived from mutual information, which measures the inde-
pendence of two random variables. Here PMI is a measure of the associa-
tion strength between words under discussion and their local contexts. Due
to the shortage of mutual information that it is biased towards infrequent
words/features, a modified transformation of feature space is applied in (Lin,
1998a) by multiply I,, . with a factor:

e min(S £60).5, ()
D fw(@) 1T min(; fuli), 35 fi(0) + 1
so the modified PMI is

MIw,c = Q¢ X Iw,c (24)

Similarity Measure

Finding similar words is considered as a clustering problem. A distance function
is required to measure the similarity of each example. To measure a pair of words
under discussion, Hindle (Hindle, 1990) utilizes the sum of all absolute values
of PMI (PMI%%) as the similarity measure:

SiMpindie (Wi, i) = Z min(PMI®* (w;, ), PMI® (w;, )
zEX (wi) () X (wy)
(2.5)

2PRINCIPAR (Lin, 1994) is based on X’ theory. A dependency relationship is a asymmetric
binary relationship between a word called head and another word called modifier (Lin,
1998b). E.g. “white” modifies “cat” in the sentence “The white cat is a good cat.”
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where X, is the set of feature values of the word w. Lin proposes two similarity
functions in (Lin, 1998a) and (Lin and Pantel, 2002):

ZIEX(wi)mX(w]-)(PMI(wi7I) + PMI(wj,x))
erx(wi) PMI(w;,x) + erx(wj) PMI(wj,x)
Exex(wi)ﬂX(wj) MI(w;,z) x MI(w;,x)
VEex o MI(Wi 2 % Yy MI(w;, )2

simyn (wy, wy) =

$iMeos (Wi, w5) =

(2.7)

The evaluation in (Lin, 1998a) shows that simy;, outperforms other 5 proposed
similarity measures. simg;, measures the ratio between the information shared
by the objects and the information in the description of objects (Lin, 1998c).

Clustering

With proper similarity measures it is possible to calculate the distance between
a set of examples. As the feature space is represented as a sparse matrix, we
can make use of clustering algorithms to group similar examples.

e K-Means and Hierarchical Clustering

K-Means and hierarchical clustering (Duda et al., 2000) are conventional
and frequently used clustering algorithms. K-means assigns each example
to its nearest cluster center and recompute cluster centers as the average
of the cluster members. The process proceeds iteratively until the mem-
bership of each example is not changed anymore. The algorithm is linear
in the number of examples but the random initialization of cluster centers
leads often to poor quality of clusters and the dead-unit problem reported
in (Xu et al., 1993). The class of hierarchical clustering algorithms can be
further categorized as partitional, agglomerative and hybrid subcategories.
The three subclasses of algorithms differ in the direction of partitioning.
The partitional algorithms build a hierarchical solution by bisecting clus-
ters repeatedly. It partitions initially all data into two clusters. According
to a clustering criterion function, one of the clusters is selected and bi-
sected until a stop criterion is met. It takes O(nlogn) time for n bisections.
As opposed to that, the agglomerative algorithms start from bottom to
top, which try to merge similar clusters until the desired number of clus-
ters is found. The computational complexity is at least O(n%logn) because
of the calculation of the pair wise similarity between all n examples. A
constrained agglomerative clustering method (Zhao et al., 2005) parti-
tions data from both directions, which benefit from the global view of the
partitional algorithms and the local view of agglomerative algorithms. A
agglomerative algorithm is allowed to build a cluster tree only within one
of the constrained clusters bisected by a partitional algorithm. The com-
putational complexity is therefore O(k((%)*log(%})) + k*logk), where k is
the number of constrained clusters.

e Clustering By Committee
All above clustering methods suffer a shortage that the number of target
clusters should be known in advance. But in most cases, it is hard to
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estimate. Lin proposes a new clustering algorithm CBC (Clustering By
Committee) (Lin and Pantel, 2002), which is refined in (Pantel and Lin,
2002). It tries to identify some tight clusters before assigning the cluster
membership to all examples. As the first step, the top k most similar
words are found for each word W. By using average link clustering, which
belongs to the agglomerative clustering class, the most similar words to W
form a group of init clusters. By assigning a score to a cluster according to
its number of members and cohesion, the most similar cluster is considered
as a committee candidate. A cluster is finally identified if its similarity to
previous committees is below a certain threshold. This definition of com-
mittee prefers large clusters with members having low average distances.
The identification process determines that committees are the centers of
each cluster. After finding the cluster centers, each example is assigned
to its most similar clusters. Although the algorithm makes use of sorting
und sparseness of data to reduce the time of calculating pair wise distance
between sets of feature vectors, the worst case estimate is still O(n?%k),
where n is the number of examples and k is the number of feature.

e A Randomized Clustering Method

CBC can find accurately similar words clusters, but it is infeasible for large
scale data processing (over 10 GB). Working with large amount of data
is necessary for a lot of real-world applications, especially when the useful
information is quite sparse or high coverage of extracted information is re-
quired. Ravichandran proposed a randomized algorithm in (Ravichandran
et al., 2005) by considering a clustering problem as finding the top n near-
est neighbours. The algorithm accelerates the conventional algorithms in
two steps. In the first step, a fast cosine similarity calculation is imple-
mented by generating a signature for each vector using a locality sensitive
hash function (LSH). Let u, v be two vectors from a k dimensional vector
space RF and r be a k dimensional random vector from k-dimensional
Gaussian distribution, a hash function h,. is defined as:

e ={ 5 ezl 23

If a set of such LSHs h = (hy1, hea, ..., hyt) are applied to vector u, the
signature of w is a new t-dimensional vector [h.1(u),hp2(w), ..., hpt(w)].
Generally ¢ is much smaller than k, so a vector u from R is represented
as a t-dimensional bit vector. It is proven in (Goemans and Williamson,
1995) that

0(u,v)

™

Prih(u) = h(v)]=1-

where 6 is the angle between the vectors u and v. The cosine similarity is
rewritten as:

cos(0(u,v)) = cos((1 — Prlh(u) = h(v)]r)

Since Pr[h(u) = h(v)] is equal to the number of different bits dividing
the dimensionality of the vector, the cosine similarity is recomputed as a
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measure based on the hamming distance between 2 bit vectors.

_ (hamming distance(u, v))
t

So the algorithm benefits from dimensionality reduction and the efficiency
of determing the hamming distance between 2 bit streams with preserving
the cosine distance between vectors.

In the second step the algorithm groups vectors with minimal distance,
which can be first considered as finding the n nearest neighbours of a
given query vector gq. The original algorithm utilizes a special data struc-
ture called Point Location in Equal Balls (PLEB) proposed in (Indyk and
Motwani, 1998). The PLEB based algorithm finds a vector v € RF that
is a e-approximate nearest neighbour of a given vector ¢ in that for all
v' € RF d(v,q) < (1+ €)d(v', q), where d(v,u) measures the distance be-
tween the two vectors. However, the data structure is rather complex, so
(Charikar, 2002) proposed an alternative algorithm that simplifies PLEB
and preserves the same performance. If we maintain a lexicographic order
of all bit vectors, similar vectors should be near each other. But some of
similar vectors may still be far from the given query vector. To capture
as much vectors as possible, a set of random permutations are applied to
every vector, which reorder the bit values of all vectors. A permutation
function 7 : @ — b is a one to one mapping from the set of a to the set of
b. If 0,1,2 are indexes of vector v = [2,4, 5], a possible index permutation
function 7 is 7 : {0,1,2} — {1,2,0}, after applying the function vector v
becomes [4,5,2]. If a set permutation functions are generated randomly
and all permuted vectors are sorted after applying every permutation, sim-
ilar vectors are more likely to be arranged together. The goal of Charikar’s
algorithm is to find the nearest neighbours to ¢, but our goal is to find
all vectors similar enough to ¢, so the algorithm is modified in (Ravichan-
dran et al., 2005) that all closest B neighbours of ¢ in a sorted list having
hamming distance to ¢ over a certain threshold are accepted as cluster
members of the ¢q. Overall, the algorithm takes O(Nk + NlogN) time for
N vectors. In case of noun clustering represented in (Ravichandran et al.,
2005), N < k implies that logN << k and NlogN << Nk. Hence the
time complexity is closed to O(Nk), which is a huge saving from the con-
ventional algorithms. The evaluation of (Ravichandran et al., 2005) shows
that the random algorithm can retrieve 70% of the performance achieved
by CBC.

The interpretation of the clustering results vary from thesauri (Hindle, 1990) to
concept (Lin and Pantel, 2002). The newest proposal is from (Snow et al., 2006)
that all members in a noun cluster are taxonomic cousins or coordinate terms,
which subsume a common concept, because closed taxonomic cousins share
similar local context and the clustering results are coarse grained compared to
a manually built ontology, so that it is difficult to tell if they are synonyms,
hypernyms or taxonomic siblings.
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2.2 Learning the Binary Relation

This section focuses on methods to learn binary relations with high relational
similarity. (Hearst, 1992) finds that some lexico-syntactic patterns like “such
NP as {NP ,}*{(or | and)} NP” can indicate a hyponymy relation between the
first noun and the nouns after “as”. Such patterns can be used to find relation
instances with high precision. Based on the idea, a lot of works are carried out
following a machine learning approach, such as (Snow et al., 2006; Suchanek
et al., 2006b; Turney, 2006b)

2.2.1 Representation of Lexico-syntactic Pattern

The easiest representation is to encode a lexico-syntactic pattern as a regular
expression as in (Hearst, 1992). Such kind of patterns discovery are mostly
heuristic and difficult to extend. (Turney, 2006a) find phrases of interest with
help of Waterloo MultiText system®. Then they replaces certain words of a
phrase with wild cards to generate some heuristic patterns like “X nails * Y”.

In (Snow et al., 2005), lexico-syntactic patterns are represented as dependency
paths identified by a dependency parser Minipar (Lin, 1998b). Minipar can
identify the part of speech (POS) of a word and its dependency relationships.
After parsing a sentence, the relations between words and the POS of words
comprise a dependency graph as the figure 2.2 shows, where the relations are
the arcs connecting the POS nodes. Snow represents a relation between any
two words A and B as the shortest path between the two nodes in the graph.
Therefore, a dependeny path is a sequence of POS connected by their direct
dependency relationship. E.g. N:mod:Prep:pcomp-n:N* represents the relation
between “authors” and “Herrick” in the phrase “such authors as Herrick and
Shakespeare”. It is worth noticing that “such” is out of the shortest path though
its importance. Such kind of function words is encoded as satellite links attached
to one end of the shortest path. Therefore a full representation of the pattern is
[such, PreDet:pre:N]N:mod:Prep:pcomp-n:N. Another problem is that “Shake-
speare” should share the same dependency relationships “Herrick”. However,
as the parsing results of Minipar, “Shakespeare” is not directly connected to
“such”. By making use of he distributive nature of a conjunction relation be-
tween “Shakespeare” and “Herrick”, the dependency links are populated across
all conjunctions. The red arrow in figure 2.2 is a newly added link as a result
of the populated dependency.

2.2.2 Snow et al.

The current most promising work about ontology learning is represented in
(Snow et al., 2005) and (Snow et al., 2006). They have successfully added
10,000 new hypernyms with accuracy 80% into WordNet 2.0. To my knowl-
edge, this is the current best result based on lexico-syntactic patterns, so we
take it as the baseline method.

3http://multitext.uwaterloo.ca/
4A explanation of Minipar grammatical notations is given in appendix D
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Figure 2.2: A dependency graph shown in (Snow et al., 2005), which parses a
text fragment “such authors as Herrick and Shakespeare ”. The above picture
is taken from (Snow et al., 2005).

(Snow et al., 2006) apply a probabilistic framework that regards knowledge ac-
quisition as a task of pattern recognition. Similar to WordNet, they define a
taxonomy 7T as a set of pair wise relations R over a set of synsets Dp. A relation
R;; is an ordered or unordered pair of synsets (4,j) € Dr, which encodes any
binary relation like hypernymy and meronymy.

They define probability of a taxonomy as the joint probability of all possible
relations.

P(T)=P(AcT,B&T) (2.9)

where A, B are two sets of relations that A C T and B € T. Each evidence Eg
of a relation R;; between two words ¢ and j is represented as a feature vector,
whose elements are the co-occurrence counts of dependency paths and the word
pair. According to maximum likelihood principle, the learned model is the one
best fitting the training data and maximizing P(E | T'), where E denotes the
set of all evidences.

P(Ry €T | BR)P(ER])
P(Rij S T)

P(Ri; ¢ T | ER)P(E[))
P(Ri; ¢ T)

PE|T) =[]

Ri;€T

II

Ri; €T

(2.10)
where P(R;; | Ef}) is the conditional probability of relation R;; given evidence
Eg', which is estimated by an ordinary classifier. A relation R;; and its implied
relation set I(R;;) are added into a taxonomy T, if the product of the multi-
plicative change Ap(I(R;;)) to the conditional probability P(E | T) is larger
than 1.

Ar(I(Rij)) = H Ar(R) (2.11)
ReI(Rij;)
P(E|T) P(R;; €T | ER)
Ar(Ryi) = ———2 =k- J 2.12
7(fy) P(E|T) 1-P(R;; € T|ER) (2.12)
P(Ri;¢T)

T’ denotes the new taxnomony after adding a new relation R;; and k = PR, eT)"
They have applied their model only for the task hypernym acquisition. In or-
der to improve coverage, they introduce another relation tazonomic cousin Ci;.
Two synsets ¢ and j are taxonomic cousins, if they share a parent in the hy-
permym hierarchy. The type of relation is found under the observation that
taxonomic cousins often share similar local contexts stated in the last section.

The collected evidences are used to improve the performance of lexico-syntactic
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pattern based relation learning.

Another contribution of (Snow et al., 2006) is the local best search algorithm
that integrates heterogeneous evidences to infer the proper relation set and solve
word sense ambiguity. A new hypernym evidence (company, google) identified
by a lexico-syntactic pattern may have coordinate evidences like (yahoo, google)
and (yahoo, microsoft), which builds a implied relation set. The new relation
and its implied relation set are added to taxonomy 7' when Ap(I(R;;)) > 1.
This is based on the fact that the right relation has always high confidence and
implies related relations with high probability. The algorithm finds greedily all
relation sets having multiple evidences best matching the current taxonomy.
Word sense disambiguation is achieved in the same manner that right sense
assignment has more evidences and higher probability than the wrong one.

2.2.3 Other Supervised Learning based Methods

e Suchanek et al.

(Suchanek et al., 2006b) applies similar approach without taxonomy in-
duction. They use Link Grammer Parser® to represent dependency paths.
They name the shortest path between two words in a dependency graph
a bridge. In addition, they take other heads and modifiers of two words in
question also into account. A model is trained by both K-nearest Neigh-
bours (KNN) and support vector machine (SVM) for comparison of pat-
tern robustness. Ome of their special contribution is a special distance
function of KNN, which achieves better performance than SVM.

e Girju et al.
(Girju et al., 2003) focuses on only three lexicon-syntatic patterns to dis-
cover part-whole relation. After extraction of word pairs according to
the patterns, they organize the examples into positive, negative and am-
biguous examples used to learn constraints by means of decision tree and
WordNet. A set of rules derived from C4.5 learner are used to discover
new relations from newswire corpus.

2.2.4 Unsupervised Learning based Methods

Unsupervised learning based methods save the effort of preparing training exam-
ples and allow discovery of unknown relations. However, this approach usually
has lower precision than supervised learning. (Turney, 2006b) presents an al-
gorithm called latent semantic analysis (LSA) that mines large text corpora
for patterns that express implicit semantic relations. It is able to discovery
new patterns according to their pertinence, which indicates the expected rela-
tional similarity between a given word pair and prototype pairs of a specific
pattern. LSA is employed in (Cederberg and Widdows, 2003) to improve preci-
sion of relations discovered by Hearst’s patterns. As named entities expressing
instance-of relations, KNOWITALL system (Etzioni et al., 2005) is capable of
extracting facts like person and location from the Web in an unsupervised,
domain-independent manner.

Shttp://www.link.cs.cmu.edu/link/
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2.3 Identify Topic Related Words

It is well known that expanding query with highly related words can improve the
the performance of an information retrieval system. A query can be extended
with a set of semantically related words, such as their hypernym, meronyms.
But some words such as “Bush”, “bomb” and “Iraq”, are highly related but
their relations may not be defined as any conventional relations like the ones in
WordNet. However, these words are the keywords describing the recent events
in Iraq. So they are highly topic related and we consider the type of relation as
topic related relation.

There are already plenty of works seeking to index words and documents accord-
ing to their topic relatedness or cluster documents according to topic similar-
ity. The latter issue is closely related to Topic Detection and Tracking (TDT)
addressed in (Allan et al., 1998). Another interesting approach is to extract
keywords from a single document which address its main concern. It allows
combination of other information like position of words into the model.

2.3.1 Topic Detection and Indexing

The task of finding topic related words can benefit from the works of Topic
Detection, which is an unsupervised learning task defined in (Allan et al., 1998)
that recognizes if a new document falls into an existing topic or suggests a new
topic. All works proposed in (Allan et al., 1998) are based on vector space model,
so that every document is represented as a TFxIDF vector. Their works differ
on the use of different clustering algrithms (hierarchical clustering or k-means)
and whether to use time as an additional feature. So the results are clusters of
documents sharing similar topics. (Zhao et al., 2005) follows the same approach
and applies previously mentioned constrained agglomerative clustering method
to group similar documents.

PLSA (Hofmann, 1999) provides a probabilistic framework to learn distribu-
tion and topic relatedness of documents and terms based on their co-occurrence
frequencies. In the field of unsupervised learning it is general to consider ex-
isting samples are draw from a mixture probability distribution with unknown
parameters, the basic goal is to estimate the parameters using the data. PLSA
assumes documents and terms are samples drawn from a aspect model, which
is a variant of standard finite mixture model for general co-occurrence data
that associates an unobserved class variable z € Z = {z1,...,2;} , tempered
Expectation Maximization is utilized to estimate the model parameters. As a
consequence, a document d is not assigned to clusters but characterized by a
mixture of conditional probabilities p(z|d). And a word w is represented by a
combination of aspects p(w | z). Because of its good statistical modeling of co-
occurrence, lots of research works are carried out based the model. For example,
(Zhai et al., 2004) employ the linear combination of a background model and
aspect model to study the comparative text mining problem.



CHAPTER 2. ONTOLOGY LEARNING 16

2.3.2 Keyphrase Extraction

The most widely used methods are based on supervised machine learning, which
classify a candidate term into a keyphrase or non-keyphrase category. (Witten
et al.) start with unigrams, bigrams and trigrams after stop words removal.
TFxIDF score and first occurrence of them, which is the distance in words of a
phrase from the beginning of a document, are used as features in KEA (Witten
et al.). KEA++ (Medelyan and Witten, 2006) adds the length of term in words
and node degree of candidate phrases as additional features. The node degree
is calculated in terms of a domain-dependent thesaurus. Since the thesaurus
builds a semantic graph, the node degree is defined as the number of semantic
links connected a candidate term to other candidate phrases in the same docu-
ment. The evaluation in (Medelyan and Witten, 2006) shows that with the node
degree feature the precision and recall of KEA++ doubles that of KEA. (Hulth,
2003) utilizes TF and IDF as two separate features instead of one. In addition,
they show that empirically edited POS tag patterns of candidate terms such
as NOUN NOUN and ADJECTIVE NOUN are effective in identifying impor-
tant phrases. They achieves the highest precision (41.5%) and recall (46.9%)
reported in (Hulth and Megyesi, 2006).

There are also other approaches for identifying topic words. In (Clifton et al.,
2004), a collection of named entities are used to represent the topic of a doc-
ument. By applying a modified association rule learning, they identify the
frequent co-occurred entity sets (frequent itemsets) and group them together
to build clusters sharing similar topics. Each document is then assigned to
each cluster according to their TFXIDF distance to cluster centroid. To avoid
too fine-grained segmented clusters, the candidate clusters are merged together
according to the similarity of their document members. TextRank algorithm
(Mihalcea and Tarau) represents each document as a text graph, whose ver-
tices are terms connected according to their co-coorrrence relation. All terms
are then ranked similar to Google’s PageRank algorithm. Final keyphrases are
chosen after post-processing the top N terms.



Chapter 3

Learning Ontology from
Web 2.0

Learning ontology from Web 2.0 digital assets can’t simply apply the meth-
ods by learning from text. The grassroots writers show inconsistent style of
writing and the way of expression varies from people to people. Although writ-
ers from Non-English speaking countries contribute lots of content, they make
also plenty of errors while writing. The existence of splog and duplicate doc-
uments make it even more difficult to extract expected information from the
noisy data. Additional preprocessing steps have to be carried out in order to
get more normalized information, which will be mainly covered in the next chap-
ter. This chapter concentrates on algorithmic improvement and explanation of
new methods. Relation instances of different arities are discovered in terms of
distributional similarity, lexico-syntactic patterns and topic relatedness. Folk-
sonomy existing in the weblog corpus is another focus of this chapter. In section
3.3.1 a tag ontology is derived by exploring the semantic relatedness between
tags.

3.1 Learning Coordinate terms from Weblog Cor-
pus

Coordinate terms are considered as 1-ary relations with high distributional sim-
ilarity. Besides high precision the algorithm should be computationally efficient
enough in order to process large amount of data. The randomized clustering
method proposed in (Ravichandran et al., 2005) is the most interesting candi-
date because of its efficiency and sufficient accuracy. However, practice shows
that direct implementation of the algorithm can easily run out of memory if
the grammatical context first proposed in (Lin and Pantel, 2002) is applied.
A feature set as large as 250,000 can easily consume 2 GB memory for 1000
random vectors. One solution suggested in (Ravichandran et al., 2005) is to use
a simple context definition that comprises two words to the left and right of a
noun. But it will lose useful information like the verbs as head of a noun. One
solution is to write the random vectors into disk and sequentially read them
during hashing. However, in practice it takes a much longer time than keeping

17
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all random vectors in memory. Our solution is based on the observation that
there are a lot words occur rarely in weblog corpus, which contribute few to
context building. If we allow only the words having sufficient occurrence across
several documents, the dimensionality can be strongly reduced. E.g. there are
335,584 unique terms identified by Minipar from 52,893 blog posts, if we select
the words having normalized idf ranging from 0 to 0.9, the number of terms
are reduced to 29,098. Another preprocessing step is to convert the numbers in
a short term to a unique label and append the rest of characters to the end of
it. In this way “10:30” is converted to “DIGIT:” and “20” is “DIGIT”. So the
various terms containing numbers are generalized into a few fixed patterns.

Besides additional preprocessing, the generation of random permutations should
be improved. In (Ravichandran et al., 2005), a pseudo random number generator
is utilized to approximate random permutations:

m(x) = (ax + b)mod p

where p is prime and 0 < a < p,0 < b < p. a and b are chosen randomly. If
p is the size of a bit vector, a index x can be projected randomly to any other
index of the vector. So the generator can not guarantee a one to one mapping,
there is a probability that the different indexes are mapped to the same one.
The alternative is a random k-permutation algorithm®:

function kpermutation(ar, k)
{

for (i=1 to n) ar[i] = i;

for (i=1 to k) swap(ar[il, ar[Random(i,n)]);
}

Random(i,n) is a random generator selecting a random number between i and
n. The algorithm swaps k elements of n-dimensinal array ar without repeated
index mapping.

The last step of the original algorithm is to find a set of vectors as nearest neigh-
bours of a given vector ¢ in a sorted list. After fast hamming distance search,
several duplicate or quite similar clusters will be generated since the vectors
belonging to a cluster are nearest neighbours to each other. If we consider each
cluster as a radius-r ball centered at v (equal ball), there is a simple solution
to merge similar clusters together. At first all equal balls are sorted by size
in descending order. Every time we pick one cluster from the sorted list and
calculate overlapping rate of other equal balls centered at all its members. If
the overlapping rate of two equal balls is above a threshold 65, they are merged
and both are removed from the sorted list. Here pair wise similarity calculation
is abandoned because its computational complexity is O(N?), which is higher
than the overall algorithm. The modified algorithm is reformulated as follows:

1. Given n vectors in k dimensinal space R*, choose d (d < k) k-dimensional
random vectors (r1,72,...,74). Each element in r, is drawn from a Gaus-
sian distribution with mean 0 and variance 1.

Lhttp://www.techuser.net /randpermgen.html
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2. For every vector v € R¥, a set of LSH h,.(v) (equation 2.8) generates the
signature of v asiu = {h,1(v), hpa(v), ..., hra(v)}.

3. Generate randomly a permutation function 7 by kpermutation function.
We sort lexicographically n permuted vectors.

4. For each vector v in the sorted list, we look up B vectors upwards and B
downwards. If the hamming distance of a vector to v is below a threshold
0, the vector is stored into a cluster centered at v. After finding all near-
est neighbours, it goes back to the third step, until all q permutations are
done. This is a small modification of the original algorithm, which gener-
ates all permutations all at once before searching. It saves the storage of
all permutation functions.

5. Sort all initial clusters by size in descending order. Select a initial cluster
A in sequence, calculate the overlapping rate for all clusters centered at
its members. If the overlapping rate is above 65, the cluster B centered at
that member is removed from sorted list and all its members are added
into A.

With additional preprocessing steps and algorithmic improvement, the cluster-
ing algorithm is capable to process efficiently large amount of data on a common
workstation PC.

3.2 Learning Relations from Lexico-syntactic Pat-
terns

As stated in the section 2.2, lexico-syntactic patterns are widely used to rec-
ognize word relations from free texts. The baseline method from (Snow et al.,
2006) is the first choice to us to discover semantic relations from the text. How-
ever, the direct implementation of the baseline method does not fit into memory
and shows poor performance on the annotated English posts?. We use a new
data structure dependency tree to make the original algorithm memory efficient
and be able to incorporate context information to capture more patterns.

3.2.1 Dependency Tree

In (Snow et al., 2006), each dependency path is viewed as a standalone feature.
Such a path is mainly the shortest path between two words under discussion
denoted as POSheqq : 71[POS : v]* : POS4qy. For simplicity, we refer in latter
part the shortest path between two words as a bridge, which is first used in
(Suchanek et al., 2006b). The satellite links [r, POS{,1 w2,...}]* are a set of words
of the same POS that directly depend on either end of a bridge with relation
r. So a complete dependency path is of form [r, POS(y1,w2,...}] * POShead :
r1[POS : r]x : POStait[r, POS{y1,w2,.}]*. If we consider a POS as a node and
r is an arc connecting them, all dependency paths comprise a tree (figure 3.1),
where the root is POSheqq and a POS;,; is a special nodes called tail nodes
locating at the bottom of a tree. Because a bridge can start from either side, we

2Experimental results are given in section 5.2
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can let a dependency path always start from the word locates on the left side
of the other.

N

Figure 3.1: A dependency tree. Each rectangle represents a POS node in a
shortest path. All POSj, are POS nodes of semantic neighbours. Word nodes
take the form of parallelograms. FEntity nodes are represented as hexagons.
Each arrow is the dependency relation connecting the nodes.

The satellite links in (Snow et al., 2005) are some heuristic patterns attached
to either end of a bridge. A link ignoring function words is again a (POS, R)
pair, which has the same form as a node in a path. So it can be attached to a
tail node it depends on. In order to distinct to which word under discussion it
has dependency relationship, the kind of nodes are denoted as SN,%LT, where

H or T means head or tail end of a bridge. The function words of a SN;ZLT are
considered as a set of word nodes (WN) as its children. Named entity class of
a word is also an important part of a pattern. It is in form of a entity node
entity, connecting to a SNI%LT or a tail node, which depends on if it takes place
outside or inside a bridge. If it occurs in a bridge, the p is used to denote the
position information. All .S NpHO‘ST,WN and entity, comprise a special collection
of nodes, which provides context information in addition to bridges. Such kind
of nodes are referred as semantic neighbours (SN) in the following part.

If we consider a dependency path as a random walk starts from POS}jcq.q and
ends at POSt4i, we can store the access count C'4 in each node to get a state
transition matrix. Given a parent node, we can estimate the occurring proba-
bility according to Cy4 of its children. That is why we call it “dependency tree”,
since parent and child nodes are semantically dependent and the occurrence of
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a child node depends on its parent nodes according to the current modeling.
Furthermore, if we want to observe the occurrence of a certain relation R, the
frequency information C'r can also be stored in each tree node. Together with
the same information stored in SNs it is possible to estimate how likely a path
is correlated to R.

We still need to store the co-occurrence information between pairs of nouns and
dependency paths as in (Snow et al., 2005, 2006). In our tree modeling, a sub-
tree taking a tail node as its root is stored as the corresponding position of a
feature vector, since it represents a dependency path. All such subtree vectors
comprise the instance base of a dependency tree.

3.2.2 Baysian Network Estimation

We can directly estimate how likely a relation R occurs in a dependency path P
from a dependency tree. Given a tree node n, other than SN nodes, we obtain
the probability that a relation R occurs in a dependency path starting from
POSheqq and ending at n, as:
Che
P(ng) = C’E"’ (3.1)

But the situation will become complex when wir take SN nodes into account. A
bridge can have different number of SN nodes, which can co-occur in a depen-
dency path. W N depends strongly on SN;{)LT and we have to remove SN nodes
with low occurrence to obtain stable patterns. Following a statistical way we
consider each node as a Bernoulli variable x with range x = {1,0}. For a SN
node the two values indicates if it occurs or not and for a tail node 1 represents
the existence of relation R. Because of the computational complexity consid-
ering the whole tree, we focus only on a subtree with a tail node as root. The
joint probability of all nodes M having its root at a tail node N (figure 3.2) is:

P(M) = H P(xz; | ancestor(z;)) (3.2)
x, EM

where M are all nodes in the subtree including the tail node N and all its
SN nodes, ancestor(z;) denotes all ancestors of node x;. Compared to figure
3.1, there are additional links from word nodes to the tail node to show their
dependency. If it is assumed that each node depends only on its parent and is
independent of the other nodes, we have:

P(z; | ancestor(x;)) = P(z; | parent(x;)) (3.3)

where parent(z;) is the direct parent nodes of z;. Combining equation 3.2 and
3.3, we obtain
P(M) =[] P(x; | parent(z;)) (3.4)
T, €M
If we assume the condition holds also for the other nodes, a dependency tree
becomes a Baysian Network, in which an edge leads from node a to b means that
the variable a depends on b. So our prior knowledge about dependency paths is
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represented by the network structure. Currently we inspect only a subtree with
a tail node as root, so tail nodes are assumed to have no parent node.

Figure 3.2: A dependency subtree. Each rectangle represents a POS node in a
shortest path. All POS,, are POS nodes of semantic neighbours. Word nodes
take the form of parallelograms. Entity nodes are represented as hexagons.
Each arrow is the dependency relation connecting the nodes. Dashed arrows
are newly added relations

To obtain the likelihood of a dependency path indicative a relation R, let IV be
the class attribute and all SN nodes be binary features, the probability is given
as:

P(N =1,5N)
P(N=1,SN)+ P(N =0,5N)

where SN is a collection of all SN nodes in the subtree. From above equations
it is easy to see that we obtain P(N = 1| SN) easily if P(x = 1 | parent(x))
is known, since p(N =i, SN) = P(N =1)][[,,cgn P(sn = 1|parent(sn)). The
probability of a word node and a SN, node can be derived directly from their
frequency count and that of their parent nodes:

P(N=1]|SN) = (3.5)

Pyn(z=1]SNpyps =1,N =1) = CEJ%;S
R wn wn
Pun(@ = 0] SNpos = 1, N = 0) = —sxi =l
oA " (3.6)
Psn,, (t=1|N=1)= "2
S Npos _ S Npos
Psn,,.(t=0| N =0) = W

We consider only presence of SN nodes because absence of a SN node is modeled
as missing value. It is based on the consideration that “such” is not used
to describe the relation between two hypernyms just because the number of
examples are small. Another problem is zero frequency when Cr = 0 or Cr =
C4, so that the probability of a node is zero. No matter how high the other
variables are, the joint probability is always zero. The problem can be solved by
Laplace estimator, which inits every count by 0.5. The corresponding probability
of a node z is:

Cs +0.5

P,(x =1|parent(x)) = ————
O}p%arent(;v) +1

(3.7)
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C4—CE+05
P,(x =0 | parent(z)) = Mem(Am) B ;ent(z) (3.8)
ch - Cp +1

The last step is to calculate the likelihood of a relation given a prediction proba-
bility vector, which contains the estimated likelihood of all subtrees associating
a word pair. One simple method is to choose the max value of them because a
positive example may exist in different dependency paths indicating the strength
of relation differently. The strongest pattern determines the association strength
of two terms. It can show the performance of a single dependency path but can
not process noisy data properly. Another way is to use an ordinary classifier to
learn the distribution based on BNE predictions, which can be viewed as feature
space being transformed into a “confidence space”.

3.3 Learning Topic Related Relation

In a corpus like weblog, people write down their feeling and opinions about
daily events or their personal lives. The way of writing is casual, emotional and
there are only a little expressions reflecting semantic relations between words.
Since the majority of words are related because they are used to discuss certain
topics, it is of our interest to find the topic related words from weblog corpus
and consider it as a task of finding topic related relations. A topic related
relation is a n-ary relation with n > 1. A group of such relation instances with
high similarity are likely used to express a similar topic. Because the tags in
a post are likely to describe its main theme, in section 3.3.1 a tag ontology is
derived from folksonomy of weblog corpus, which is further extended with our
keyphrase extraction method proposed in section 3.3.2.

3.3.1 Tag Ontology in Weblog

As mentioned before, folksonomy shows a new way of organizing large amount
of information by collaborately annotating and categorizing content. In weblog
corpus, we find that the tagging service of weblog is either provided by existing
blog systems or tagging service providers like Technorati®. A typical tag in a
blog post is a link with a special value “tag” of the attribute rel. The other
representation of tags are some word lists occurring after “TAGS:” at the end
of a post. From all 5 million English posts we extracted 52,892 unique posts
annotated by 55,492 unique keyphrases after removing near duplicate ones.

The majority of tags are from tagging service providers. Among them Tech-
norati is the undisputed market leader since 64% tags come from their service.
Politics, blog, music, media, news are the top frequent used keywords, which
still stay in the top 100 list on the front page of technorati.com. Another in-
teresting aspect is that users intend to choose keywords of a general category
like music, politics to describe content, even though they do not occur in the
text. Only 2220 keyphrases are found in their annotated texts. 71% posts do
not contain any phrases that are used as their tags®.

Shttp://www.technorati.com
4Both post texts and tags are stemmed by Snowball before checking if a tag is contained
in a text.
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cluster name | cluster members

atomic kitten | natasha hamilton,atomic kitten

superman return torrent,superman vs jesus,
superman movie,supperman return

fusion energy | nuclear fusion,fusion energy

superman

Table 3.1: Three small example clusters found according to context similarity.
Every row of the table represents a distinct cluster and cluster members are
separated by comma. The cluster names are chosen only for reading purpose.

As discussed in the first chapter, despite of obvious advantages of a social clas-
sification system, people find its flaws during the daily usage. One drawback
lies in that uncontrolled vocabulary allows existence of different word forms.
This issue can be well solved by stemming technique. Other than rule based
suffix stripping algorithms like porter algorithm (Porter, 1997), which often pro-
duces unsatisfied results, we employ the lemmatization® method of tree tagger
(Schmid, 1994) to attain higher accuracy. The lexicon of Tree tagger consists of
three parts: a fullform lexicon, a suffix lexicon and default entry. The fullform
lexicon is created from Penn Treebank corpus, which contains roughly 2 million
words. A word is first looked up in the lexicon in its original form and then
searched again in lowercase if the fullform is not found. If it fails again, suffix
stripping is utilized by finding the most likely suffix from the suffix lexicon. The
suffix lexicon is built automatically from the same corpus in similar manner as
building a decision tree. The default entry is returned only if the search in the
suffix lexicon fails. So the approach benefits from both lexicon based stemming
and probabilistic inference.

We solve sense ambiguity by clustering similar tags according to their associated
documents. Other than (Heymann and Garcia-Molina), which uses the whole
document as a unit of context, we decompose the referred posts into a bag
of words. Tags are aggregated into tag vectors. The number of posts that a
term co-occurs with a tag serves as an element of the tag vector. This results
in a sparse matrix that represents tags. The values of the matrix is further
transformed by calculating the pointwise mutual information of each entry.

fi(c)

PMI(t,c) =log - o
S, 5

where f;(c) is the number of annotated documents by a tag ¢ and a context term
¢, N =73%,>; fi(j). The modified randomized clustering algorithm proposed
in section 3.1 is employed to find groups of highly related tags. As a result, we
found 3546 unique clusters from all 58,617 tagged posts. Table 3.3.1 presents

some example clusters found in the corpus®.

(3.9)

In order to facilitate browsing of tags, (Heymann and Garcia-Molina) and
(Schmitz, 2006) seek different ways to organize tags into a hierarchy. (Heymann

5Because of the lack of context, the lemmatization method is used to solve a stemming
problem.
630 exmaple clusters are presented in appendix C
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and Garcia-Molina) builds a tag similarity graph where each tag is represented
as a vertex, and two vertices are connected by a edge if they both annotate a
given object above a certain times. According to their algorithm, a parent ver-
tex is identified if it has high graph centrality. (Schmitz, 2006) utilizes a simple
model addressing subsumption relation between tags. A tag Y is a parent of
another tag X if P(Y | X) > t and P(X | Y) < t, where t is a user specified
threshold. Both X and Y should occur more than a minimal times.

The above two methods capture a pattern that users like to annotate a object
with several keywords of different specialization levels. For example, a user likely
to annotate his article about jazz with two keywords “jazz” and “music”. And
“music” is reused more often than “jazz”. The idea is similar to find association
rules from a set of co-occurred objects. An association rule is defined in (Agrawal
et al., 1993) as follows:

Let I = {i1,ia,...,ix} be a set of attributes called items and T =
{t1,t2,...,tm} be a set of transactions, where ¢;,7 € [1,m] is a subset
of I, an association rule is an implication of the form X = Y, where
X,YCTand XY =0.

The intuitive meaning of such a rule is that transactions contains items in X tend
to also contain the items in Y. Support and confidence proposed in (Agrawal
et al., 1993) are the first measures for mining such rules. The support of a
rule is the joint probability P(X,Y") of two itemsets, which describes the co-
occurrence of X and Y. The confidence of the rule X = Y is the conditional
probabillity P(Y|X) that transactions contains Y, given that they contains X.
(Brin et al., 1997) uses conviction instead of confidence because P(X,Y)/P(X)
could equal P(Y), which means the occurrence of Y is unrelated to X and
the measure is still high enough to hold the rule. They define conviction as
P(X)P(-Y)/P(X,—Y) under the consideration that it includes P(Y') and X =
Y can be rewritten as =(X A =Y) so that conviction measures how far X A =Y
deviates from independence. We use both support and conviction to find rules
like “user tags an object with a word X also tends to annotate it with another
word Y”. We do not use the subsumption concept because although some
rules like jazz = music represent semantic is-a relation, there are also a lot of
cases that the rules interpret other types of semantic relatedness. For example,
protest = immigration hold true because protest is used to refer the same
topic together with immigration and immigration is a more general category
than protest. We say that a set of such rules build a hierarchical like structure
if an association rule is regarded as an edge connecting two term sets. Since
association rules are directional, the more general categories such as “politics”
and “music” are placed on top of the structure. Additionally, we define another
relation equality® as

P(Ay, As, ..., Ag)

equality(A) = MAX(P(A;))

;i€ [1, K] (3.10)

since X = Y and Y = X implies X = Y. If two such rules have confidence
above a common threshold €, we call them equalityc. It makes sense because if
P(A1, As, ..., Ay)/MAX(P(A;)),i € [1, k] holds true so as any P(Ay, As, ..., Ap)/P(4;),i €
[1,k]. The use of confidence does not cause the previously mentioned problem
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because the related tag sets have similar prior probability if the rule holds. As
a result, the tag ontology is a graph consisting of three types of relations.

3.3.2 Keyphrase Extraction

Previous analysis on weblog data shows that 71% annotated posts do not con-
tain any phrases that are used as their tags and in our weblog corpus, less than
4% English posts are annotated. If we compensate current tags with keywords
extracted directly from weblog content, we can extend the power of folksonomy
to any size of data.

PLSA provides good stochastic representation of documents and terms related
certain topics. However, the iterative nature and high computational complex-
ity of EM makes the processing of large amount of data infeasible, especially
when the number of clusters is large. Even for a small amount of weblog data,
the determination of the number of topics is quite arbitrary, which can lead to
unsatisfied results in practice. The research on keyphrase extraction provides a
good alternative. It allows high speed of data processing and the combination
of information in addition to co-occurrence. If a document is represented as a
set of keywords, the keywords can be viewed as being automatically annotated,
so that it owns the same nature as tags. Following a supervised learning ap-
proach, we separate the extraction process into two steps, candidate phrases
identification and keywords filtering.

Candidate phrases are all unigrams, bigrams, trigrams having predefined POS
patterns, because they cover already over 90% of tags (figure 3.3) and long n-
grams in blogsphere intend to be arbitrary sentences or misused phrases. As in
(Hulth, 2003) only nouns and noun phrases are considered, since they comprise
the vast majority of tags and the involvement of other types of phrases leads
only to reduction of performance. The idea is similar to (Hulth, 2003) despite
we use the different parser to identify NP-chunks.

The filtering process utilizes a learned model to identify the most important
words among all selected n-grams based on a set of features. Each candidate
term is represented by the following nine features:

e TFXIDF value of a term, which is also used in both KEA and KEA++.

e Relative position of the first occurrence, which is defined as sentence
index |/ number of sentences. In our data, it performs better than the
relative position in words.

e The length of candidate terms in words, which is a simple numerical
feature.

e Linked words is a binary property whether a candidate terms is used in
a hyperlink.

e Emphasized words is also a binary feature whether a candidate term is
emphasized by any html markups like I (italics) and B (boldface).
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Figure 3.3: The histogram of tag length in words sampled from weblog corpus.
Only tags reoccurred in their associated posts are taken into account.

e Named Entity class of a candidate term is represented as three binary
features to determine if it is a person, location or an organization.

e Node degree, which shares the idea of KEA++ that measures the se-
mantic relatedness to the other candidate phrases in the same document.
The learned tag ontology is our domain specific thesaurus, which builds a
semantic network of topic related terms. Rather than count the number of
semantic links to the other candidate terms, we define the node degree as
the sum of edge weight to the other candidate terms. Since the ontology
consists of relations built upon context similarity and association rules,
the edge weights are treated separately. If two terms comprises a relation
instance according to context similarity, the weight of arc is only included
when it is over a certain threshold 6, because experiments show that low
strength of relation produces more noise than useful information. If two
terms are found co-occurred above a minimal support, their interest mea-
sure is used as the weight of the arc. The interest measure between two
terms A and B are defined as follows:

P(A, B)
P(A)x P(B)
conviction is not chosen here because interest is symmetric so that achieves
higher coverage of relations.

interest(A, B) = (3.11)

However, the significant PoS pattern feature in (Hulth, 2003) has only negative
effect in our cases because the vast majority of tags are single terms whereas
the most keyphrases in (Hulth, 2003) are multiword phrases.
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In the last step, any classifier supporting both numerical and nominal attributes
can be used to learn the model. The logistic regression classifier from Autonlab
is chosen because it yields good results and is computationally fast. To select
keywords from a new document, the learned model is applied to the feature
vectors of candidate terms extracted from the document. Top ranked candidate
terms are selected as the final set of keyphrases.
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Implementation Detalils

Weblog

Preprocessing

Wiktionary
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Coordinate Terms Learner Lexico-syntactic pattern Learner Topic Words Learner
Ontology
Y
Evaluation
WordNet Cyc

Figure 4.1: Components overview

In previous chapters, different methods are proposed to learn ontologies from
weblog corpus and Wiktionary glosses. They are the core of our ontology learn-
ing system. Figure 4.1 gives an overview of all the components. The whole
system works like a workflow. The text data flow through the preprocessing
component, in which text data is normalized for further building of feature
spaces required by relation learners. Coordinate terms learner extracts the
taxonomic cousins according to distributional similarity. The lexico-syntactic
pattern based learner has implemented the methods in (Snow et al., 2006) and

29




CHAPTER 4. IMPLEMENTATION DETAILS 30

Bayesian network learners. The tag ontology is learned by Topic words learner,
which contains also the tagging recommendation component.

Since the weblog corpus is large in size, the system should be capable of process-
ing large amount of data. And some experiments are long running programs,
which needs fast retrieval and store of data efficiently. Mysql relational database
is chosen as the main data backend because its reliability and high performance.
Since the system is written in java, it is fast and convenient to use Berkeley DB
to serialize tree models and processing results into disk. In this system all im-
portant temp results are serialized as “save points” in order to avoid rerunning
of some long-time experiments like parsing and also facilitate fast prototyping.
Most of functional components represented here do their task not other than
reading data, processing them and writing the results into database. So they
are generalized as data processors, which comprise the “steps” of a workflow.
Logging component traces errors and important steps during data processing so
that debugging of long running programs and review of experiments are possible.

Data Preprocessor
S
Database

Data Postprocessor \ Internal Classifier
Result DB
External Classifier

Data processor

Logging

Y

Figure 4.2: System Architecture. Arrows denote the direction of data flow. The
geometrical forms will be reused in the following sections to denote the same
class of components.

4.1 Data Preprocessing

Data preprocessing is the first step that normalizes the real-world data before
they are fed into a classifier. According to experience, this step takes mostly
80% time of the entire work in a typical pattern recognition task and is one of
the most important factors influencing the end results.
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Weblog and Wiktionary are the main data sources under discussion in this thesis.
Although they share some common characteristics of web 2.0, their differences
determine the different preprocessing steps.

4.1.1 Weblog corpus

Each weblog post is a normal HTML page with some meta data like permalink
and post time. They are written in different languages and contain occasionally
the category information ”tags“. The preprocessing pipeline is demonstrated in
figure 4.3.

HTML Mark Eliminator
Language Filter

English posts

Tag Extractor

English Posts with Tags

Sentence splitter
Tokenizer
Repeated Words
Eliminator
Dependency parser

Sentence splitter
Tokenizer
Repeated Words
Eliminator
Dependency parser

<<EP>> <<EPT>>
tokenized Sentence . T tokenized Sentence
parse tree Near-Replica Eliminator parse tree
sentence number sentence humber
post ID post ID

‘ Unique doc Id Set U

Figure 4.3: The preprocessing workflow of weblog corpus. EP and EPT denote
the corresponding results.

¢ HTML eliminator and language detection the HTML pages are first
converted into plain text so that it is possible to use TextCat to make lan-
guage detection. All English posts are then stored into a table of database
together with the meta data. It took a week long to finish processing all
24 XML files.

e Tag extraction The domain of interest is the English posts with blog
tag information. Two types of blog tags are extracted from HTML pages.
One type of tag is wrapped by a hyperlink mark having a special attribute
rel="tag”. This type of tags are mostly provided by a tag service provider
like Technorati. The other type of tags are some key phrases written
simply behind the word "TAGS* and locate mostly at the end of a post.
After extracting the two forms of tags we get 58617 English posts.
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<a href="..." rel="tag">movie marketing</a>

e Sentence splitter and tokenization The tokenization process inte-
grates NER detection so that every named entities are recognized as a
single token. We use Standford named entity recognizer (Finkel et al.,
2005) to detect the words and sentence boundaries as well as NER detec-
tion. Each tokenized sentence is stored in form of XML into a sentence
table having a foreign key pointing back to the corresponding post.

¢ Repeated words elimination In blogsphere bloggers intend to repeat
some words like ”so so so big“ to emphasize their opinions or express
their feeling. Minipar is trained in corpus SUSANNE, so it is incapable
to recognize such kind of phrases properly. Experiments show that if a
word is repeated too much times, Minipar will consume all memory just
for parsing a sentence. The solution is simply merge the identical tokens
into one in a sentence. As a result, 577703 sentences are found to have
repeated words and among them 127512 tokens are repeated more than 2
times.

e Duplicate and near duplicate documents elimination Duplicate
documents and splog have strong negative effect on the classification per-
formance. The signature-based near-replica detection method proposed in
(Kolez et al., 2004) is applied to remove all duplicate and near-duplicate
posts. The original algorithm is inefficient in memory management, so a
modified procedure is given as follows:

1. Collect first the idf of stemmed terms from a given corpus. A lexicon
L is generated by imposing an upper and lower limit on the idf for
words, since terms with mid-range idf values are shown to be more
useful in duplicate detection (Chowdhury et al., 2002).

2. We go through each document. A document is represented as a set
of unique terms. For a current document, the unique term set is
modified by randomly adding and removing a term from L, with m
such changes in total. Generate a secondary lexicon by randomly
removing a fraction p of terms from L. The intersection between the
modified term set and the secondary lexicon is created and sorted
in lexicographic order. Like I-Match (Chowdhury et al., 2002), a
signature is generated for each sorted term set by adding each term
to the SHA1 (NIST 1995) digest. The document ID is stored in a
hash table whose keys are signatures.

3. (Kolez et al., 2004) shows that performance can be improved by
means of several secondary lexicons. If we repeat the last step K
times, every document is represented as a tuple of signatures (digesty,
digestrz,...,digestr k). Two documents are regarded as similar if they
share at least one signature. However, if we keeps all hash tables in
memory, it is impossible to process millions documents. So we con-
sider each document as a node of a graph. Two documents are con-
nected if they share at least a signature. It is a small improvement
over the original algorithm, which generates K secondary lexicons
and K + 1 signatures all at once.
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The original algorithm considers each entry in the hash table as a
cluster of near duplicate documents. In practice, it is found out that
there are some similar clusters that should be merged together, be-
cause we ignore the cases that if document A and B share a signature
S, , C and B are recognized as similar by another signature Sy, so
that C is not included into the cluster of A and B. (Kolcz et al.,
2004) does not show how to merge them together. The brute-force
method is to compare each entry with other map entries to check if
they have at least one element in common. It will take in worst case
O(N!) for N entries. Since we represents all documents as a set of
graphs, a cluster of similar documents can be found by any greedy
graph search. The time complexity is O(n) for a graph of n nodes.

e Dependency parsing Dependency parsing is accomplished by Minipar,
a fast principle-based English parser. The parser reads tokens of each
sentence from sentence table and stores the parsing result also in XML
back into the sentence table.

4.1.2 Wiktionary

<<WK>>

tokenized Sentence
Wiki text Sentence splitter ‘ Dependency parse tree
Normalizer Tokenizer parser sentence number
gloss ID

Figure 4.4: The preprocessing workflow of wiktionary gloss.

Wiktionary is written collaboratively by volunteers using wiki software. We
use only glosses of nouns to learn semantic relations, because a gloss explains
the meaning of a word, so that it likely indicates the relation between closely
related words. The whole data is again splitted into training dataset and testing
dataset with ratio 7:3. There are 86659 senses comprising 92592 sentences in the
training dataset. The testing part contains 34638 senses with 20364 sentences.
The preprocessing is different like blog because it uses wiki marks for editing and
contains less noise. The first step is replaced by a Wiki text normalization
block. This block removes first all wiki marks like wikify links, templates to get
a clean plain text. Because most words are explained simply by another word or
a short phrase like ” A solid or hollow sphere“, it is necessary to add the word of
the entry at the front of each gloss in order to show the relations between words
within one sentence. We add each word to the front of a gloss together with
is. A phrase “A solid or hollow sphere” becomes a sentence “Ball is a solid or
hollow sphere.” Use is instead of means or other verbs because is is assigned to a
special POS VBE by Minipar so that the relation between two nouns “ball” and
“sphere” is represented as a relatively unique dependency path N:s:VBE:pred:N.
It produces meaningful results with less noise. Repeated words elimination
is not necessary any more because glosses contain hardly any repeated words.
As a result, we get 112956 tokenized and parsed sentences.
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4.2 Implementation of Coordinate Terms Learner

Two pass of all documents are required before runing the modified clustering
algorithm. In the first pass, idf of each Minipar identified lemmas are collected.
A lexicon E is build by allowing the terms with normalized idf within [0,0.9].
In the second pass, a co-occurrence matrix between the word under discussion
and local context terms is generated. We allow two different context definitions.
Besides the previous proposed one, a simple local context is two words to the
left and two words to the right of a word under discussion, which is used in
(Ravichandran et al., 2005) for web corpus. The simple context results in much
smaller dimension of a co-occurrence matrix than the grammatical context.
Therefore no lexicon is required. The result from the algorithm is a set of
term clusters, whose size is determined by the threshold of vector similarity.

TFIDF collector

Lexicon

coocurrence matri

Randomized
Clustering

Word Context
Generator

EP or EPT

Figure 4.5: The workflow for clustering taxonomic cousins.

4.3 Implementation of Lexico-syntactic Pattern
Based Classifier

4.3.1 Snow et al.

As (Snow et al., 2005), we use dependency paths to represent lexico-syntactic
patterns. Prepositions are represented as nodes in a dependency graph gener-
ated by Minipar (figure 2.2). For a better representation of the semantic relation
between a pair of words depending on a preposition, we apply a transformation
rule to connect the prepositional complement directly to the words modified by
the preposition. The new relation is labeled by the preposition. The technique
is called collapsing, which is also used in stanford parser (de Marneffe et al.,
2006). Figure 4.6 represents the dependency graph showed in the section 2.2.1
after collapsing.

For a better representation of conjunction, the involved dependency relations
are distributed across all conjunctions to overcome the representation shortage
stated in the section 2.2.1. The antecedents of a word identified by Minipar is
modeled as “antecedent” relations connecting the involved words. In addition,
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det
These (Det)

Figure 4.6: A dependency graph with collapsing
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, which parses a text fragment

“These works are done by such authors as Herrick and Shakespeare .

Minipar does not differentiate common nouns from pronouns. Since it makes no
sense to compare a common noun with a pronoun, we add a new PRONOUN
POS to the dependency graph. All shortest paths between common noun pairs
are then organized into a dependency tree to save the memory consumption.

Satellite links are represented as semantic neighb
responding tail nodes.

our nodes attached to the cor-

training posts testing posts

lation pair collector

External Classifier

Format converter

Non-relation instance selector

N

Creating testing instances

Figure 4.7: A workflow of the implementation of the method in (Snow et al.,

2006)

e All unique tagged English posts are divided into a training and a testing
dataset with ratio 4:1. The noun pairs with at least one noun not contained
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in WordNet are considered as part of testing dataset, even if they occur
in training dataset.

e Word pairs indicative relation R are collected in this step. We collect
first all hypernym pairs, non-hypernym pairs and the noun pairs not con-
tained in WordNet for each dataset. According to (Snow et al., 2005),
they achieve the best performance when labeling a noun pair (n;,n;) as
Hypernym if n; is a n ancestor of the first sense of n; in the WordNet
taxonomy. A noun pair (n;,n;) is a Non-Hypernym if they are both con-
tained in WordNet and neither noun is an ancestor of the other for any
senses of either noun. The results are stored together with their occur-
rence in separate tables. If a noun pair is recognized as hypernym, their
distance in the WordNet hierarchy is record as an additional attribute of
the hypernym table.

e After the process, we maintain the ratio between hypernym and non-
hypernym pairs by selecting the top 50xN most frequent non-R word pairs
for training, given N word pairs of relation R.

e The first step of training is to build a dependency tree. The learner reads
each tokenized sentence and the corresponding parse tree of the training
dataset from database and builds a tree incrementally. It involves ad-
ditional techniques for saving memory, which will be covered in section
4.5. Because some patterns like “[U_and,punc]N:conj:N[A_other,mod]” re-
quires the encoding of co-occurrence of 2 SNs, the count of SN nodes
increments only when 2 nodes take place together. Hypernym extraction
requires additional steps. According to (Snow et al., 2006), they build
separate classifiers for each Hidj and d € {1,2,3,4,5}., where Hidj denotes
that a sense j is d-th ancestor of sense 1.

e A node selection step is applied to remove all nodes occurred less than 5
times because these words do not produce stable patterns.

e Each instance in its instance base is then converted into a real valued
sparse vector. For a tail node only subtree, which is mostly the cases, the
access count C4 is the value of vector element. In the conversion, each
semantic neighbour is treated as a single attribute in order to differentiate
the pattern “such N as N” from “N as N”. If a tail node contains such a
SN, the count of SN is subtracted from its own count when it serves as a
feature. It works because there is at most one SN node of a subtree and
two co-occurred SN nodes are viewed as one node.

e Test data builds another instance base of the trained dependency tree.
The value of a feature is a matched tree path from root to tail node
of a trained dependency tree. In testing data building, each matching
dependency paths from testing documents is stored in a new instance
base. And it is subsequently converted to a sparse matrix the same as in
the training phase.

e (Snow et al., 2006) shows that logistic regression classifier performs best on
the data discretized by exponentially increasing buckets {(0,1],(1,2],(2,4],...}.
All current frequency count based features are therefore transformed into
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a sequence of binary features. The testing matrix contains a lot of noun
pairs, which are not contained in WordNet. In this step, these instances
are simply relabeled as Non-Hypernyms. The sparse logistic regression
classier from Auton lab (Komarek and Moore, 2003) is one of the fastest
classifiers for large sparse data. It can do this classification task within
1 minute, whereas other ones like the corresponding one in yale (Rapid-
Miner) (Mierswa et al., 2006) spend days on the same task. The format
converter supports also the transformation into the yale format and the
sparse format used by SV M9t (Joachims, 1999)

4.3.2 Bayesian Network Estimation

Max Estimator

training posts testing posts

Relation pair collector

|

[ BNE Classifier J
Non-relation instance selector
Creating testing instances

Figure 4.8: The workflow of Bayesian Network Estimation introduced in section
3.2.2

ormat converter,

BNE differs from the previous approach in the way of feature representation and
classification because it allows any types of SN nodes. The prediction task is
accomplished by our Bayesian Network classifier presented previously. Another
difference lies in tree pruning, which prunes all tree nodes occur less than a
minimal frequency. After classification, each subtree vector of testing instances
is converted into a real valued vector, whose value is the probability of a depen-
dency path indicative a relation R. One choice is to use max estimator choosing
the max value of a vector as the final probability of a instance. As the sparse
feature matrix can be converted to data formats of Autonlab classifiers and
SV MY 9"t another choice is to employ their classifiers to learn the “confidence”
vector after BNE estimation.
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4.4 Implementation of Topic Related Relation
Learner

4.4.1 Tag Ontology Extraction

In the task of tag clustering based on context, each tag is stemmed by tree tag-
ger and the corresponding context terms are stemmed by Snowball. The terms
with extreme high IDF values (higher than 0.9) from a blog post are removed
from tag vectors because they are mostly single-use words and their existence
can easily lead to memory problem of randomized clustering.

. coocurrence
Lexicon matrix

TFIDF Word Context Randomized

Collector Generator Clustering

Figure 4.9: The workflow of blog tag clustering

We use ADtree (Moore and Lee, 1998) to facilitate the discovery of association
rules. It is a caching data structure for doing counting in constant time. Given
R records and m attributes A = {A;, As, ..., A}, a query is a set of (attribute
= wvalue) pairs. Each ADnode (shown as rectangle in figure 4.10) represents
a query and stores the number of records that match the query. A “Vary
nodes” D of attribute A; (shown as ovals), which is a child of an ADnode, has
again one child for each of the n; values of A;, if the arity of A; is n;. The
kth child ADnode of D represents the same query as its Vary node’s parent
with additional constraint that A; = k. In order to reduce redundancy, if a
ADnode has Vary node of attribute A; as its parent, it can only have Vary node
children representing attributes with higher index. A lookup to get the number
of matched records of a query (A; = 3, A4 = 1) can follow the path in the tree:
VaryAs, — A = 3 — VaryAy — Ay = 1. The count is obtained from the
resulting node. Notice that such a tree is quite huge, for M binary features 2™
nodes are required. So they store NULL both at the position of ADnodes that
match zero records and the ones representing the most common of the values of
an attribute (they call it MCV).

Because each tag is modeled as a binary feature and only positive association
is of our interest, a complete ADtree is not necessary. We assume that absence
of a tag is MCV, so only the co-occurrence information is need to be stored
into the tree. Another simplification is that we remove vary nodes from the
tree because they have just one Not-NULL child. Therefore, the building of
tree can be accomplished within two scans of database. Let a record be a set of
attributes A;, A;41..., Ax having positive value in increasing order of index and
a; denote an ADnode of attribute A;, the modified algorithm is given here:

buildADtree()
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Figure 4.10: The top ADnodes of an ADtree. Each vary node represents a
contingency table.

termSet = collect terms occurring at least m times.

for each record r in database:
let ¢ = the intersection of present terms of r and termSet
keep ¢ sorted in increasing order
incrementTreeCount (c)

The algorithm begins with a scan through database to calculate the collection
frequency of terms. This is the first step of Apriori algorithm (Agrawal and
Srikant, 1994) that does not take terms without minimal support into account.
It saves large amount of memory because there are large portion of single-use
terms. The function incrementTreeCount is defined as:

incrementTreeCount (c)
while ¢ is not empty:
append tree root to queue Q
sortedSetA = ¢
while sortedSetA is not empty:
currentNode = get first element of Q
increment count of currentNode
remove first element of sortedSetA
for element e in sortedSetA:
K = get or create child of currentNode matching e
Add K to the end of Q
remove first element from c

The function goes through all combinations of input set and increments the
count correspondingly. This step takes O(2%) time where a is the number of
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positive values of a record. Because a database record has about 4.2 tags on
average, so that the computational complexity is in fact closed to (16N) where
N is the number of database records.

After building the ADtree, all frequent itemsets are found by depth first tra-
verse throughout the tree. It worth noticing that not every node need to be
accessed. Since the count decreases as the tree depth increases, search stops
at nodes with count lower than specified minimal support. In each frequent
itemset, equality® and conviction are verified subsequently. conviction will be
checked only if equality© is lower than the given threshold. As conviction defines
directional rules, the brute-force method that finds all rules within a frequent
itemset requires exponential computation time. A simple method suggested in
(Witten and Frank, 2005) is to find first single-consequent rules because double-
consequent rules hold only if the single consequent rules are true. If rules with
more consequents are found only from rules with less consequents, the required
computation time is enormously reduced.

4.4.2 Keyphrase Extraction

TFIDF collector

feature
matrix

dataset

Documents
EPT Selector

Feature Extractor Classifier

Figure 4.11: The workflow diagram of keywords extraction.

As mentioned in the last chapter, lots of annotated posts do not contain tags as
part of their main contents since bloggers intend to use words of general cate-
gories to annotate web content. The existence of ambiguous tags like “toread”,
“fun” should not be included as target class because only well edited keywords
are of our interest. Document selector fulfills the two requirements in two steps.
Ambiguous tags are “ambiguous” because they are used to annotate posts of
various topics. Just like measuring the quality of a cluster we use the average
squared distance to filter out the posts annotating dissimilar posts. Let D be
all associated posts of a tag t and n be the size of D, the criterion is defined as:

1
avgdist(t) = — Z Z cosine(a,b) (4.1)
""" €D beD

where cosine measures the cosine distance between two normalized TFXIDF
document vectors. Only tags whose associated posts have avgdist over a given
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threshold are regarded as candidate tags. The tags are removed from each an-
notated post in advance. Then tags and posts are stemmed by Snowball before
checking if a tag exists in its referred post. A post is selected only if it contains
minimal number of tags which are candidate tags and reoccurred in the text. A
tag fulfilling the minimal condition is referred as “index terms” in the latter part.

Since the tokens and POS information already exist in the database, we use di-
rectly POS category identified by Minipar to collect candidate terms. N-grams
of patterns “N”, “A N”, “N N”,“A U N”!, “N U N”,“A Prep N” and “N Prep
N” comprise the candidate term set. It covers more that 80% percent of the
selected tags. The major loss is resulted from the single word used in sentences
longer than 60 words. Most features are trivial to get, only the ontology feature
is not obtained from clustering results and association rule sets but directly
from the transformed PMI co-occurrence matrix and ADtree, because the temp
results allow more flexibility and interest measure is not contained in the rule set.

4.5 Performance Issues

Processing large-scale dataset in restricted time is one of the biggest challenges
in this thesis because weblog corpus consists of over 50 GB data. With a stan-
dard PC having maximal 2 GB memory a good balance between space and time
should be achieved. Even the simplest task, storage of Hypernym and Non-
Hypernym pairs became a problem at the very beginning. B-tree as the default
indexing method of Mysql database showed quite a low performance when ta-
ble entries grew up to 1 million. Hash indexing solves the problem although it
worked a little slower than B-Tree at beginning phase.

“Out of memory” is one of the most frequently emerging problems during de-
velopment. Carefully designed data structure and algorithmic improvement are
the keys to the solution. Sparse vector and sparse matrix structure save enor-
mous space. Dependency tree consumes much less memory by storing identical
nodes of a dependency path only once. Using minimal data type as attributes
can lead to further optimization. E.g. use byte instead of unicode string to
represent the POS of a path node consumes at most 1/8 of the original memory.
It is especially beneficial if there are over millions of tree nodes. But there were
also situations, where even the most efficient data structure can not fit into
memory. The instance base of a dependency tree for hypernyms requires about
1.5 GB space without consideration of the tree itself. A #f matrix needs even 16
GB space for all English posts even when sparse matrix structure is used. The
only solution is to embed a cache into the data structure, which saves the least
used data into disk and keeps only the frequent used ones. Caching strategy is
simple for write only situations like storing tf vectors, it simply writes all data
from cache into disk when the cache is full. If read is the main action of a task,
least recently used (LRU) is one of the basic strategy. Noticing that many data
mining algorithms work sequentially, if indexes of data objects are assigned in
the same order, a set of objects with subsequent indexes of the current object

1U is included only if it is not a punctuation.
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can be preloaded into memory while reading them again in the same order.

Large scale NLP processing is also a time consuming task. E.g. it took over a
week to filter out all non-english posts and about ten days for parsing all the
English posts with Minipar, even when Minipar is one of the fastest dependency
parser to our knowledge. 6 or 8 hours are mostly the least running time for
most tasks like collecting hypernyms. To prevent rerunning some long tasks,
the experiment system is designed to store any important temp results to let fast
prototyping possible. Lots of results do not result in chaos of data management
because the relatedness between various results and the original data are kept by
foreign keys, which benefits a lot from the representation power and scalability of
the relational model. It is also important to employ profiling tools like JProfiler
and Netbean profiler to find the performance bottleneck.



Chapter 5

Experiments and Analysis

In (Brank et al., 2005), most ontology evaluation approaches are classified into
four categories:

An ontology under discussion is compared with a “golden standard”, which
may also be an ontology like Cyc and WordNet. Precision and recall are
widely used to measure the correspondence between them. However, if the
ontology is from a specific domain, preparing the golden standard requires
a lot of human work. A human edited ontology always suffers from low
coverage, which can only be used to evaluate part of an ontology.

Typically, an ontology is used in certain applications or tasks to see if it
improves their performance. If the outputs of a application in question
are straightforward and there is a well-understood evaluation of the ap-
plication, an ontology can be simply plugged into the application and the
evaluation is based on the results of it. But the observation is indirect and
influenced by a lot of factors because the ontology is only part or small
part of an application.

An ontology can also be compared with a source of data about a domain
the ontology refers to. E.g. (Brewster et al., 2004) compares a set of
ontologies against a corpus of a specific domain. They conduct a prob-
abilistic approach to measure the overlapping of domain specific terms
between an ontology and the corpus.

The most basic approach is to evaluate an ontology by humans who try
to assess how well the ontology meets the predefined criteria.

Section 5.1 compares learned coordinate terms against WordNet. Section 5.2
evaluates extracted relations against not only WordNet but also Research Cyc!
to improve the coverage. Keywords extraction is evaluated with a hold-out
testing set in section 5.3. In this section an experiment is also carried out
to compare the quality of extracted keywords before and after involving tag
ontology, which can be regarded as the second approach.

Thttp://research.cyc.com
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5.1 Evaluation of Coordinate Terms

The algorithm used to find coordinate terms is the improved clustering method
proposed in section 3.1. We use the similar method in (Pantel and Lin, 2002)
that follows a “golden standard” based approach. Because weblog corpus con-
tains a lot of words that are not covered by WordNet, we evaluate only the
clusters in which at least half of the words are contained in WordNet. The
words not contained in WordNet are not considered as members of a given clus-
ter.

The evaluation method measures the percentage of output clusters correspond-
ing to their synsets. If sim, is over a threshold 6, it is recognized as a correct
sense.

maz sime(s,c) > 0 (5.1)
Let C denote all words in a cluster ¢ and #C' be the number of words of ¢, sim,
between a cluster ¢ and a synset s is defined as:

Zwiec $EMy (8, w;)
#C

The similarity between a word w and a synset s is the maximum similarity
between a synset of w and s.

sime(s,¢) = (5.2)

51y (8, W) = MATye§(w)STMsense (S, U) (5.3)

where S(w) are all synsets of a word w. The similarity between two synsets s;
and s is defined in Lin and Pantel (2002) as:
2 x logP(s)
sim S1,82) = 5.4
sense (81, 52) logP(s1) + logP(s2) (54)
where s is the least common subsumer which is the most specific synset that
subsumes s; and sp. The probability P of each synset is derived from seman-
tic concordance files? provided together with WordNet 2.0, which records the
frequency count of the synsets tagged in the corresponding concordances like
SemCor?. To reflect the taxonomic hierarchy, the frequency count of a synset
is propagated to all its ancestors.

As the precision of a word w is the percentage of correct clusters being assigned
to, the overall precision of a clustering algorithm is the average precision of all
words. From 15,000 noun clusters we obtain 31.42% with threshold 0.1, which is
only about the half of that in (Pantel and Lin, 2002). One reason lies in relative
smaller dataset (about 50,000 posts), compared to 1GB newspaper text used
by Lin and Pantel. The most important reason lies in the nature of Web 2.0
that grassroots have inconsistent style of writting. There are a lot of compound
words that contains numbers, symbols. Minipar parser, which is trained on
SUSANNE corpus, has difficulty in identifying POS and lemmas properly. For
instance, in the following example, “ubuntu center current” includes “current”
as part of a noun. And inproper use of expressions group dissimilar words into
clusters, which they do not belong to.

2The attribute tag_cnt of index.sense file represents the number of times a sense is tagged
in various semantic concordance files.
3http://multisemcor.itc.it /semcor.php
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debian ubuntu , linux terminal server project
ubuntu center current , tech ubuntu center alpha 1
gnome gui , flavors - ubuntu

Table 5.1: Three noun clusters containing the word “ubuntu”. Each row con-
tains a cluster and cluster members are separated by comma.

5.2 Experiments of Lexico-syntactic Pattern Based
Learning

As the last section evaluates the 1-ary relations, we evaluate here binary relation
instances extracted by the baseline method and BNE against golden standards.
As discussed in section 4.3, all tagged posts are splitted into training and test-
ing datasets. WordNet is used to label word pairs in the datasets with specific
relations which are both contained in WordNet. In the evaluation of extracted
hypernyms, Research Cyc, which is the world’s largest and most complete gen-
eral knowledge base, is used to improve the coverage of the evaluation. Cyc
contains a huge amount of concepts and facts. A semantic relation between two
concepts is expressed through a logical assertion like “Human #isa Animal”,
where #isa is a predicate asserting the subsumption relation between two con-
cepts “human” and “animal”.

5.2.1 Hypernym Extraction

We apply first the baseline method on testing sets of weblog corpus and Wik-
tionary glosses separately. The precision and recall is evaluated by the Word-
Net labeled word pairs. Poor performance is achieved on both datasets. The
logistic regression classifier from Autonlab classifies nearly every relations as
Non-Hypernyms. Nearly every noun pairs have over 99% confidence as Non-
Hypernyms. After analysis of small amount data, five possibilities are found as
reasons of the misclassification.

1. A possible positive pattern is represented as a dependency path with high
probability indicative a relation. Hearst’s patterns are examples of such
patterns. Low recall indicates that such patterns may be seldomly used
to describe a relation. If the positive patterns existing in our datasets
are too sparse, the used classifiers may fail to classify positive instances
correctly because they assume false negative and false positive have equal
cost and they are designed to minimize overall misclassification cost. This
can be explored by ranking each bridge in the training dataset, which is
equivalent to rank all tail nodes of the trained dependency tree according
to p(ng) calculated by equation 3.1. It is also a way of pattern discovery.
The ranking list of Hfj of wiktionary gloss shows that no pattern occurs
more than 5 times with p(n,) over 0.5. The best frequent postive pattern
“N:s:VBE:pred:N:as opposed to:N” occurs only 14 times and has a score
of 0.2857. Although there are 523 patterns containing the keyword “such
as”, only five of them have p(n,) over 0.2 but all such patterns occur no
more than five times.
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2. Another possible Hypernym pattern is a set of co-occurred dependency
paths representing a positive example. They can build such a pattern
even if none of them indicates alone the relation in question with high
confidence. If the number of co-occurred paths are quite small for positive
examples, it will be difficult to draw a decision boundary. After inspecting
the blog testing data of Hfj, it is found that the average number of features
in is only 1.8 with standard deviation 1.83, whereas Wiktionary has even
a lower average number of features of 1.27, if only first senses are chosen
to label positive examples.

3. The reason to use WordNet is to label each lexico-syntactic pattern in-
dicative a relation in question. If two words not recognized as the specific
relation are used in a positive pattern frequently, the pattern can not be
identified. The grassroots writers of web 2.0 can misuse the expressions
or they could fail to recognize the relation between two words as precisely
as professionals. (Snow et al., 2007) argues that the relations in Word-
Net are too fine defined, which can also lead to poor performance. We
find clues from the lexico-syntactic pattern “N:s:VBE:pred:N” we built in
Wiktionary corpus by attaching the word of entry in front of its gloss. The
p(ng) of the pattern is only 0.013 although it takes place 83879 times. It
is far from intuitive estimation. After analysis of some sample pages from
en.wiktionary.com, we find out that the average correspondence between
WordNet and Wiktionary is low but still much higher than 0.013. For ex-
ample, the word “catch” finds only two Hypernyms covered by WordNet
at the first occurrence of a common noun among its all seven meanings.
But “catch” is not a “problem”, “clasp” or “find” in WordNet, although
the Wiktionary writers think they are. So precision labeled by WordNet
would be 40%, it generates three false negative examples. And it is noticed
that none of the correspondence comes from the first sense of WordNet.
Another type of mismatching is that the sibling in WordNet can be writ-
ten in Wiktionary as Hypernym relations. In wiktionary, a cat can be
“an enthusiast or player of jazz” but enthusiast is not an ancestor of cat
at any level. However, they share a least common subsumer “person” in
WordNet.

4. The lexico-syntactic pattern representations in (Snow et al., 2006) may
provide insufficient information for small amount data. Incorporating con-
text information is a way towards further improvement.

5. Several posts in weblog corpus contain some advertisements or commercial
information which are automatic attached by web agenten. Such kind of
sentences are nearly identical. The failed recognition of compound words
in such sentences can therefore lead to repeated false examples in the
training and testing phases. For instance, “power” is a direct ancestor of
“control” in WordNet, but they are not of Hypernym relation in the phrase
“Age of Empires III-Real-Time Strategy Game Control a European power
on a quest to colonize and conquer the New World.”. We partly solve the
problem by means of Minipar lemmatization and stanford named entity
recognizer. In the above example, Minipar identifies “Empires III-Real-
Time Strategy Game Control” as the lemma of “control”.
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(Suchanek et al., 2006a) gives a theoretical upper bound of classification errors
in terms of the quality and allotment of a pattern p. They show that a good
choice of positive examples and counterexamples decreases the probability of
misclassification. If a pattern indicates strongly a relation, it is also unlikely
to have a wrong label. As the number of instances increases, the error bound
converges to zero, so the dataset should be large enough to get a reasonable
result.

We establish a set of experiments to find the optimal choice of examples. Among
them we obtain the best results on Wiktonary corpus when we consider all senses
of a word and take Hldj, d € [1,5] as positive examples. For weblog corpus, only

H{ij, d € [1,3] are regarded as Hypernym. Two choices of counterexamples are
employed in the experiments. One is the same as in (Snow et al., 2005) that
any relations not belonging to Hfj, d € [0,00). The other does not take certain
taxonomic cousins C%j into account, where C%; denotes a pair of taxonomic
counsins with maximal distance d to their least common subsumer. Naive Bayes
of Autonlab is also used in the baseline method in order to isolate the depen-
dency on logistic regression classifier. In addition, Bayesian Network Estimation
introduced in the chapter 3 is applied to explore the usefulness of incorporating

context information.

The evaluation follows a coarse-grained and a fine-grained approaches. In
coarse-grained evaluation, the taxonomic cousins Cilj and ij in testing datasets
are not labeled as counterexamples, whereas all taxonomic cousins are Non-
Hypernyms in the fine-grained evaluation. To improve the coverage, Research
Cyc is used to cover the estimated noun pairs that are not contained in Word-
Net. The nouns in form of word constants are first mapped into Cyc concepts
by means of predicates #$denotation, #$multiWordString and #$compound-
String. The last two predicates associate compound words with concept con-
stants. Hypernymy in Cyc is addressed by predicates #8$isa and #$genls, which
are equivalent to instance-of and subsumption relations. In addition, different
thresholdings 6 of prediction confidence are set to allow different selection of
estimated postive examples. According to the proposed statistical model in
(Snow et al., 2006), k of equation 2.12 is a factor adjusting the proportion of
estimated relations added into a taxonomy 7. This is equivalent to allow differ-
ent thresholding over predicted confidence. So results are also given separately
when P(R;; € T | EZI;) is larger than 0.1, 0.2 and 0.5. As usual, precision, recall,
F-measure and accuracy are defined as follows:
pecision = TPZ% recall = TPZ%

TPHTN F — measure =

— 2Xrecall X precision
ACCUTacy = TpITNYFP+FN I+precision

recall4+precision
where TP, FP, TN, TN stand for true positive, false positive, true negative
and true negative.

The promising results of evaluation are given in appendix A. Among the dif-
ferent options of the baseline method, the one using logistic regression classifier
and including all taxonomic cousins as counterexamples shows the best perfor-
mance in both corpora. Naive Bayes achieves a better recall without C’}j and
C?;. BNE performs best also without C}; and C7;. This demonstrates the simi-
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word A word B confidence
company | organization 21.65%
form knowledge 21.16%
device phone 20.46%
cancer disease 23.64%
jesus god 25.71%
china country 39.52%
bolivia country 20.44%

Table 5.2: The top seven hypernyms found by the baseline method in the weblog
corpus.

larity between the proposed BNE and Naive Bayes, which is in fact an improved
Naive Bayes considering more dependencies. The reduction of noisy examples
help them to get better estimation.

Incorporating context information does not show strong advantage over the
baseline method in terms of precision and recall evaluated by “golden stan-
dard”. The reason lies mainly in the coverage of WordNet and Research Cyc
in case of Wiktionary corpus. At threshold 0.2, which has a balanced precision
and recall, BNE finds 34,011 hypernym candidates, whereas the baseline method
identifies only 6,977 potential hypernyms. At the same level, the F-Measure of
BNE (42.83%) is also slightly higher than the baseline method (42.12%) in the
coarse-grained evaluation. However, the baseline method show its strength in
weblog corpus, where it finds the following seven hypernyms presented in table
5.2.1 with 100% precision, if the confidence cut is set to 0.2. BNE can reach the
similar performance in terms of F-Measure when logistic regression classifier is
employed instead of the max Estimator to make prediction on confidence space.
The F-Measure of BNE is about 00.67%, which is higher than 00.22% of the
baseline method. At threshold 0.1, the F-Measure of BNE is even four times
higher than that of the baseline method at cost of 4% reduction of precision.
Incorporating context information can no doubt capture more lexico-syntactic
patterns and results in higher recall. It introduces also more noise and de-
pendent features into feature space. BNE has still too strong independence
assumption and therefore can’t achieve quite high precision. The large differ-
ence of precision with the baseline method between logistic regression classifier
and naive bayes classifier on weblog corpus shows also the weakness of the sim-
ple Bayesian classifiers.

Max Estimator performs well if the density of positive patterns is high and
data contains little noise. It can at best indicate if there is a pattern highly
indicative the relation in question. Previous experiments show that max estima-
tor performs equally well as logistic regression classifier on Wiktionary corpus.
However, the assumption of max estimator that “the semantic relation is most
indicated by the strongest expression used to describe it.” does not hold any
more if the data become more noisy. Compared to that the co-occurrence of
multiple lexico-syntactic patterns builds more stable patterns of semantic rela-
tions from a large corpus.
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The different evaluation results on different corpora reveals the characteristics
of data. Methods worked on Wiktionary has always much higher recall than
weblog, since the online dictionary contains 11,243 hypernyms in only 112,956
sentences, whereas weblog corpus has only 4576 hypernyms among all 418,610
sentences. And Wiktionary is also rich in expressions that explains the word
relations, which can be considered as the density of positive patterns. Therefore,
BNE with Max estimator performs well on that corpus, since it is good at
extracting relations with high density and little noise. Besides relation and
pattern density, they varies also in frequency of reoccurrence. Since the high
reoccurrence in weblog corpus allows the large size of co-occurred dependency
paths, the baseline method achieves higher precision than that on Wiktionary
corpus. It is the also reason why over 200 GB data is used in (Snow et al.,
2006) to achieve the best result. However, there is a still a distance between our
results and the results in (Snow et al., 2006). Besides the noisy nature of Web
2.0 and small data size, we can not apply taxonomic induction is another reason
because the number of extracted relations from weblog corpus is too small and
extending WordNet is not of our interest.

5.2.2 Meronym Extraction

In order to show the strength of lexico-syntactic pattern based classifier, we
apply BNE and the baseline method to extract meronyms from Wiktionary and
weblog corpus. In the training phase, a relation R;; is regarded as a positive
example if the first 3 synsets and their direct ancestors of ¢ in WordNet are
holonymy of any synset of j. Any relation is considered as a Non-Meronym
only if any synset and their ancestors do not have meronym relationships to
each other. In the evaluation phase, a pair of words are meronym if any sense
or their ancestors are Meronym, otherwise they are Non-Meronym. BNE with
logistic regression classifier shows overall better performance than the baseline
method with logistic regression classifier. Context information plays a more
important role than in Hypernym acquisition. Here it should be pointed out
that the corresponding precision and recall is lower than the truth because of
the low coverage of meronym relations in WordNet. For example, BNE predicts
25 examples positve* with confidence over 0.5 from Wiktionary. 17 of them
contains city names that are not contained in WordNet. All of them are correct
part of whole relations between a city and a country. It is also difficult to find
such relations in Research Cyc because of no proper predicate is defined.

5.3 Experiments of Keyphrase Extraction

The first experiment is carried out to compare the our keyphrase extraction
method with KEA, which is available under www.nzdl.org/Kea. We select 621
documents from 2,500 annotated English posts written on May 01 2006 using
the method introduced in section 4.4.2 and split them with ratio 2.3:1. Each
post is selected if it is annotated with at least three “index terms” to prevent
KEA failing to find at least one “index term” due to stemming error. As a
consequence, the training and testing datasets contain separately 434 and 187
documents. A tag ontology is derived from the 2500 documents excluding the

4All these examples are given in appendix C together with confidences
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evaluation threshold | precision | recall | accuracy
0.5 0.00% | 0.00% 89.27%

BNE (LR) 0.2 32.82% | 0.67% 89.20%
0.1 31.82% | 3.18% 88.89%

0.5 0% 0% 89.35%

Baseline (LR) 0.2 30.77% | 0.54% 89.28%
0.1 30.04% | 2.66% 88.98%

Table 5.3: Evaluation results of meronyms extracted from Wiktionary corpus.
(LR) means using logistic regression classifier in the corresponding method.

evaluation threshold | precision recall | accuracy
0.5 51.27% 0.82% 94.34%

BNE (LR) 0.2 50.78% 0.83% 94.34%
0.1 50.15% 0.84% 94.33%

0.5 50% | 0.00005% 94.34%

Baseline (LR) 0.2 50.94% 0.82% 94.34%
0.1 50.15% 0.84% 94.33%

Table 5.4: Evaluation results of meronyms extracted from weblog corpus. (LR)
means using logistic regression classifier in the corresponding method.
ones in testing datasets.

The evaluation module of KEA provides only mean and standard deviation of
hit, which is defined as:

> TP
mean = =4£—,  std = /3, p(TP — mean)?
where D is a collection of testing documents and T'P is the number of assigned
keywords matching “index terms”. In order to have a fair comparison, each
document is assigned 5 keyphrases by both methods.

To show the strength of important features, our method is first evaluated with
only TEXIDF, first occurrence and word length features. On that basis, another
experiment is carried out with Tag Ontology feature to see how far a domain
specific ontology can improve the performance. Named Entity class feature is
also evaluated together with previous features. The results are given in table 5.3.

From the results we can see that POS pattern based candidate terms identi-
fication outperforms the n-grams approach of KEA. The largest improvement
is achieved by incorporating tag ontology, which interprets the semantic relat-
edness between candidate keyphrases. It can show also the effectiveness of the
learned ontology and can be considered as an indirect evaluation of tag ontol-
ogy. Named Entity class leads to further improvement because bloggers intend
to use person names or organization names to annotate web content. The best
result in terms of F-measure is even better than that of KEA++(Medelyan and
Witten, 2006) (25.2%) and comparable to the highest F-measure reported in
(Hulth, 2003) (33.9%) despite of the noisy nature of folksonomy and weblog.
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recall | precision | f-measure | avg hit | std hit
KEA n.a. n.a. n.a. 1.09 0.99
Basic 28.40% 26.72% 27.53% 1.36 1.11
Tag Onto 30.97% 28.96% 29.93% 1.48 1.13
NE 33.22% 31.09% 32.12% 1.59 1.10
All Features | 33.67% 31.85% 32.73% 1.61 1.13

Table 5.5: Evaluation results of Keyphrase Extraction. Basic means our method
is evaluated using only TFxIDF, first occurrence and word length features.

o1

Based on that, Tag Onto adds Tag Ontology feature. NE includes further Named
Entity class feature. The best result is achieved with all Features.

The extracted keywords are used to extend the tag ontology extracted from

the 2500 weblog posts. It is found out that the extended ontology doubles the

number of relations. Interesting rules like “[wayne rooney| Rightarrow [world
cup]” appears, which previous does not exist.



Chapter 6

Conclusion and Outlook

We consider information search as two dependent tasks, ontology learning and
ontology based information search, where learning a domain-dependent ontol-
ogy from Web 2.0 is the focus of this thesis. We have presented several machine
learning algorithms to learn relation instances from weblog and Wiktionary
in terms of distributional similarity, lexico-syntactic patterns and folksonomy.
As a consequence, the learned ontology is a model (U, 3, F') that represents a
weighted semantic network connecting related terms and term sets.

The data structure dependency tree shows a new way to represent lexico-syntactic
patterns memory and computationally efficient. By means of a simple Bayesian
Network Estimation and incorporating local context information, higher f-measure
is achieved compared to the state-of-art method proposed in (Snow et al., 2006).
Noticing that BNE does not differ much from a Naive Bayes model, which has
strong independence assumption. And it does not model co-occurrence of tree
nodes well, so that it has large potential for further improvement. Since basi-
cally dependency tree is a Bayesian Network, in which the dependency between
random variables is represented with edges connecting them, more advanced
statistical models or methods can be employed to learn a optimized network
structure. Some recent works can be found in (HECKERMAN, 1999; Golden-
berg and Moore, 2004).

As folksonomy is one of the characteristics of Web 2.0, the intrinstic semantic
relatedness between tags are explored to derive a tag ontology from weblog cor-
pus. Compared to the other works in this area, it is the first work to provide
solutions to address synonymy, structured browsing and low coverage of tags all
in the same framework. Interpreting tag structure learning as a task of associ-
ation rule discovery allows to find correlation between two different term sets
not just between two terms as in (Schmitz, 2006; Heymann and Garcia-Molina).
The way to find similar tags based on their context transforms document sim-
ilarity to tag similarity, which is able to group more similar tags than those
works (Begelman et al., 2006; Heymann and Garcia-Molina) considering each
document as distinct objects. Furthermore, the tags based keyphrase extraction
method expands the power of folksonomy to unannotated documents, which can
also be viewed as a tag recommentation system. Since tag ontology serves as one
of the feature of keyphrase extraction procedure, whose result enrichs again the
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existing ontology, an iterative process like Boosting can be designed to improve
ontology learning. If a seed of ontology is given, it can be applied to any other
free texts.

Grassroots content creators of Web 2.0 applications determine the noisy nature
of contributed information. As previous experiments shown, most of learned on-
tologies from this domain have lower quality than the others derived from e.g.
newswire corpora if it is compared with a broad coverage gold standard. There-
fore, more noise removal preprocessing procedures are required than processing
newswire like corpora. It is also worth noticing that the evaluation against a
golden standard can not demanstrate fully the power of learned ontology due
to its low coverage because the agreement between Web 2.0 and current broad-
coverage ontologies is low. It is therefore a high motivation to learn ontologies
from Web 2.0 that overcome the coverage shortage of the manual edited ones.
In addition, the information from Web 2.0 domain are always huge and fast-
growing which demands high efficiency of involved algorithms. The work in this
thesis has shown how to modify the state of art methods to employ them on a
standard workstation PC.

One application of learned ontologies is topic detection. Since the topic related
and semantic related terms learned from the domain builds a semantic graph,
the state of art graph clustering algorithms can be used to find the tightly con-
nected subgraphs representing same topics. (Dhillon et al., 2005) establish a
mathematical connection between spectral clustering and kernel k-means, so
that their algorithm find clusters without any eigenvector computation. Cor-
relation clustering algorithm proposed in (Bansal et al., 2004) does not even
need to specify the number of clusters. The relevance between topic clusters
and documents can be measured by their vector distance, if a topic cluster is
represented as a vector of its member nodes, in which the value of a node is
the sum of the weight of its edges. Therefore, it allows multiple memberships
of a document. Following the same idea, if a query is mapped into the ontology
and forms a centroid distributed in a cluster or between several clusters, the
relevance scores between the centroid and documents in question is determined
by a distance function considering semantic related terms of query in addition
to the vector distance between them. Query is not a set of keywords anymore
but expanded to a semantic network. The scores can be directly used for rank-
ing, query suggestion or as a feature of a ranking model like the ranking SVM
(Joachims, 2002) to obtain a domain specific ranking function. In this way, IR
systems are improved in terms of incorporating semantic knowledge.
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Appendix A

Logistic regression Naive Bayes

threshold || precision recall | accuracy | precision recall | accuracy
0.5 50.80% | 0.45% 85.57% 46.75% | 1.51% 85.54%
0.2 42.64% | 41.61% 83.50% 34.78% | 53.72% 78.78%
0.1 35.74% | 51.26% 79.66% 30.81% | 63.00% 74.24%

Table A.1: Coarse-grained results of the baseline method on Wiktionary corpus.

Hfj, k € [1,5] are positive examples. All taxonomic cousins are considered as
counterexamples.
Logistic regression Naive Bayes
threshold || precision recall | accuracy | precision recall | accuracy

0.5 46.67% | 0.69% 85.56% 46.86% | 1.56% 85.54%
0.2 42.61% | 41.64% 83.48% 34.75% | 53.83% 78.75%
0.1 35.45% | 51.56% 79.46% 30.78% | 63.13% 74.19%

Table A.2: Coarse-grained results of the baseline method on Wiktionary corpus.

Hfj, k € [1, 5] are positive examples. Taxonomic cousins Cilj and ij are ignored
in the training phase.
Evaluation threshold | precision recall | accuracy
0.5 49.24% 1.36% 85.59%
WordNet only 0.2 41.74% | 43.99% 83.09%

0.1 31.93% | 61.89% 75.51%
0.5 48.38% 1.42% 85.44%
WordNet and Cyc 0.2 | 44.42% | 44.16% | 82.85%
0.1 31.90% | 62.44% 75.15%
0.5 40.38% 1.42% 87.46%
WordNet and Cyc (hard) 0.2 | 36.13% | 44.16% | 83.30%
0.1 25.98% | 62.44% 73.16%

Table A.3: Coarse-grained and fine-grained results with Bayesian Network Es-
timation on Wiktionary corpus. WordNet and Cyc (hard) indicates the re-
sults of fine-grained evaluation and others are from coarse-grained evaluation.
Hfj, k € [1, 5] are positive examples. Taxonomic cousins Cilj and C’fj are ignored
in the training phase.
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evaluation threshold | precision recall | accuracy
0.5 44.44% | 0.11% 85.61%
WordNet only 0.2 | 40.35% | 45.39% | 82.49%

0.1 25.64% | 71.96% 65.95%
0.5 42.11% 0.11% 85.47%
WordNet and Cyc 0.2 | 40.26% | 45.83% | 82.26%
0.1 25.711% | 72.32% 65.63%
0.5 38.10% | 0.11% 87.55%
WordNet and Cyc (hard) 0.2 | 35.14% | 45.83% | 82.74%
0.1 | 21.32% | 63.34% | 63.34%

Table A.4: Coarse-grained and fine-grained results with Bayesian Network Es-
timation on Wiktionary corpus. WordNet and Cyc (hard) indicates the re-
sults of fine-grained evaluation and others are from coarse-grained evaluation.
Hfj, k € [1,5] are positive examples. All taxonomic cousins are included in the
training phase.

evaluation threshold | precision recall | accuracy
0.5 100% | 0.0016% 94.93%
WordNet (max) 0.2 | 14.21% 0.42% | 94.83%

0.1 10.41% 2.50% 93.98%
0.5 42.11% 0.11% 85.47%
WordNet (LR) 0.2 45.65% 0.34% 94.94%
0.1 23.63% 3.91% 94.50%
0.5 33.33% | 0.0015% 98.46%
WordNet and Cyc (hard) 0.2 6.49% 0.42% | 98.38%
0.1 4.43% 2.59% 97.65%

Table A.5: Coarse-grained and fine-grained results with Bayesian Network Es-
timation on weblog corpus. WordNet and Cyc (hard) indicates the results of
fine-grained evaluation and others are from coarse-grained evaluation. Taxo-
nomic cousins C’}j and ij are ignored in the training phase.

Logistic Regression Naive Bayes

threshold || precision | recall | accuracy | precision recall | accuracy
0.5 0.00% | 0.00% 94.92% 21.67% | 1.42% 94.73%
0.2 || 100.00% | 0.11% 94.92% 17.08% | 4.86% 93.97%
0.1 27.04% | 0.86% 94.84% 11.47% | 18.74% 88.52%

Table A.6: Coarse-grained results of the baseline method on weblog corpus.
Hf], k € [1, 5] are positive examples. Taxonomic cousins C}j and ij are ignored
in the training phase.
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The following table contains top 25 meronym pairs extracted from Wiktionary
corpus. The confidence values are predicted by Bayesian Network.

word A word B confidence
set vertices 59.75%
england staffordshire 83.61%
england shropshire 89.43%
england nottinghamshire 79.43%
england wiltshire 79.43%
switzerland zrich 95.44%
belgium wallonia 71.00%
belgium west flanders 71.00%
brazil par 77.38%
brazil maranho 77.38%
brazil so paulo 77.38%
india kerala 77.38%
india rajasthan 86.43%
india madhya pradesh 84.84%
india maharastra 71.00%
aragon aragonese 67.83%
kaliningrad russia 77.38%
kyrgyz kyrgyzstan 67.83%
abruzzo italy 71.00%
dorset england 79.43%
tooele state 50.35%
north west frontier province | pakistan 71.41%
balochistan pakistan 71.00%
braxy sheep 67.83%
coset subgroup 75.38%

Table B.1: Top 25 meronyms predicted by Bayesian Netword Estimation with
confidence over 0.5
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technology, ethic] = [blog]

[
[DIGITe, blu ray] = [DIGITps]
[bill] = [enzi, himmaa)]

[pop culture, democrat] = [humor]

[ontario] = [news, yahoo]

[commentary, karl rove] = [news]

[religion, stam| = [woman)]

art, thought] = [religion and philosophy]

art, diary] = [scribe]

voip, jingle] = [session signal]

[
[
|
[

canada, soferet] = [sofrut]

podcast, loan] = [credit]

oschersleben| = [audi, oneighturbo]

alabama, utah] = [mobile]

rant] = [mom, child]

spanish| = [boycott, commentary]

journal, woman] = [diary]

field trip] = [family, homeschooling]

commentary| = [plamegate, cia leak investigation]

real estate] = [real estate blogging, real estate blogs|

[
|
[tnt hd] = [abc, espn hd]

[psp, live psp] = [playstation portable]

[theatre, performance] = [guangzhou]

[marketing an online business| = [internet marketing, internet marketing online]

[vacation spa] = [main, stay spa the beach club spa]

[on, crush] = [own]

waitress] = [seafood, red lobster]

acim, enlightenment] = [a course in miracle]

lonnie hodge, expats guangzhou| = [china editorial]

[
[
[
[

china blogs, personal note] = [china editoriall

Table C.1: 30 association rules sampled randomly according to uniform distri-
bution from all 34,738 rules identified by conviction. The right itemset of an
association rule is present if the left itemset is utilized to annotate a post.
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scrap metal price, steel]

enzi, himmaa|

group b, paraguay]

[
[
{pad, photo a day]
[

clip art, public domain clip art]

own, then, crush, see, might]

woman 2f 27s rugby, woman 2f 27s sport]

filipina, sigepal

DIGITmayth, ggreat ggrail hunt, holy grail, last supper]

confirmation, sacrament|

culture guangzhou, expats, expats guangzhou, personal note, south china]

chris cree, creeations|

a consuming experience, consuming experience, improbulus]

daviddmuir, edcompblog]

super capacitor, super_capacitor, supercapacitor]

scribe, soferet, sofrut, technorati, torah, religion and philosophy, safrut, stam]

benedict xvi, ecumenism]

academe, duke]

da, vinci]

green lifestyle, carbon footprint, ecological footprint, greenforgood]

sound alchemy online, soundalchemyonline]

dtm, oschersleben]

[
[
[
[
[
|
[funny blog, menopausal, menopause, menopause symptom]|
[
[
[
[
[
[

frenchtown, frenchtown nj

monad, powershell]

broadband scandal, sheep herd]

ocle, rlg]

shiite, sunni]

DIGITcity sanmateo, glu mobile]

a virgin plea, united state of america]

Table C.2: 30 association rules sampled from 199 rules identified by equality©.
The right itemset of an association rule is present if the left itemset is utilized
to annotate a post.
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user review,buy online,camcorder,cybershot,user rating,

underwater camera, DIGITsony w,online review,DIGITw,camera enthusiast,
telephoto,neat find,consumer revi ew,pic,camera review,

sony cybershot,imaging resource,DIGITsony dsc w,DIGITsony dscw,shop
uefa, nelson,hedgehog, middlesbrough,strimmers,stadium,arcadium,chili
venitha,counseling,therapy,couple,raffle marina,

wet market,unhappiness,singapore expat,yacht
val,judy,chels,currently,kc,dora,john

efsa,ramazzini institute,kidney,european food safety agency,
aspartame,scientific study

hania, kat kendra,olivia,dana,greg

europe top scorer,eto o,golden boot,pichichi,luca toni,villa
codependence,libra,DIGITth house,pisces,people pleasing

star and buc,DIGIThot,power @Qcard@,clear channel

hyde park,princess diana fountain,photo friday
monetization,greasemonkey,stylish

fon,municipal _wireless,co operative

generation gap,cultural literacy,broadcasting
gratitude,acceptance,optimism

trade press,DIGITb,business medium

blogging poet,Qcard@ blogging poet in Qcard@ day,tip for bloggers
http fug blogspot com,vesak,fug

antarctica,oceania

allergy,asthma

capital punishment,death penalty

david hick,guantanamo

cafe commons,soonae and jong

web base note,posticky

scheme,lambda calculus

deco,giuly

godwins law,marx

anderson cooper,gloria vanderbilt

speed,slow

jameson,jenna

north sea,haar

Table C.3: 30 tag clusters sampled according to uniform distribution from all
3,546 clusters. Each cluster is represented as a row and cluster members are
separated by comma.



Appendix D

The explanation of grammatical notations is based on the README file of
Minipar. The meanings of part of speech categories referred in this thesis are
explained as follows:

Det: Determiners

PreDet: Pre-determiners

C: Clauses

I: Inflectional Phrases

V: Verb and Verb Phrases

N: Noun and Noun Phrases

P: Preposition and Preposition Phrases
A: Adjective/Adverbs

Have: have

The following is a list of the referred grammatical relationships in Minipar.
appo: appositive e.g. “ACME president, P.W. Buckman”
be: is e.g. “be sleeping”
gen: genitive e.g. “Jane’s uncle”
have: have e.g. “have disappeared”
mod: the relationship between a word and its adjunct modifier
pcomp-n: nominal complement of prepositions
pred: predicate of a clause
obj: object of verbs
subj: subject of verbs

s: surface subject

65



